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Abstract: The integration of a star tracker and gyroscope units (GUs) can take full advantage of the
benefits of each, and provide continuous and accurate attitude information with a high update rate.
The systematic error calibration of the integrated system is a crucial step to guarantee its attitude
accuracy. In this paper, a comprehensive calibration method for the star tracker and GUs integrated
system is proposed from a global perspective. Firstly, the observation model of the predicted
star centroid error (PSCE) with respect to the systematic errors including the star tracker intrinsic
parameter errors, GUs errors and fixed angle errors is accurately established. Then, the systematic
errors are modeled by a series of differential equations, based on which the state-space model is
established. Finally, the systematic errors are decoupled and estimated by a Kalman filter according
to the established state-space model and observation model. The coupling between the errors of the
principal point and subcomponents of the fixed angles (i.e., Ψx and Ψy) is analysed. Both simulations
and experiments indicate that the proposed method is effective at estimating the systematic errors
of the star tracker and GUs integrated system with high accuracy and robustness with respect to
different star centroid accuracies and gyroscope noise levels.
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1. Introduction

A star tracker, which can provide high-accuracy attitude information with respect to an inertial
frame [1–4], has been widely used in the fields of attitude determination, guidance and navigation [5–7].
However, the attitude update rate of the star tracker is seriously restricted by the time of pixel data
transmission and processing [8], which will limit its application under highly dynamic conditions.
The shortage of a star tracker can be overcome by combining it with three-axis gyroscope units (GUs).
The GUs consist of three orthogonally assembled gyroscopes and can provide continuous attitude
information in the inertial frame with high update rate. Although the attitude error of the GUs
accumulates over time due to the gyroscope and initialization errors, it can be well compensated by the
star tracker measurements. Hence, the star tracker and GUs integrated system can take advantage of
the benefits of each and has the potential to provide continuous, highly accurate attitude information
with high update rate.

The accuracy of the star tracker and GUs integrated system significantly depends on the calibration
accuracy of the systematic errors including the star tracker intrinsic parameter errors, GUs errors
and fixed angle errors between them. Traditional methods mainly focus on the calibration of the
single star tracker. A typical calibration method is conducted by simulating starlight coming from
different directions with an expensive precision turntable and a highly accurate star simulator in
the laboratory [9–14]. Laboratory calibration is generally more precise and has a more convenient
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calibration process [14]. Although the star tracker can be accurately calibrated in the laboratory,
these parameters may change due to the difference between laboratory and on-orbit enviroments.
Moreover, many factors, such as vibrations during launch, component aging and variable environments
during operation, alter the systematic errors and bring about mismatches between default parameters
and on-orbit ones, leading to degraded attitude accuracy [15]. Hence, on-orbit calibration is essential
for guaranteeing the performance of the star tracker during service. The on-orbit calibration method
based on the invariance of the interstar angle [16] was first proposed by Samaan et al. Due to
the attitude-independent characteristics, this method is the most widely used on-orbit calibration
approach. It was developed by many researchers in terms of the parameter estimation algorithms
and improvements to the measurement model. Singla et al. [17] adopted the combination of Least
Squares and the Kalman filter to estimate the principal point and the focal length of the star tracker.
Liu et al. [18] proposed a modified Least Squares iteration algorithm combining Kalman filter with
a two-step procedure for on-orbit calibration of a star tracker. The principal point and focal length
were achieved at first, then the lens distortion coefficients were estimated using the solutions of
the first step. Zhang et al. [15] proposed a self-initialization on-orbit calibration method combining
the back propagation neural network and the unscented Kalman filter. In addition, Li et al. [19]
proposed a star tracker on-orbit calibration method based on vector pattern match. Wang et al. [20]
proposed an on-orbit attitude-dependent calibration method for a navigation camera, whose attitudes
were provided by a simulated attitude determination and control system with accuracy 3” (standard
deviation). All methods mentioned above can achieve the parameter calibration of a single star tracker.

It should be noted that the performance of a star tracker and GUs integrated system depends not
only on the calibration accuracy of the star tracker but also on the GUs errors and fixed angle errors.
Since aforementioned methods focus on the calibration of a single star tracker, the GUs errors and fixed
angle errors need to be calibrated individually. In this paper, we propose a comprehensive calibration
method for a star tracker and GUs integrated system from a global perspective. Since the predicted star
centroid error (PSCE) is induced by the systematic errors including the star tracker intrinsic parameter
errors, GUs errors and fixed angle errors, it is possible to estimate these errors by observing the PSCE
in the image plane. A Kalman filter can be used to estimate these systematic errors optimally with
the established state-space model and observation model, therefore the performance of the integrated
system can be improved.

This paper is organized as follows. In Section 2, the theory of this comprehensive calibration
method for the star tracker and GUs integrated system is explained. First, the physical measurement
model is deduced. Then, the state-space model and the observation model for estimations of the
systematic errors are established. Simulation and experimental results are presented in Sections 3 and 4
respectively. Finally, conclusions are presented in Section 5.

2. Theory of the Comprehensive Calibration Method for the Star Tracker and GUs
Integrated System

2.1. Reference Coordinate System Definition

The coordinate systems used in this paper are defined as follows:
The inertial coordinate system (denoted by i in subscript) coincides with the International Celestial

Reference System recommended by the IAU Working Group on Nomenclature for Fundamental
Astronomy. It has no intrinsic orientation but is aligned close to the mean equator and dynamical
equinox of J2000.0. Its orientation is independent of epoch, ecliptic or equator and is defined by a list
of adopted coordinates of extragalactic sources [21].

The star tracker coordinate system (denoted by s in subscript) has its origin at the center of the
star tracker optical system. The Xs and Ys axes are parallel to the two vertical edges of the detector
plane, respectively. The Zs axis is along the boresight of the star tracker and the three axes satisfy the
right-hand rule [22] as shown in Figure 1a.
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The gyroscope units coordinate system (denoted by g in subscript) has its Xg, Yg and Zg axes
consistent with the three mutually orthogonal sensitive axes of the gyroscope units as shown in
Figure 1a [23].

The image plane coordinate system (denoted by p in subscript) is a two-dimensional rectangular
plane coordinate system with its origin at the detector center, and its Xp and Yp axes are parallel to the
two vertical edges of the detector plane respectively as shown in Figure 1b [23].

Figure 1. Definition of coordinate systems. Part (b) shows the enlarged details of the star tracker in
Part (a).

2.2. Estimation of Systematic Errors by Observing the Predicted Star Centroid Error in the Image Plane

The procedure for estimations of systematic errors of the star tracker and GUs integrated system
is as follows: The predicted star centroid (PSC) can be calculated based on the GUs attitude and
fixed angles between the star tracker and GUs. Simultaneously, the extracted star centroid (ESC)
can be obtained by extracting the star centroid from the real star image collected by the star tracker.
Considering an error-free situation, the PSC equals to ESC. However, the systematic errors including the
star tracker intrinsic parameter errors, GUs errors and fixed angle errors will introduce the predicted
star centroid error (PSCE), and cause the difference between the PSC and ESC. Since the PSCE is
induced by the systematic errors of the star tracker and GUs integrated system, these errors can be
estimated by observing the PSCE.

2.2.1. Star Centroid Prediction Based on GUs

With the star right ascension and declination (α, δ) provided by the star catalog, the star vector ri

in inertial frame i can be calculated by:

ri = [cosδcosα, cosδsinα, sinδ]T . (1)

The star vector in inertial frame i can be transformed to the star tracker frame s by:
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rs = Cs
gCg

i ri, (2)

where Cg
i is the attitude matrix from frame i to gyroscope units frame g calculated by an attitude

updating algorithm [24] with angular increments sensed by the GUs. Cs
g is the transformation matrix

from frame g to frame s and is called the installation matrix.
Since the star tracker can be considered as a pinhole imaging model as shown in Figure 1b,

the PSC (up, vp) in the image plane can be expressed as:
up = u0 − f

xs

zs
+ ud

vp = v0 − f
ys

zs
+ vd

, (3)

where (u0, v0) is the principal point, f is the focal length of the lens, (ud, vd) is the lens distortion in
the two directions of the image plane respectively, and rs = [xs, ys, zs]T is the star vector in frame s.
Here, we adopt the following model to describe the lens distortion [25]:{

ud = (u− u0)(k1r2 + k2r4) + p1[r2 + 2(u− u0)
2] + 2p2(u− u0)(v− v0)

vd = (v− v0)(k1r2 + k2r4) + p2[r2 + 2(v− v0)
2] + 2p1(u− u0)(v− v0)

, (4)

where k1, k2 are coefficients for radial distortion, p1, p2 are coefficients for tangential distortion, and
r =

√
(u− u0)2 + (v− v0)2.

Equations (1)–(4) show the star centroid prediction process based on the GUs.
On the other hand, the ESC (ûe, v̂e) deviates from its true position (u, v) due to the star extraction

errors, which can be expressed as: {
ûe = u + wu

v̂e = v + wv
, (5)

where wu, wv are the star extraction errors in x and y directions of frame p respectively. Considering that
(u, v) can be expressed with the star tracker imaging model, Equation (5) can be further expressed as:

ûe = u0 − f
xs

zs
+ ud + wu

v̂e = v0 − f
ys

zs
+ vd + wv

. (6)

According to Equations (3) and (6), provided with accurate parameters of the integrated system,
the difference between the PSC and ESC only lies in the star extraction errors wu, wv. However,
the systematic errors (i.e., the star tracker intrinsic parameter errors, GUs errors and fixed angle errors)
will also cause the deviation of PSC from the ESC. Next, we will discuss the PSCE induced by these
systematic errors.

2.2.2. Predicted Star Centroid Error Induced by Systematic Errors

The GUs can sense the three-dimensional angular increments and provide the attitude of the
GUs in frame i (i.e., Cg

i ). Generally, its accuracy degrades with time due to the cumulative error of the
gyroscopes. Let Ĉg

i denote the actual attitude matrix contaminated by gyroscope errors [24]:

Ĉg
i = Cg

i Ci
i′ ≈ Cg

i

I3×3 +

 0 −φz φy

φz 0 −φx

−φy φx 0


 = Cg

i (I3×3 + [φ×]), (7)
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where I3×3 represents the identity matrix of size 3× 3, φ is the attitude error in the form of Euler
angle in frame i, and frame i′ represents the computed inertial coordinate system contaminated by
gyroscope errors.

Due to the inaccuracy of the installation matrix, the actual transformation matrix from frame g to
frame s Ĉs

g can be expressed as [24]:

Ĉs
g = Cs′

s Cs
g ≈ (I3×3 + [Ψ×])Cs

g, (8)

where Ψ is the fixed angle vector error in frame s, [Ψ×] is the skew symmetric form of Ψ with similar
expression to [φ×] in Equation (7), and frame s′ represents the computed star tracker coordinate system
contaminated by fixed angle errors. According to Equations (7) and (8), the star vector transformation
from frame i to frame s expressed by Equation (2) should be rewritten as:

r̂s = Ĉs
gĈg

i ri = (I3×3 + [Ψ×])Cs
gCg

i (I3×3 + [φ×])ri, (9)

where r̂s = [x̂s, ŷs, ẑs]T is the predicted star vector contaminated by systematic errors in frame s.
Given the star vector r̂s in frame s, the PSC in frame p can be calculated with the star tracker

imaging model given by Equation (3). Considering the intrinsic parameter errors δu0, δv0, δ f , δud, δvd
of the star tracker, Equation (3) should be rewritten as:

ûp = û0 − f̂
x̂s

ẑs
+ ûd

v̂p = v̂0 − f̂
ŷs

ẑs
+ v̂d

, (10)

where (ûp, v̂p) is the PSC in the image plane, (û0, v̂0) is the initial value of principal point satisfying
û0 = u0 + δu0 and v̂0 = v0 + δv0, f̂ is the initial value of focal length satisfying f̂ = f + δ f , and (ûd, v̂d)

is the initial value of lens distortion satisfying ûd = ud + δud and v̂d = vd + δvd.
Subtracting Equation (6) from Equation (10) and neglecting the higher order error terms, we have

the PSCE (δu, δv) as follows:
δu = ûp − ûe = δu0 − δ f

xs

zs
− f

δxs

zs
+ f

xs

z2
s

δzs + δud − wu

δv = v̂p − v̂e = δv0 − δ f
ys

zs
− f

δys

zs
+ f

ys

z2
s

δzs + δvd − wv

, (11)

where δrs = [δxs, δys, δzs]T is the star vector error in frame s. According to Equations (2) and (9), it can
be expressed as:

δrs = r̂s − rs

= [Ψ×]Cs
gCg

i ri + Cs
gCg

i [φ×] ri + [Ψ×]Cs
gCg

i [φ×] ri.
(12)

Neglect the higher order error term (i.e., the last term of Equation (12)), and Equation (12) can be
simplified as:

δrs ≈ [Ψ×]Cs
gCg

i ri + Cs
gCg

i [φ×] ri

= − [rs×]Ψ− Cs
gCg

i

[
ri×
]

φ.
(13)

Let A = − [rs×] and B = −Cs
gCg

i
[
ri×
]
, and Equation (13) can be rewritten as:

δrs = [δxs, δys, δzs]
T = AΨ + Bφ. (14)

Substituting Equation (14) into Equation (11) results in the final expression of the PSCE induced
by systematic errors:
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
δu = δu0 − δ f

xs

zs
+ (− f

zs
A1 + f

xs

z2
s

A3)Ψ + (− f
zs

B1 + f
xs

z2
s

B3)φ + δud − wu

δv = δv0 − δ f
ys

zs
+ (− f

zs
A2 + f

ys

z2
s

A3)Ψ + (− f
zs

B2 + f
ys

z2
s

B3)φ + δvd − wv

, (15)

where Ai (i = 1, 2, 3) is the i-th row of the matrix A, and the same definition applies to Bi. The lens
distortion error (δud, δvd) can be expressed as:

[
δud
δvd

]
=


∂ud
∂u0

∂ud
∂v0

∂ud
∂k1

∂ud
∂k2

∂ud
∂p1

∂ud
∂p2

∂vd
∂u0

∂vd
∂v0

∂vd
∂k1

∂vd
∂k2

∂vd
∂p1

∂vd
∂p2




δu0

δv0

δk1

δk2

δp1

δp2


. (16)

Hence the model of the PSCE induced by the systematic errors is established by
Equations (15) and (16).

2.2.3. Optimal Estimation of Systematic Errors

In Section 2.2.2, we established the linear model of observations δu, δv relating to the systematic
errors including the star tracker intrinsic parameter errors, GUs errors and fixed angle errors.
These parameters can be easily estimated with a Kalman filter by establishing the state-space model
and the observation model.

The dynamics of the attitude error φ in frame i are given by Equation (17)

φ̇ = −Ci
gεg, (17)

where the gyroscope bias εg can be modeled as random constants with:

ε̇g = 0. (18)

The fixed angle vector error can also be modeled as constants:

Ψ̇ = 0. (19)

The star tracker intrinsic parameter errors can be modeled as:{
˙δu0 = 0, ˙δv0 = 0, δ ḟ = 0

˙δk1 = 0, ˙δk2 = 0, ˙δp1 = 0, ˙δp2 = 0
. (20)

The state-space vector is given by:

X =
[
φT, εgT, ΨT, δu0, δv0, δ f , δk1, δk2, δp1, δp2

]T
. (21)

According to Equations (17)–(21), the corresponding state-space model can be written as:

d
dt

X =

[
03×3 −Ci

g 03×3 03×7

013×3 013×3 013×3 013×7

]
X +

[
−Ci

g
013×3

]
wg, (22)

where wg is the random noise of the gyroscopes, 0i×j is the zero-element matrix with size i× j.
According to Equations (15) and (16), the observation model for each star can be expressed as:
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y = hX + v, (23)

where y = [δu, δv]T, and v is the star extraction noise vector. The matrix h is given by:

h =

−
f

zs
B1 + f

xs

z2
s

B3 01×3 − f
zs

A1 + f
xs

z2
s

A3 1 +
∂ud
∂u0

∂ud
∂v0

− xs

zs
Fu

1×4

− f
zs

B2 + f
ys

z2
s

B3 01×3 − f
zs

A2 + f
ys

z2
s

A3
∂vd
∂u0

1 +
∂vd
∂v0

−ys

zs
Fv

1×4

 , (24)

where Fu
1×4 =

[
∂ud
∂k1

∂ud
∂k2

∂ud
∂p1

∂ud
∂p2

]
and Fv

1×4 =

[
∂vd
∂k1

∂vd
∂k2

∂vd
∂p1

∂vd
∂p2

]
.

Equation (23) is deduced for each star across the star tracker’s field of view. For a star image with
n stars, it can be extended as:

Y = HX + V, (25)

where

Y =


y1

y2
...

yn

 , H =


h1

h2
...

hn

 , V =


v1

v2
...

vn

 , (26)

and j = 1, 2, · · · , n denotes the j-th star of the star image.
Hence, the state-space model (i.e., Equation (22)) and the observation model (i.e., Equation (25))

are established. The state-space vector can be easily estimated by a Kalman filter [26] and the optimal
estimations of overall systematic errors φ̃, ε̃g, Ψ̃, ũ0, ṽ0, f̃ , k̃1, k̃2, p̃1, p̃2 can be acquired.

3. Simulation

Several groups of simulations are designed to verify the feasibility of the proposed method.
The procedure for each simulation is given in Figure 2. The star tracker simulator can generate
corresponding star images with true model parameters Cs

g, u0, v0, f , ud, vd and the preset reference
attitudes Ci

g. The ESC (ûe, v̂e) can be obtained with the centroid extraction algorithm. Simultaneously,
the GUs simulator can generate the three-axis angular rate of the GUs, which is sequentially used
to calculate the PSC (ûp, v̂p) with parameters Ĉs

g, û0, v̂0, f̂ , ûd, v̂d contaminated by errors. Then the
systematic errors are estimated with the proposed method with a Kalman Filter. The performance
evaluation is conducted by: (1) comparing the estimated model parameters with preset true values;
(2) comparing the estimated attitudes with preset reference attitudes; (3) calculating the reprojection
error with estimated parameters.

3.1. Simulation Using Proposed Method

A typical star tracker and gyroscopes of navigation grade are used for this simulation with
performance specifications listed in Table 1. The rotation sequence of the integrated system for
calibration is shown in Table 2 and will be repeated during the whole calibration process.

Table 1. Simulation parameters of the star tracker and GUs.

Parameter Value Parameter Value

Active pixels 1024× 1024 Exposure period 180 ms
Pixel pitch 6.45 × 6.45 µm2 Star tracker update frequency 2 Hz

Principal point (5,10) pixels Focal length 25.6 mm
Distortion coefficients (k1, k2) (2 × 10−4,−1 × 10−6) Distortion coefficients (p1, p2) (2 × 10−5,2 × 10−5)

Star centroid accuracy (0.05,0.05) pixel Gyroscope sampling frequency 100 Hz
Gyroscope angular random walk 0.001◦/

√
h Gyroscope bias [0.01, 0.01, 0.01]◦/h

True fixed angles [−0.1, 30.0, 359.8]◦ Fixed angle errors [100, 200, 300]”
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Table 2. The rotation sequence of the integrated system for calibration.

Number Rotation Axis Rotation Angle (◦)

1 Xg 30
2 Yg 30
3 Zg 30
4 Zg −30
5 Yg −30
6 Xg −30

Figure 2. Simulation flow chart.

Then, the proposed method is applied to the simulated data, and Figure 3 shows estimations of
all systematic errors. The black and red lines indicate the estimation results and the preset true values
of the calibration parameters, respectively. Specifically, Figure 3a shows estimations for the principal
point (u0, v0) and the focal length f , Figure 3b for lens distortion coefficients k1, k2, p1, p2, Figure 3c for
the gyroscope bias and Figure 3d for fixed angle errors. The final calibration results are also listed in
Table 3. It is shown that the estimations of all systematic errors are very close to the preset true values.
The estimation error of the principal point is (0.0546, 0.0334) pixel, the focal length error is 0.00002 mm,
the gyroscope bias estimation errors are (0.0007, 0.0002, 0.0003)◦/h for the three gyroscopes, and the
estimation errors of fixed angle errors are (1.8, 3.3, 0.8)” in three directions. The lens distortion error on
the detector plane is shown in Figure 4. The distortion error at the edge of the detector is reduced from
3 pixels to 0.032 pixel when the proposed method is applied.
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Figure 3. Estimation results of all systematic errors in the simulation. (a) shows estimations for the
principal point (u0, v0) and the focal length f , (b) shows estimations for lens distortion coefficients
k1, k2, p1, p2, (c,d) show estimations for the gyroscope bias and fixed angle errors respectively.

Table 3. Estimation results of systematic errors in the simulation.

Parameter True Estimation Estimation Error Parameter True Estimation Estimation Error

u0 (pixels) 5 5.0546 0.0546 εx (◦/h) 0.01 0.0093 0.0007
v0 (pixels) 10 10.0334 0.0334 εy (◦/h) 0.01 0.0102 0.0002

f (mm) 25.6 25.60002 0.00002 εz (◦/h) 0.01 0.0097 0.0003
k1 2 × 10−4 1.9960 × 10−4 0.0040 × 10−4 Ψx(”) 100 101.8 1.8
k2 −1 × 10−6 −1.0737 × 10−6 0.0737 × 10−6 Ψy(”) 200 196.7 3.3
p1 2 × 10−5 2.0041 × 10−5 0.0041 × 10−5 Ψz(”) 300 299.2 0.8
p2 2 × 10−5 1.9942 × 10−5 0.0058 × 10−5

In this calibration method, the role of the GUs is equivalent to the precision turntable of the
laboratory-based calibrations. The GUs cannot keep high precision for a long time while working
autonomously due to the cumulative error of gyroscopes. However, the GUs errors can be estimated
and restrained by the star tracker through the proposed method. Figure 5a shows the attitude errors
of the GUs in three axes. The convergent attitude accuracy is calculated from time epoch 1 h to 2 h,
which are 0.65”, 0.31”, 0.53” (Root Mean Square, RMS) in x, y, z axes respectively. Compared to the
attitude errors of GUs without the aid of the star tracker shown in Figure 5b, the cumulative error
is eliminated and the accuracy is improved significantly. In other words, the GUs can serve as an
accurate three-dimensional turntable in the calibration.
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Figure 4. The lens distortion error. (a) The lens distortion error before calibration. (b) The lens distortion
error after calibration.

Figure 5. GUs attitude errors. Part (a) shows the GUs attitude errors in the calibration and the statistical
results from time epoch 1 h to 2 h are 0.65”, 0.31”, 0.53” (RMS) in three axes. Part (b) shows attitude
errors of the GUs without the aid of the star tracker for comparison.

Given the estimated calibration parameters, the identified stars can be reprojected to the image
plane. The reprojection errors [27], which are defined as the deviations between the reprojected star
coordinates and the extracted ones, reflect the calibration accuracies of all systematic errors synthetically.
The reprojection errors are calculated during the last 10 minutes of the simulation, which are shown in
Figure 6. The distributions of reprojection errors are shown in Figure 7. The statistical reprojection
accuracy is (0.05, 0.05) pixel (RMS) in the two directions of the image plane, which is almost the same
as the preset centroid accuracy. It is shown that the reprojection errors induced by the systematic errors
of the star tracker and GUs integrated system are remarkably reduced, which means the proposed
method can achieve accurate calibration results.

3.2. Performance under Different Star Centroid Accuracies

The star centroid accuracy is one of the main factors affecting the calibration accuracy, and it
differs under different noise levels of the detector. Simulations under different centroid accuracies are
conducted in this section. The centroid accuracy is sequentially set to 0, 0.05, 0.10, 0.15, and 0.20 pixel,
and other performance specifications of the star tracker and GUs are kept the same as in Section 3.1.
For each star centroid accuracy, 100 random simulations are carried out. The calibration accuracy of
each parameter is evaluated by the RMS value of estimation errors, and the statistical results are listed
in Table 4.
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Figure 6. Reprojection errors in the Simulation. The statistical result is (0.05,0.05) pixel (RMS) in the
two directions of the image plane.

Figure 7. Distributions of reprojection errors along x (subfigure (a)) and y (subfigure (b)) axes in
the simulation.

Table 4. Calibration accuracies of all systematic errors under different centroid accuracies.

Centroid Accuracy (Pixels) 0 0.05 0.10 0.15 0.20

u0 (pixels) 0.007 0.041 0.076 0.112 0.159
v0 (pixels) 0.006 0.045 0.083 0.120 0.182

f (mm) 2.6 × 10−5 3.0×10−5 7.3 × 10−5 1.5 × 10−4 2.7 × 10−4

k1 4.3 × 10−7 3.7 × 10−7 4.5 × 10−7 8.8 × 10−7 1.7 × 10−6

k2 7.2 × 10−8 7.7 × 10−8 9.4 × 10−8 1.1 × 10−7 1.5 × 10−7

p1 3.1 × 10−7 3.7 × 10−7 4.8 × 10−7 6.3 × 10−7 8.7 × 10−7

p2 2.9 × 10−7 3.4 × 10−7 4.8 × 10−7 6.3 × 10−7 9.4 × 10−7

εx (◦/h) 3.2 × 10−4 3.8 × 10−4 3.6 × 10−4 3.5 × 10−4 3.7 × 10−4

εy (◦/h) 3.4 × 10−4 3.4 × 10−4 3.5 × 10−4 3.4 × 10−4 3.3 × 10−4

εz (◦/h) 3.8 × 10−4 3.9 × 10−4 3.5 × 10−4 3.7 × 10−4 3.8 × 10−4

Ψx(”) 0.5 2.4 4.4 6.3 9.6
Ψy(”) 0.4 2.1 3.9 5.8 8.3
Ψz(”) 0.4 0.5 0.6 0.9 0.9

From the statistical results under different centroid accuracies, it can be seen that the gyroscope
bias estimations are scarcely affected by the centroid errors. Although the calibration accuracies of
distortion coefficients are slightly affected, the maximum distortion can still be acceptably controlled
below 0.035 pixel at the edge of the detector even when the centroid error reaches 0.20 pixel. Similarly,
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the calibration accuracy of the focus length can still reach 0.00027 mm when the centroid error reaches
0.20 pixel, which is accurate enough for the application of the integrated system. The influence of the
centroid error mainly focuses on the estimations for the principal point (u0, v0) and subcomponents
of fixed angles (Ψx, Ψy) due to the coupling between them, which will be analyzed in Section 3.4.
Their estimation accuracies decline with increasing centroid error. Generally, the centroid accuracy of
the star tracker is high enough (e.g., better than 0.10 pixel for the star tracker in our laboratory) during
calibration, and high calibration accuracy can be acquired with the proposed method.

3.3. Performance under Different Gyroscope Noise Levels

Another factor affecting the calibration accuracy is the gyroscope noise (i.e., angular random
walk). Simulations under different gyroscope noise levels are conducted in this section. The gyroscope
bias is set to [0.1, 0.1, 0.1]◦/h, the angular random walk of the gyroscope is sequentially set to 0, 0.0001,
0.001, 0.01 and 0.1◦/

√
h, and other performance specifications of the star tracker and GUs are the same

as the simulation in Section 3.1. Similarly, for each gyroscope noise level, 100 random simulations are
carried out. The statistical results are shown in Table 5.

Table 5. Calibration accuracies of all systematic errors under different gyroscope noise levels.

Angular Random Walk (◦/
√

h) 0 0.0001 0.001 0.01 0.1

u0 (pixels) 0.042 0.042 0.045 0.044 0.045
v0 (pixels) 0.044 0.045 0.043 0.040 0.040

f (mm) 2.8 × 10−5 2.8 × 10−5 3.2 × 10−5 2.7 × 10−5 2.7×10−5

k1 3.8 × 10−7 3.8 × 10−7 3.9 × 10−7 3.7 × 10−7 3.6×10−7

k2 7.7 × 10−8 7.6 × 10−8 7.7 × 10−8 7.7 × 10−8 7.7×10−8

p1 3.9 × 10−7 3.7 × 10−7 3.7 × 10−7 3.8 × 10−7 3.9×10−7

p2 3.6 × 10−7 3.6 × 10−7 3.5 × 10−7 3.5 × 10−7 3.4×10−7

εx (◦/h) 3.0 × 10−5 7.0 × 10−5 7.7 × 10−4 6.8 × 10−3 5.4 × 10−2

εy (◦/h) 4.2 × 10−5 7.9 × 10−5 8.3 × 10−4 6.9×10−3 5.4×10−2

εz (◦/h) 3.7 × 10−5 8.3 × 10−5 6.9 × 10−4 7.2 × 10−3 4.9 × 10−2

Ψx(”) 2.4 2.4 2.3 3.1 22.2
Ψy(”) 2.2 2.2 2.3 3.6 22.5
Ψz(”) 0.7 0.7 0.6 2.0 19.9

It can be seen that the star tracker intrinsic parameters including the principal point (u0, v0),
the focal length f and the distortion coefficients (k1, k2, p1, p2) can be accurately estimated, and are
scarcely affected by the gyroscope noise when the noise level is below 0.1◦/

√
h. The influence of the

gyroscope noise mainly focuses on the estimations of the gyroscope bias and fixed angles. Although
their calibration accuracies decline with increasing gyroscope noise level, the errors can be maintained
at an acceptable level when the gyroscope angular random walk is below 0.01◦/

√
h. Therefore, it shows

a good prospect for the proposed method to be applied in the calibration of the integration of the star
tracker and navigation grade gyroscopes.

3.4. Discussion on the Error Coupling

In Section 3.1, a typical star tracker and gyroscopes of navigation grade are simulated to verify the
proposed method. The simulations with different star centroid accuracies and gyroscope noise levels
demonstrate its robustness. The simulation results show that the estimation errors of the systematic
errors mainly focus on the principal point and fixed angles. According to Table 4, the estimation
accuracy of the principal point decreases from [0.007, 0.006] to [0.159, 0.182] pixel, and the accuracy
of the fixed angles decreases from [0.5, 0.4, 0.4]” to [9.6, 8.3, 0.9]” when the centroid error varies
from 0 to 0.20 pixel. According to Table 5, the estimation accuracies of the principal point and fixed
angles cannot be further improved by increasing the gyroscope accuracy when the centroid accuracy is
fixed. That is mainly because the principal point and fixed angles share similar physical characteristics
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and therefore strongly coupled. In this Section, the coupling between the principal point and fixed
angles, which is the main problem of attitude-dependent calibration methods of the star tracker, will be
discussed in theory.

The theoretical expression of the observation (δu, δv) with respect to the errors of the principal
point and fixed angles is given by Equation (15). To simplify, only the terms containing the parameters
of principal point and fixed angles are reserved, other terms are combined to be expressed by functions
g1 and g2. In this way, Equation (15) can be further expressed as:

δu = δu0 + f
xsys

z2
s

Ψx −
(

f + f
x2

s
z2

s

)
Ψy + f

ys

zs
Ψz + g1(δ f , δud, δvd, φ)

δv = δv0 +

(
f + f

y2
s

z2
s

)
Ψx − f

xsys

z2
s

Ψy − f
xs

zs
Ψz + g2(δ f , δud, δvd, φ)

. (27)

Take the star tracker in our laboratory as an example, the mean value of zs is approximately

16 times that of xs and ys for the stars evenly distributed in the image plane (i.e.,
∣∣∣∣ xs

zs

∣∣∣∣ , ∣∣∣∣ xs

zs

∣∣∣∣ ≈ 1
16

).

The effects of terms f
xsys

z2
s

Ψx and f
x2

s
z2

s
Ψy in Equation (27) are smaller than that of the term f Ψy by

two orders of magnitude. If Ψy = 1′′, the change of the observation in Equation (27) caused by the

term f
x2

s
z2

s
Ψy is approximately 7.5 × 10−5 pixel, which can be neglected compared to the effect caused

by term f Ψy (0.02 pixel). Therefore, f
xsys

z2
s

Ψx, f
x2

s
z2

s
Ψy, f

xsys

z2
s

Ψy and f
y2

s
z2

s
Ψx can be regarded as higher

order terms. Neglecting these terms, Equation (27) can be approximated as:
δu ≈ δu0 − f Ψy + f

ys

zs
Ψz + g1(δ f , δud, δvd, φ)

δv ≈ δv0 + f Ψx − f
xs

zs
Ψz + g2(δ f , δud, δvd, φ)

. (28)

According to Equation (28), the effects of subcomponents of fixed angle errors (i.e., Ψx and Ψy)
are constants (i.e., f Ψx and − f Ψy respectively), which are essentially the same as the effect of the error
of principal point. Therefore, the estimation errors of the principal point and (Ψx, Ψy) are strongly
coupled. The decoupling of (Ψx, Ψy) depends on the higher order terms in Equation (27), and the

decoupling of Ψz depends on the lower order terms f
ys

zs
Ψz and − f

xs

zs
Ψz. This explains why Ψz can be

decoupled more accurately than Ψx and Ψy (See Tables 4 and 5).
According to Table 4, the estimation accuracies of the principal point and subcomponents of

fixed angles (Ψx, Ψy) decrease with increasing centroid error due to the coupling between them.
Their estimation accuracies drop to (0.159, 0.182) pixel and (9.6, 8.3)” within 2 h when the centroid
accuracy is set to 0.20 pixel. To further decouple these errors, longer calibration time is needed.
Therefore, we have extended the simulations to 5 h, and the estimation accuracies of (u0, v0) and
(Ψx, Ψy) are calculated per hour as shown in Figure 8. It can be seen that their calibration accuracies
can be further improved with longer calibration time.

Although the errors of the principal point and subcomponents of fixed angles (Ψx, Ψy) are
strongly coupled due to the similarity of their physical characteristics, their comprehensive effects
(i.e., (δu0 − f Ψy, δv0 + f Ψx)) can be estimated quickly and accurately according to Equation (28).
Since the effect of (δu0 − f Ψy, δv0 + f Ψx) is similar to that of the principal point, it is named as
the equivalent principal point error (δu

′
0 = δu0 − f Ψy, δv

′
0 = δv0 + f Ψx). For a star tracker and

GUs integrated system, it is the equivalent principal point error that affects its integrated attitude
accuracy. For example, according to the simulation results in Section 3.1, the estimation errors of the
principal point and fixed angles are both within arcsecond levels, which are (0.0546, 0.0334) pixel and
(1.8, 3.3, 0.8)” respectively. Fortunately, the attitude accuracy of the integrated system after calibration
can reach the subarcsecond level, which are 0.65”, 0.31”, 0.53” (RMS) in x, y, z axes, respectively
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(See Figure 5a). Although (u0, v0) and (Ψx, Ψy) have not been fully decoupled, the estimations of
the equivalent principal point error have already converged. Figure 9 shows the estimation results
of the equivalent principal point error (δu

′
0, δv

′
0) of the simulation in Section 3.1, and the statistical

result from time epoch 1 h to 2 h is (0.0039, 0.0005) pixel (RMS). This explains why the attitude of the
integrated system can be achieved accurately even though (u0, v0) and (Ψx, Ψy) have not been fully
decoupled, which shows the advantage of the proposed method.

Figure 8. The calibration accuracies of (u0, v0) and (Ψx, Ψy) with extended calibration time when the
centroid accuracy is 0.20 pixel.

Figure 9. The estimation results of the equivalent principal point error (δu
′
0, δv

′
0) in the simulation,

and the statistical result from time epoch 1 h to 2 h is (0.0039, 0.0005) pixel (RMS).

It is easy to understand that the coupling between (u0, v0) and (Ψx, Ψy) affects the decoupling
accuracy between them, which can be improved by extending the calibration time. Moreover,
the accuracy of the integrated system is mainly affected by the equivalent principal point error
(δu

′
0, δv

′
0). Since (δu

′
0, δv

′
0) can converge quickly and accurately, the attitude accuracy of the integrated

system is adequate for applications even though they have not been fully decoupled.

4. Experiment

Experiments were conducted to verify the proposed method at Hengshan National Forest Park
(Hengyang, China). The experimental setup is shown in Figure 10. The star tracker and GUs are fixed
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together, and their performance specifications are consistent with the previous simulation in Section 3.1.
Similarly, the attitude adjustments for the integrated system are essential during the experiment shown
in Figure 11a. As shown in Figure 11b, the attitude of the system is adjusted gradually and maintained
at each position so that stars can be evenly distributed over the image plane, which is beneficial for the
lens distortion calibration. The distribution of all sampled stars during the experiment is shown in
Figure 12.

Figure 10. Experimental setup.

Figure 11. Attitude adjustments of the integrated system in the experiment. Part (b) is partial enlarged
detail of (a) in order to display fine details.

4.1. Estimation of Systematic Errors

The systematic errors including the star tracker intrinsic parameter errors, GUs errors and fixed
angle errors are estimated with the proposed method, and the estimation results are shown in Figure 13.
Specifically, Figure 13a shows the estimations for the principal point (u0, v0) and the focal length
f , Figure 13b for lens distortion coefficients (k1, k2, p1, p2), Figure 13c for the gyroscope bias and
Figure 13d for fixed angles. It can be seen that the convergence time of all the estimated parameters is
less than an hour. The final estimations for the star tracker intrinsic parameters are listed in Table 6,
and estimations for fixed angles are given in Table 7.



Sensors 2018, 18, 3106 16 of 20

Figure 12. The distribution of all sampled stars over the image plane.

Figure 13. Estimation results of all systematic errors in the experiment. (a) shows estimations for the
principal point (u0, v0) and the focal length f , (b) shows estimations for lens distortion coefficients
(k1, k2, p1, p2), (c,d) show estimations for the gyroscope bias and fixed angles respectively.

Table 6. Estimation results of the star tracker intrinsic parameters in the experiment.

u0 (Pixels) v0 (Pixels) f (mm) k1 k2 p1 p2

0.9346 10.3034 25.6530 −4.0411 × 10−4 −6.2924 × 10−7 8.4867 × 10−6 8.1853 × 10−6
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Table 7. Estimation results of fixed angles in the experiment.

Component X Y Z

Result(◦) −0.1210 30.7491 359.8555

4.2. Performance Evaluation

Since the true values of all calibrated parameters are unknown, the calibration accuracy of each
parameter cannot be calculated directly in the experiment. Therefore, the reprojection error is used to
evaluate the calibration accuracy synthetically. A supplemental experiment is conducted to evaluate the
performance of the calibration method. The reprojection errors are shown in Figure 14, and statistical
results in two directions are 0.0732 pixel and 0.0909 pixel respectively. The distributions of reprojection
errors are shown in Figure 15. Synthetically, the calibration accuracy is (0.0732, 0.0909) pixel expressed
in the form of the star reprojection error.

Figure 14. Reprojection errors after calibration, and statistical results in two directions are 0.0732 pixel
and 0.0909 pixel respectively.

Figure 15. Distributions of reprojection errors along x (subfigure (a)) and y (subfigure (b)) axes in
the experiment.
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5. Conclusions

We have shown that a star tracker and GUs can be used together to take full advantage of the
benefits of each. Existing calibration methods mainly focus on the single star tracker, and separate
calibrations of the star tracker and GUs increase the complexity of the calibration process. To optimally
estimate the systematic errors (i.e., the star tracker intrinsic parameter errors, GUs errors and fixed
angle errors between them) of the star tracker and GUs integrated system from a global perspective,
we propose a comprehensive calibration method for this integrated system by observing the PSCE
in the image plane, and all systematic errors can be estimated simultaneously. Simulations were
designed to validate the proposed method, and results show that all estimations converge to the
preset true values. Simulations under different star centroid accuracies indicate that the calibration
accuracies of the focal length, the lens distortion, the gyroscope bias and subcomponent of the fixed
angle errors along z axis are scarcely affected. Although the calibration accuracies of the principal point
and subcomponents of fixed angle errors along x and y axes (i.e., Ψx and Ψy) decline with increasing
centroid error, their calibration accuracies can be further improved by extending the calibration time.
Simulations under different gyroscope noise levels indicate that the proposed method can be applied
to the calibration of the integration of the star tracker and navigation grade gyroscopes. The coupling
between the errors of the principal point and subcomponents of the fixed angles (i.e., Ψx and Ψy) is
analysed in theory. Results show that they are strongly coupled due to the similarity of their physical
characteristics. For a star tracker and GUs integrated system, it is the equivalent principal point error
(δu

′
0 = δu0 − f Ψy, δv

′
0 = δv0 + f Ψx) that affects its integrated attitude accuracy. Since (δu

′
0, δv

′
0) can

converge quickly and accurately in the simulation, the attitude accuracy of the integrated system is
adequate for applications even though they have not been fully decoupled. Experiments of nightsky
observations were conducted and the systematic errors of the integrated system were successfully
estimated with the proposed method. Considering that the calibration accuracy cannot be calculated
directly due to the lack of true model parameters, we adopt the reprojection error induced by errors of
all estimated parameters to evaluate the calibration accuracy synthetically, which are 0.0732 pixel and
0.0909 pixel in two directions respectively. Therefore, the proposed method has great potential to be
used in the calibration of the star tracker and GUs integrated system.
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