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Abstract: In this work, we aim to classify a wider range of Electromagnetic Interference (EMI)
discharge sources collected from new power plant sites across multiple assets. This engenders a more
complex and challenging classification task. The study involves an investigation and development
of new and improved feature extraction and data dimension reduction algorithms based on image
processing techniques. The approach is to exploit the Gramian Angular Field technique to map the
measured EMI time signals to an image, from which the significant information is extracted while
removing redundancy. The image of each discharge type contains a unique fingerprint. Two feature
reduction methods called the Local Binary Pattern (LBP) and the Local Phase Quantisation (LPQ)
are then used within the mapped images. This provides feature vectors that can be implemented
into a Random Forest (RF) classifier. The performance of a previous and the two new proposed
methods, on the new database set, is compared in terms of classification accuracy, precision,
recall, and F-measure. Results show that the new methods have a higher performance than the
previous one, where LBP features achieve the best outcome.

Keywords: EMI method; EMI discharge sources; classification; Gramian Angular Field; Local Binary
Pattern; Local Phase Quantisation

1. Introduction

Condition monitoring of High-Voltage (HV) equipment in power generating plants is essential as
any defect puts at risk staff safety as well as the power plant’s operation. Electromagnetic Interference
(EMI) is generated due to the presence of electrical or mechanical faults in various equipment types,
such as motors, transformers, generators, and switchgear. Conducted and radiated EMI are exploited
by EMI experts to gain information on faults type. Consequently, electrical insulation degradation can
be identified through EMI diagnosis [1,2]. Popular insulation faults include Partial Discharges (PDs),
corona, arcing, sparking, etc. Other non-harmful phenomena, such as exciter, process, and random
noise, may also be collected during EMI sensing [3]. The procedure to identify EMI faults by experts is
time-consuming and not practical for continuous monitoring. The main goal behind this work is to
build an intelligent classification system framework based on EMI expert knowledge. The idea is to
train a machine learning model with multiple defect instances measured on HV sites as identified by
EMI experts. The trained model is then used to identify the fault or discharge source types within the
newly measured signals for the condition monitoring of assets in an HV site.
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Previously, authors in [4] developed an initial framework algorithm to classify a limited number of
EMI sources. This algorithm demonstrated a high classification performance; however, as the number
of signal types increases with a variety of sites, the algorithms performance may degrade. Therefore,
this paper attempts to improve this performance by developing new feature extraction techniques
whose performance is compared to the previous approach. First, the time series signals are mapped to
an image by means of a polar coordinate transformation called the Gramian Angular Field (GAF). This
technique was recently introduced by authors in [5] to visualise the time series in the form of an image
for improved classification. Next, feature extraction and reduction techniques, called descriptors,
are calculated over the GAF image. In this paper, the performance of two descriptors known as the
Local Binary Pattern (LBP) and Local Phase Quantisation (LPQ) are evaluated. LBP is an effective
and efficient descriptor in image [6,7] and texture classification [8], and LPQ has been shown to be
successful in the same applications [9,10].

Related Work

Fault detection using the machine learning approach has been addressed in many research
works [11]. The work related to this paper lies within the scope of insulation fault detection
in HV generating power plants. Condition monitoring of HV equipment by means of Machine
Learning classification has been previously addressed in the literature. The most popular topic
is detection of PD activity [12,13] and PD types [14,15]. Usually, PD is captured in the form of
phase-resolved or time-resolved data of a determined pattern. A pattern that can be classified should be
characterised by features. Thus, previous research has proposed various feature extraction techniques
that can be grouped into signal processing, image processing, statistical methods, and pulse shape
methods. The choice of feature extraction technique to employ depends on the data nature and the
addressed problem.

A variety of signal processing techniques have been applied to the phase-resolved PD data.
For instance, in [16], the authors extracted the minimum and maximum envelopes of the phase versus
magnitude plot of multiple PD types. The latter were classified using a Neural Network (NN) approach.
In [17], discrete Fourier transform, wavelet packet transform, and cepstral analysis were applied to
extract features from PD time signal types in insulation material. An Artificial NN (ANN) was used
for classification. The authors in [18] employed cross wavelet transform for the feature extraction of
four artificial PD types and classification using ANN.

The image processing technique gained the attention of many researchers in the field. In [19],
wavelet decomposition was applied to phase versus magnitude image to classify between corona,
PD, surface and cavity discharge. Fractal image features were extracted from the phase-resolved
images in [20–22] for PD recognition using NN algorithm types.

Statistical measures such as mean, variance, skewness, kurtosis, cross correlation, etc. were
calculated as features on the phase-resolved data of five PD defect types in gas-insulated switchgear [23]
and in step-up transformer in [24]. Another statistical measure known as q-quantile was applied in [25]
to phase data for multiple PD defects recognition in a transformer.

Little attention was given to pulse shape features in the literature until the early 2000s.
This method selects the characteristics related to PD pulse shape such as rise and fall time, area, pulse
width, and magnitude [26]. The authors in [27] applied similar features to classify PD pulses with
various void sizes. Different measures including pulse duration and bandwidth were calculated in [28]
as features to discriminate between PD and noise signals by means of classification.

Feature extraction methods belonging to the discussed groups have also been combined.
For example, in [29], the authors employed a set of extracted features including pulse shape, statistic
measures on the pulse, wavelet energy, and wavelet coefficients for the classification of four PD
defect types in cable insulation. In [30], a combination of signal processing and statistical methods
was proposed to extract statistical measures from the wavelet coefficients of corona, PD, surface and
internal discharge signals.
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There is no doubt that the previous work in the literature is of good quality and has been
successful. However, the work is limited to laboratory data measured using sensing methods that
differ from EMI measurement techniques [31]. In this paper, the authors introduce the classification
problem to a completely different perspective of data acquisition, where the data is measured in
real-world operating HV equipment using the EMI technique. Furthermore, the signal types addressed
in this paper are different from the signal types related to insulation defects that were analysed in
the literature.

The paper is structured as follows. The next section summarises the work from data acquisition
to model development. The EMI measurement technique is described in Section 3. Section 4 describes
the algorithms involved in Machine Learning from feature extraction and reduction to classification.
The application of these algorithms to EMI signals is detailed in Section 5. Results and discussion are
presented in Section 6, and conclusions are provided in the last section.

2. The Proposed Solution

Figure 1 outlines the main aspects of this work and the link between them. The idea in this
paper is to exploit a database of EMI signals, where each signal contains a discharge type among a
variety of discharges, which were identified and labelled by EMI experts. These experts demonstrated
knowledge and past experience through forensic investigation and confirmation on previous faulty
assets. Thus, it is important to note that this work is based on the assumption that these labels are
the ground truth. EMI data measurement and expert analysis will be described further in the next
section. As can be seen from Figure 1, the signals are sensed by means of a High-Frequency Current
Transformer (HFCT) and are recorded in a device called the PD Surveyor (PDS) 200. The labelled
signals are used to develop an intelligent system, based on Machine Learning, that will be able to
identify the discharge type as follows. First, feature extraction techniques are employed on EMI signals
in order to retrieve features which represent a fingerprint of each discharge type while reducing data
dimension. The features for each discharge type along with their relative label are used to train a
classification model. Some of the features are not used in the training phase and are preserved to test
on the trained model, which will predict the discharge label. The predicted discharge type could be
trivial, for example, noise, exciter or important, including severe PD, arcing, corona, etc. This allows
further actions, such as trending of an asset’s health, to be taken.

Figure 1. Electromagnetic Interference (EMI) data acquisition using High-Frequency Current
Transformer (HFCT) and discharge type identification (e.g., Partial Discharge (PD), Corona (C), and
Arcing (A) by EMI experts and their Machine Learning classifications.

3. EMI Measurement Technique

EMI measurement and diagnosis can be used to detect Radio Frequency (RF) energy propagation
due to insulation defects in various electrical assets including cables, motors, and generators [1].
The propagated energy can be sensed and measured, in the form of what is referred to as EMI
signals, over a wide range of frequencies, from 10 kHz to above 100 MHz. The EMI energy is both
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conducted and radiated, so the conducted signal is measured using an HFCT usually connected around
a neutral earth conduit or on a safety ground connection. EMI methods conforms with the Comitee
International Special des Perturbations Radio (CISPR)-16-1-1 standard [32] for results compatibility
between EMI measurement instruments. The emitted EMI signals could also result from mechanical
defects, such as lost or broken stator and rotor bars, shaft eccentricity, and bearing wear. The EMI
technique has the ability to measure the severity, degradation level and location of faults long before
identification using more traditional methods. This is beneficial to applications that require system
diagnostics. It can differentiate between multiple discharge sources, and supervise activity within
adjacent auxiliary equipment as well as within asset parts. Various defects in cables, transformers,
Isolated Phase Bus (IPB), generators, stator windings, and exciters have been detected using EMI
methods [1]. A Quasi Peak Detector is employed by EMI to measure the radiated signal energy, and to
provide a frequency spectrum, referred to as an EMI signature, which is unique to each type of fault
and its location [33]. This spectrum is a significant tool for EMI experts in the detection process of the
discharge sources along with hearing the complementary audio envelope of the measured signal at a
selected frequency. The EMI spectrum in this paper is recorded and displayed by the PDS200device,
which acts as a radio receiver that detects the propagated RF energy across a suitable frequency
bandwidth of [0–100 MHz]. This instrument also conforms with the CISPR-16-1-1 standard to ensure
the filter’s electromagnetic compatibility. The time-resolved signals are also measured by the PDS200
by means of AM demodulation at a frequency of interest, for instance, at the maximum envelope
energy. The PDS200 is manufactured by Doble Engineering in Dorchester, UK and Trondheim, Norway.

4. Machine Learning Algorithms

This section describes the concept of GAF, LBP, and LPQ algorithms utilised as feature extraction
techniques and RF classification algorithms, that are implemented in the proposed approach. Two
variations of the GAF algorithm are studied in this work and are described in the following section.

4.1. Gramian Angular Field (GAF)

This section introduces two types of GAF algorithm, known as the Gramian Angular Summation
Field (GASF) and the Gramian Angular Difference Field (GADF), which are techniques that encode
the time series signals into an image. The concept here is to transfer the time series to a polar
coordinate space. The Gramian matrix is then formed where each element is calculated by the cosine
of the summed angles for GASF or the sine of the subtracted angles for the GADF. This is explained
mathematically as follows. First, let vectors be denoted by bold lower case, scalars by lower case and
matrices by bold upper case. For n real valued observations in a time series x = x1, x2, ..., xn, the latter
are first normalised between −1 and 1 as

x̄ =
xi −max(x) + (xi −min(x))

max(x)−min(x)
. (1)

This provides angular values in the range [0, π], which will aid in obtaining information
granularity in the GAF. The next step is to obtain the polar coordinates which are the cosine angle,
φ, from the normalised amplitude values and the radius, r, from the time stamp t, as presented
in Equation (2). {

φ = cos−1(x̄i), −1 ≤ x̄i ≤ 1, x̄i ∈ x̄

r = ti
N , ti ∈ N

. (2)

In Equation (2), N is a constant used as a regularisation factor for the polar space span, and is
set to N = 1 according to [5]. The polar coordinate mapping presents a different perspective of the
time series behaviour, in that the time series values bend towards the relative calculated angle as the
time increases. This is illustrated in Figure 2b. The polar coordinates representation has two main
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features: (a) a one-to-one mapping of the time series to the polar coordinate results, so it is bijective,
and (b) temporal relations are preserved. The polar coordinates of the normalised time series in the
[−1, 1] interval fall in the angle boundaries [0, π]. This provides different concentrations of information
in the GASF, which should benefit any classification task. Finally, the trigonometric sum can be applied
to the inverse cosine (see Equation (3)) between each point, which produces the temporal correlation
between different time intervals. To summarise the presented GAF algorithm, Figure 2 illustrates the
main transformation of the time signal to an image. First, the polar coordinates are obtained from the
time signal using Equation (2). These are then used to calculate the GASF and GADF matrices, with a
dimension of i, j = 1, ..., n, presented in Equations (3) and (4). The obtained matrices can be viewed as
images which are plotted at the bottom of Figure 2b.

GASF =


cos(φ1 + φ1) · · · cos(φ1 + φn)

cos(φ2 + φ1) · · · cos(φ2 + φn)
...

. . .
...

cos(φn + φ1) · · · cos(φn + φn)

 . (3)

The GADF algorithm is similar to the GASF except that GADF is constructed using the
trigonometric difference of the inverse sine as follows:

GADF =


sin(φ1 − φ1) · · · sin(φ1 − φn)

sin(φ2 − φ1) · · · sin(φ2 − φn)
...

. . .
...

sin(φn − φ1) · · · sin(φn − φn)

 . (4)

The constructed n × n GASF matrix is exploited as an image for the classifier. However,
computation complexity may increase due to the large image size, as it is dependent on the time series
length. Therefore, the image is resized and reduced to a convenient standard 224 × 224. This is
performed by applying a scale transformation to the original image. Bicubic interpolation is one
method of image resizing, where the output pixel value is weighted average calculated over a 4× 4
neighbourhood surrounding the input pixel. This method produces a smooth image compared to
other interpolation methods and is popular in many image processing algorithms [34].

(a)

Figure 2. Cont.
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(b)

Figure 2. (a) Example time series signal; (b) polar coordinates mapping of the signal, Gramian Angular
Summation Field (GASF), and Gramian Angular Difference Field (GADF) matrix transformation of the
signal and their respective image representation.

4.2. Local Phase Quantisation (LPQ)

This algorithm is designed for image processing, and it exploits phase information computed
from the Fourier phase spectrum of the image. The phase of four low-frequency components are
mapped to code words which are embedded in a histogram of features for classification.

Let I(x, y) be an image with m×m dimension. First, the Short-Term Fourier Transform (STFT),
with respect to two frequency components u and v, is performed to retrieve phase information for each
pixel of coordinates x and y, and is calculated on a p× p neighbourhood Nx and Ny, where p is the
number of pixels, using the following equation:

SI(u, v) = ∑
y∈Ny

∑
x∈Nx

I(x, y) · exp−j2π(ux+yv). (5)

In the LPQ calculation, only the phase information, at the first four frequency coefficients (u1

to u4), is extracted [10], in that u1 = (a, 0), u2 = (0, a), u3 = (a, a), and u4 = (a,−a), where
a = 1/window size is a factor of small value that is used in the STFT calculation, where the STFT
window size is equal to 7 (see details in [35]). The first four coefficients are formulated in a vector as

v = [SI(u1), SI(u2), SI(u3), SI(u4)]. (6)

By separating the real and imaginary parts of v, the following is obtained:

w = [Re{v}, Im{v}]. (7)
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Next, the real and imaginary values are quantised using the criteria

qj =

{
1 i f wj ≥ 0

0 otherwise
. (8)

These values are then encoded using binary coding through Equation (9), which provides values
in the range of [0–255].

LPQ =
8

∑
j=1

qj2j−1. (9)

Here, the summation is performed on the quantisation of each real and imaginary of the four
first frequency coefficients (u1 to u4), this provides a total of 8 values. The subsequent values of each
image pixel are grouped in a histogram, which is normalised then implemented as a 1× 256 LPQ
feature vector. Figure 3 summarises LPQ calculation steps and shows that the resulting feature vector
reduces the data dimension from an image matrix to a vector, while extracting relevant information
that could be useful in classification. The 2D-FFT is first calculated on the neighbourhood of the image.
The first four frequency components u1 to u4 are then selected, where the real and imaginary parts
of the 2D-FFT are encoded using the criteria in Equation (9). This results in a binary code 11011110,
which is converted to a decimal to provide the LPQ value “222”.

Figure 3. Local Phase Quantisation (LPQ) image encoding of a 2-D image.

4.3. Local Binary Pattern (LBP)

LBP is a binary encoding method for images that extracts non-redundant information and hence
reduces the data dimension. The approach is to compare the image pixel values to the neighbouring
pixel values resulting in a binary code [36]. Figure 4 shows an example which explains the concept of
LBP coding of a 2-D image.
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Figure 4. Local Binary Pattern (LBP) image encoding of a 2-D image.

Let “c” be the centre pixel that is equally spaced from neighbours “p” with a distance “r”. The joint
difference distribution is calculated as

g ≈ (g0 − gc, ..., gp−1 − gc) (10)

where gc and g0 to gp−1 are the Gray level intensity of the centre pixel c and the neighbouring pixels p,
respectively. The sign of the difference is then used to denote

s(gi − gc) =

{
1 if gi ≥ gc

0 if gi < gc
(11)

where g can be written in Gray scale format g ≈ (s(g0 − gc), ..., s(gp−1 − gc)), for the neighbours index
i = [0, p]. Finally, an LBP value for each pixel c, with the coordinates (xc, yc); xc ∈ {0, ..., N − 1}, yc ∈
{0, ..., M− 1} on an n×m image, is calculated as follows:

LBPp,r(xc, yc) =
p−1

∑
i=0

s(gi − gc)2i. (12)

This produces a unique value 0 ≤ c′ ≤ 2i. LBP values form a histogram with size p2. For 8
neighbours, a vector of 256 descriptive features is obtained. It was suggested in [37] that one use only
the possible uniform values in the histogram and calculate LBP with 2 points distance. This reduces
the feature vector length from 256 to 59 and facilitates computation. If the LBP binary code consists of
two 01 or 10 transitions at max, then it is considered uniform. The example LBP provided in Figure 4
is uniform. However, a non-uniform LBP could be noisy and not useful for classification. In contrast,
the uniform pattern details the edges, corners, and uniform parts in the image [38]. This could be
beneficial in providing significant information on the GAF image of the discharge sources and the
differences between them. Further explanation of the uniform LBP is presented in [39]. Because of
the mentioned advantages and suggestions, a uniform LBP with the parameters r = 2 and p = 8
neighbours was implemented in this study.

4.4. Random Forest (RF)

The RF classification model is an ensemble of decision trees, trained on random feature sets
extracted from labelled data. The randomness property leads to de-correlated trees. The model is
created by a combination of components such as weak learners and leaf predictor type. The main drive
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for using RF in this work is its ability to classify more than two data classes. Furthermore, the low
model variances and its parallelism structure makes the RF technique is efficient and overcomes the
issue of over-fitting.

The steps for training an RF classifier are as follows.

1. At an initial node, randomly choose p feature instances from the overall classifier input q, such that
p is much smaller than q.

2. Compute the best split point using Information Gain as

I = H(s)− ∑
i∈{1,2}

∣∣∣∣ si

S

∣∣∣∣H(si) (13)

given the Shannon Entropy H(s) [40] of the node s, and the child node si.
3. Based on the best split point, split the main node into child nodes and reduce feature instances

dimension along the nodes.
4. Repeat Steps 1–3 until a maximum depth l = 5 is reached.
5. Repeat Steps 1–4 for k = 500 trees of the model. It was found that a larger number of trees yield a

higher performance [41].

Figure 5 represents a single decision tree training as explained in the previous steps. In the
training phase, the data/label input pair instances are used to optimise tizezhe parameters within each
node. The resulting trained model is tested on unseen data and predicts its associated labels based on
the rules and parameters generated during the RF model creation. Each trained decision tree hk within
the model outputs a prediction. The label that obtains the highest number of votes among all trees is
chosen as the predicted label of the input testing instance.

(a) (b)

Figure 5. (a) Feature space clustering of data instances from different classes (shapes and colours) and
(b) architecture example of one decision tree classifier.

5. Application to EMI data

EMI signals were measured, with a sampling rate of 24 kHz and in microvolts, on operating sites
using the EMI technique. An EMI expert analysis of these signals was followed in order to label the
type of discharge source present in each signal. The outcome of this analysis revealed a total of nine
discharge types denoted as Arcing (A), Corona (C), Data Modulation (DM), PD, Process Noise (PN),
Random Noise (RN), Exciter (E), minor PD (mPD), and micro Sparking (mS). It is important to note that
minor and micro define the discharge level and repetition rate. Details on the EMI signals, including
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the number of files per dishcarge source, the recorded duration, the asset at which the signal was
recorded, and the total samples used for training and testing, obtained through signal segmentation,
are presented in Table 1.

Table 1. Detected discharge sources in each site.

Event no. files Duration Asset Total Training/Testing Samples

Arcing 1 10 s Boiler Feed Pump 59
Corona 1 10 s Generator 59

Data Modulation 1 10 s Boiler Feed Pump 59
PD 1 10 s Boiler Feed Pump 59

Process Noise 1 10 s Generator 59

Random Noise 5 1 s Boiler Feed Pump 59
1 5 s Steam Turbine Generator

Exciter 1 10 s Generator Step-Up 59
mPD 1 10 s Generator 59

mS 2 1 s Salt Water Pump 59
1 8 s

First, a previously developed feature extraction technique, called ALIF-Entropy, along with a
Multi-Class Support Vector Machine (MCSVM) (see [4]), was applied to this new data. In the previous
paper, ALIF Entropy was applied to a different dataset. In this paper, new algorithms, as described in
Section 3, are utilised to analyse and classify the new data. The developed model is formed as follows.

1. Divide each time series signal into segments of 2000 samples for ease of GAF computation.
2. Map each time series segment to an image using GASF and GADF algorithms.
3. Resize the images to 224× 224 for ease of feature extraction computation.
4. Calculate LPQ and LBP histograms from each image to extract the important features and

non-redundant information.
5. Implement the feature histograms with associated labels in the RF classifier.

Figure 6 shows an example time series of A and DM mapped to GADF and GASF images as
described in Section 4.1. The feature histogram of LPQ (1× 256) and LBP (1× 59) was obtained from
each image representing a discharge source sample, so a total input feature vector of 1× 512 for
LPQ and 1× 118 for LBP is implemented at a time into the RF classifier. A 10-fold cross validation
method was followed in previous papers [42,43] in order to validate the performance consistency of
the classifier. This approach is a statistical analysis to assess the performance and skills of machine
learning algorithms, and it was proved to be effective for accuracy evaluation [44]. This approach was
investigated, and it was found that repeated cross validation did not provide more precise estimates,
which is consistent with other cross validation studies [45].

The steps to performing the 10-fold cross validation method are as follows.

1. Randomly shuffle the dataset.
2. Split the dataset into 10 groups, in that each group contains samples from each of the 9 classes.

For each individual group:
3. Leave the group for testing and use the remaining ones for training.
4. Train and test the model and obtain the classification accuracy.
5. Discard the model, save the accuracy for this fold, and repeat Steps 3–5.
6. Calculate the average accuracy across the saved accuracy (ξ1−10 in Figure 7) from each fold.

Here, each data instance is allocated to a group and remains in the group during the 10-fold cross
validation procedure, see Figure 7. This indicates that each data instance is provided the occasion to be
in the testing set.
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(a)

(b)

Figure 6. Gramian Angular Summation (GASF) and Gramian Angular Difference (GADF) mapping of
(a) arcing and (b) data modulation.

Figure 7. Ten-fold cross validation method for classification of N data inputs (N = 531 in this work).
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The classifier’s performance is evaluated in terms of the most popular evaluation metrics in
machine learning, which are classification accuracy (acc) percentage [46,47], precision (pr), recall (rec),
and F-measure (F) [48,49], which are calculated using Equations (14)–(17), respectively, where tp =true
positives, f p = false positives, f n = false negatives, and tpr = total predictions. Classification
accuracy is the number of predictions that are correct over all predictions. Precision defines the
number of predictions that are actually correct. Recall indicates the number of positives returned
by the classifier. The F-measure, also called the F1 Score, represents the balance between precision
and recall and is calculated as the harmonic mean of these two measures. A high value of all these
measures is preferable and the maximum performance has a value of 1, and 100% for the accuracy.
The classification performance is also summarised in a confusion matrix, as followed in previous
machine learning-based papers [50,51]. The accuracy for each class is presented in the diagonal of
the matrix. Precision class is shown in the bottom row of the matrix and recall in the last column
accordingly. The average over all classes for each measure will also be presented in the next section.

acc =
tp
tpr
· 100 (14)

pr =
tp

tp + f p
(15)

rec =
tp

tp + f n
(16)

F = 2 · pr · rec
pr + rec

(17)

CI = 1.96× std(acc)/
√

10. (18)

The evaluations were performed using MATLAB R2017a in a CPU 4 Gb RAM computer.

6. Results and Discussion

This section shows and compares the classification findings performed using the proposed feature
extraction and classification techniques in this paper and the previously applied technique. The results
are presented in Table 2. These results demonstrate that GAF combined with LBP has the ability to
extract the fingerprint of each discharge source while achieving a high classification performance and
low variance.

Table 2. Average classification performance results. Best performance is in bold font.

Feature Extraction Technique Accuracy % Variance Precision Recall F-Measure

ALIF-Entropy 73 0.002 0.66 0.73 0.69
GASF-LPQ and GADF-LPQ 79 0.001 0.81 0.79 0.80
GASF-LBP and GADF-LBP 84 0.001 0.84 0.84 0.84

The confusion matrices of the three approaches are shown in Figure 8. It is observed that the
major loss in classification for the ALIF-Entropy based method is in mPD prediction, where mPD
signals were mostly classified as RN and E. On the other hand, mPD was successfully predicted at a
rate of 100% by both GAF-LPQ and GAF-LBP techniques. However, the confusion matrices highlight
the main limitations in PD and mS classifications for LPQ- and LBP-based techniques, respectively.
This generates from a confusion between mS, PD, and C. These results are, however, in line with a
realistic performance on a large number of discharge sources. Another factor that may impede the
classification is noise contamination, as the EMI signals could be overwhelmed by noise causing a
change in the signal shape. Therefore, it is of future interest to investigate signal denoising as prior to
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the feature extraction stage. Another solution is to study other characteristics of the measurements or
the signals to distinguish between the discharge sources that are in confusion.

In order to assess the performance of the proposed method with varied window sizes for the
signals segmentation, classification results, including the CI of the accuracy across all folds calculated
using Equation (18), where 10 is the number of folds, are shown in Table 3. It is observed that
employing a window size of 2000 samples provides acceptable results and computation using both
LBP and LPQ. Please note that the improvement after 4000 samples is insignificant and not worth
considering as the computation is significantly increased.

Table 3. Average classification accuracy and 95% CI results with varied window size of segments. Best
performance is in bold font.

Feature Extraction Technique 1000 Samples 2000 Samples 4000 Samples

GASF-LPQ and GADF-LPQ 71% CI{70.95,71.045} 79% CI{78.97.,79.029} 78% CI{77.96,78.037}
GASF-LBP and GADF-LBP 70% CI{69.97,70.027} 84% CI{83.97,84.023} 87% CI{86.98,87.018}

(a)

(b) (c)

Figure 8. Confusion matrix resulting from (a) ALIF-entropy features, (b) Gramian Angular Field (GAF)
combined with LPQ, and (c) GAF combined with LBP. Overall classification accuracy is shown in the
bottom right corner.
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6.1. Advantages and Limitations of the Proposed Algorithms

The proposed feature extraction algorithms demonstrate the ability to extract relevant fingerprint
of the discharge sources and noise signals, which benefits the classification process, and thus provides
the potential of automatic EMI diagnosis. The factors that positively influence the classification are as
follows. First, setting a number of trees in the random forest to 500 improves the classification accuracy,
as it was reported previously that the larger number of trees yield a higher performance. This was
confirmed in our analysis where lower classification accuracy was achieved when employing 150 trees
only. Second, the analysis of the proposed approach on various window size segments revealed that
employing a window of 2000 samples benefits the practicability of this approach with reference to
classification performance and computation.

Class imbalance is one of machine learning limitations. This means that the total number of data
in some classes is far more than the number of data in others. This issue affects the performance of
the proposed GAF-LBP and GAF-LPQ methods as well as the previously proposed ALIF-entropy
method, where the support vector machine algorithm does not converge during the training stage.
This limitation will be addressed in future work. The authors are currently looking at modifying the
cost function in the classification algorithm in order to solve this issue. Furthermore, a weighted version
of random forest or support vector machine algorithms will also be considered. Another factor that
may affect the discharge signals classification is noise. As the noise level increases in a signal related
to a particular fault, the feature extraction and classification could be more challenging. Denoising
techniques could be considered for highly noisy signals representing a discharge source. A typical
approach would be to measure the noise level in a signal and compare it to a particular threshold.
If the noise level falls below the threshold, then the signal should be denoised. To summarise, class
imbalance and noise negatively influence the performance of the proposed approach.

7. Conclusions

This work introduces a new algorithmic approach to EMI discharge source classification that
improves upon previous work for an increased number of discharge source types. The novel approach
is based on time series imaging using the GAF method combined with image-based feature extraction
techniques known as LBP and LPQ. The algorithm performance was evaluated using the 10-fold
cross validation approach and the mean, variance, and CI of the classification accuracy across all
folds. Classification results show a successful improvement compared to previous work using both
techniques, and LBP-based work achieved the best performance. One limitation in the findings was
the confusion of PD and mS signals. Investigation on other aspects of the measured signal, such as
frequency or denoising, should be considered in this case. Despite this drawback, the proposed
approach could significantly aid in and contribute to an easier and faster method of EMI diagnostics
compared to the traditional method. To conclude, the gain in classification performance is a gain in
confidence and a motivation to consider the implementation of this approach in an EMI diagnosis
instrument. Future work will consist of the full cross validation of the developed algorithms with
synthetically generated laboratory captured and real world data sets in the presence of different noise
types and levels, as well as other sources of interference, which could lead to a multi-label problem,
where multiple EMI sources could be identified in a single signal that carries more than one EMI
source. Statistical analysis on how noise affects the algorithm performance will also be employed.
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7. Vătămanu, O.A.; Jivulescu, M. Image classification using local binary pattern operators for static images.
In Proceedings of the IEEE 8th International Symposium on Applied Computational Intelligence and
Informatics (SACI), Timisoara, Romania, 23–25 May 2013; pp. 173–178.

8. Pan, Z.; Fan, H.; Zhang, L. Texture classification using local pattern based on vector quantization. IEEE Trans.
Image Process. 2015, 24, 5379–5388. [CrossRef] [PubMed]

9. Nannia, L.; Brahnamb, S.; Lumini, A. Local phase quantization descriptor for improving shape retrieval.
Pattern Recognit. Lett. 2012, 33, 2254–2260. [CrossRef]

10. Ojansivu, V.; Heikkilä, J. Blur insensitive texture classification using local phase quantization. In Proceedings
of the 3rd international conference on Image and Signal Processing, Cherbourg-Octeville, France,
1–3 July 2008; pp. 236–243.

11. Baek, W.; Baek, S.; Kim, D.Y. Characterization of system status signals for multivariate time series
discretization based on frequency and amplitude variation. Sensors 2018, 18, 154. [CrossRef] [PubMed]

12. Albarracín, R.; Robles, G.; Martínez-Tarifa, J.M.; Ardila-Rey, J. Separation of sources in radiofrequency
measurements of partial discharges using time-power ratios maps. ISA Trans. 2015, 58, 389–397. [CrossRef]
[PubMed]

13. Robles, G.; Fresno, J.M.; Martínez-Tarifa, J.M. Separation of radio-frequency sources and localization of
partial discharges in noisy environments. Sensors 2015, 5, 9882–9898. [CrossRef] [PubMed]

14. Álvarez, F.; Garnacho, F.; Khamlichi, F.; Ortego, J. Classification of partial discharge sources by the
characterization of the pulses waveform. In Proceedings of the IEEE International Conference on Dielectrics
(ICD), Montpellier, France, 3–7 July 2016; pp. 514–519.

15. Moore, P.J.; Portugues, I.E.; Glover, I.A. Radiometric location of partial discharge sources on energized
high-voltage plant. IEEE Trans. Power Del. 2005, 20, 2264–2272. [CrossRef]

16. Asiri, Y.; Vouk, A.; Renforth, L.; Clark, D.; NeuralWare, J.C. Neural network based classification of partial
discharge in HV motors. In Proceedings of the Electrical Insulation Conference (EIC), Annapolis, MD, USA,
5–8 June 2011; pp 333–339.

17. Hazlee, I.; Gamil, A.; Norrima, M.; Hamzah, A. Classification of multiple partial discharge sources in
dielectric insulation material using Cepstrum analysis–artificial neural network. IEEJ T. Electr. Electron. Eng.
2017, 12, 357–364.

18. Dey, D.; Chatterjee, B.; Chakravorti, S.; Munshi, S. Cross-wavelet transform as a new paradigm for feature
extraction from noisy partial discharge pulses. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 157–166. [CrossRef]

19. Lalitha, E.M.; Satish, L. Wavelet analysis for classification of multi-source PD patterns. IEEE Trans. Dielectr.
Electr. Insul. 2000, 7, 40–47. [CrossRef]

20. Gu, F.-C.; Chang, H.-C.; Chen, F.-H.; Kuo, C.-C. Artial discharge pattern recognition of power cable joints
using extension method with fractal feature enhancement. Expert. Syst. Appl. 2012, 39, 2804–2812. [CrossRef]

21. Chen, H.-C.; Gu, F.-C. Pattern recognition with cerebellar model articulation controller and fractal features
on partial discharges. Expert. Syst. Appl. 2012, 39, 6575–6584. [CrossRef]

http://dx.doi.org/10.1109/TIA.2016.2603467
http://dx.doi.org/10.1080/09205071.2017.1353925
http://dx.doi.org/10.3390/s18020406
http://www.ncbi.nlm.nih.gov/pubmed/29385030
http://dx.doi.org/10.1109/TSMCC.2011.2118750
http://dx.doi.org/10.1109/TIP.2015.2476955
http://www.ncbi.nlm.nih.gov/pubmed/26353370
http://dx.doi.org/10.1016/j.patrec.2012.07.007
http://dx.doi.org/10.3390/s18010154
http://www.ncbi.nlm.nih.gov/pubmed/29316731
http://dx.doi.org/10.1016/j.isatra.2015.04.006
http://www.ncbi.nlm.nih.gov/pubmed/25997372
http://dx.doi.org/10.3390/s150509882
http://www.ncbi.nlm.nih.gov/pubmed/25923935
http://dx.doi.org/10.1109/TPWRD.2004.843397
http://dx.doi.org/10.1109/TDEI.2010.5412014
http://dx.doi.org/10.1109/94.839339
http://dx.doi.org/10.1016/j.eswa.2011.08.140
http://dx.doi.org/10.1016/j.eswa.2011.12.044


Sensors 2018, 18, 3098 16 of 17

22. Chen, H. Fractal features-based pattern recognition of partial discharge in xlpe power cables using extension
method. IET Gener. Transm. Dis. 2012, 6, 1096–1103. [CrossRef]

23. Tang, J.; Tao, J.; Zhang, X.; Zhou, J. Investigation of Partial discharge on typical defects with uhf detection
method for gis. Electrotech. Rev. 2012, 88, 351–355.

24. Wong, J.K.R.; Hazlee, I.; Ab Halim, A.-B. Classification of partial discharge measured under different levels
of noise contamination. PLoS ONE 2017, 12, 1–20.

25. Janani, H.; Kordi, B.; Jozani, M.J. Classification of simultaneous multiple partial discharge sources based on
probabilistic interpretation using a two-step logistic regression algorithm. IEEE Trans. Dielectr. Electr. Insul.
2017, 24, 54–65. [CrossRef]

26. Mazroua, A.A.; Bartnikas, R.; Salama, M.M.A. Neural network system using the multi-layer perceptron
technique for the recognition of PD pulse shapes due to cavities and electrical trees. IEEE Trans. Power Del.
1995, 10, 92–96. [CrossRef]

27. Salama, M.M.A.; Bartnikas, R. Fuzzy logic applied to PD pattern classification. IEEE Trans. Dielectr.
Electr. Insul. 2000, 7, 118–123. [CrossRef]

28. Contin, A.; Cavallini, A.; Montanari, G.C.; Pasini, G.; Puletti, F. Digital detection and fuzzy classification of
partial discharge signals. IEEE Trans. Dielectr. Electr. Insul. 2002, 9, 335–348. [CrossRef]

29. Hunter, J.A.; Lewin, P.L.; Hao, L.; Walton, C.; Michel, M. Autonomous classification of pd sources within
three-phase 11 kv pilc cables. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 2117–2124. [CrossRef]

30. Ambikairajah, R.; Phung, B.T.; Ravishankar, J.; Blackburn, T. Spectral features for the classification of partial
discharge signals from selected insulation defect models. IET Sci. Meas. Technol. 2013, 7, 104–111. [CrossRef]

31. Albarracín, R.; Ardila-Rey, J.A.; Masud, A.A. On the use of monopole antennas for determining the effect of
the enclosure of a power transformer tank in partial discharges electromagnetic propagation. Sensors 2016,
16, 148. [CrossRef] [PubMed]

32. Specification for Radio Disturbance and Immunity Measuring Apparatus and Methods; CISPR-16-1-1; International
Electronic Commissionp: Geneva, Switzerland, 2015; p. 302.

33. Timperley, J.E.; Vallejo, J.M.; Nesbitt, A. Trending of EMI data over years and overnight. In Proceedings of
the IEEE Electrical Insulation Conference, Philadelphia, PA, USA, 8–11 June 2014; pp. 176–179.

34. Dengwen, Z. An edge-directed bicubic interpolation algorithm. In Proceedings of the 3rd International
Congress on Image and Signal Processing, Yantai, China, 16–18 October 2010; pp. 1186–1189.

35. Xiao, Y.; Cao, Z.; Wang, L.; Li, T. Local phase quantization plus: A principled method for embedding local
phase quantization into fisher vector for blurred image recognition. Inf. Sci. 2017, 420, 77–95. [CrossRef]

36. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification
with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]

37. Costa, Y.M.G.; Oliveira, L.S.; Koerich, A.L.; Gouyon, F.; Martins, J.G. Music genre classification using lbp
textural features. Sig. Proc. 2012, 92, 2723–2737. [CrossRef]

38. Battaglino, D.; Lepauloux, L.; Pilati, L.; Evans, N. Acoustic context recognition using local binary pattern
codebooks. In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), New Paltz, NY, USA, 18–21 October 2015; pp. 1–5.

39. Topi, M.; Timo, O.; Matti, P.; Maricor, S. Robust texture classification by subsets of local binary
patterns. In Proceedings of the 15th International Conference on Pattern Recognition, Barcelona, Spain,
3–7 September 2000; pp. 947–950.

40. Rathie, P.; Da Silva, S. Shannon, levy, and tsallis: A note. Appl. Math. Sci. 2008, 2, 1359–1363.
41. Criminisi, A.; Konukoglu, E.; Shotton, J. Decision Forests for Classification, Regression, Density Estimation,

Manifold Learning and Semi-supervised Learning; Microsoft Technical Report: Redmond, WA, USA, 2011;
pp. 5–19.

42. Zhang, Y.; Liu, Y.; Chao, H.-C.; Zhang, Z.; Zhang, Z. Classification of incomplete data based on evidence
theory and an extreme learning machine in wireless sensor networks. Sensors 2018, 18, 1046. [CrossRef]
[PubMed]

43. Zhang, M.; Chen, S.; Zhao, X.; Yang, Z. Research on construction workers’ activity recognition based on
smartphone. Sensors 2018, 18, 2667. [CrossRef] [PubMed]

44. Alippi, C.; Roveri, M. Virtual k-fold cross validation: An effective method for accuracy assessment.
In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain,
18–23 July 2010; pp. 1–6.

http://dx.doi.org/10.1049/iet-gtd.2012.0080
http://dx.doi.org/10.1109/TDEI.2016.005887
http://dx.doi.org/10.1109/61.368411
http://dx.doi.org/10.1109/94.839349
http://dx.doi.org/10.1109/TDEI.2002.1007695
http://dx.doi.org/10.1109/TDEI.2013.6678860
http://dx.doi.org/10.1049/iet-smt.2012.0024
http://dx.doi.org/10.3390/s16020148
http://www.ncbi.nlm.nih.gov/pubmed/26821022
http://dx.doi.org/10.1016/j.ins.2017.08.059
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1016/j.sigpro.2012.04.023
http://dx.doi.org/10.3390/s18041046
http://www.ncbi.nlm.nih.gov/pubmed/29601552
http://dx.doi.org/10.3390/s18082667
http://www.ncbi.nlm.nih.gov/pubmed/30110892


Sensors 2018, 18, 3098 17 of 17

45. Vanwinckelen, G.; Blockeel, H. On estimating model accuracy with repeated cross-validation. In Proceedings
of the 21st Belgian-Dutch Conference on Machine Learning, Ghent, Belgium, 24–25 May 2012; pp. 39–44.

46. Fang, Y.; Zhang, H.; Mao, Q.; Li, Z. Land cover classification with gf-3 polarimetric synthetic aperture
radar data by random forest classifier and fast super-pixel segmentation. Sensors 2018, 18, 2014. [CrossRef]
[PubMed]

47. Dong, H.; Xu, X.; Wang, L.; Pu, F. Gaofen-3 polsar image classification via xgboost and polarimetric spatial
information. Sensors 2018, 18, 611. [CrossRef] [PubMed]

48. Su, J.; Yi, D.; Liu, C.; Guo, L.; Chen, W.-H. Dimension reduction aided hyperspectral image classification
with a small-sized training dataset: experimental comparisons. Sensors 2018, 18, 2726. [CrossRef] [PubMed]

49. Oh, S.-I.; Kang, H.-B. Object detection and classification by decision-level fusion for intelligent vehicle
systems. Sensors 2017, 17, 207. [CrossRef] [PubMed]

50. Cao, F.; Yang, Z.; Ren, J.; Jiang, M.; Ling, W.-K. Linear vs. nonlinear extreme learning machine for
spectral-spatial classification of hyperspectral images. Sensors 2017, 17, 2603. [CrossRef] [PubMed]

51. Bystrov, A.; Hoare, E.; Tran, T.-Y.; Clarke, N.; Gashinova, M.; Cherniakov, M. Automotive system for remote
surface classification. Sensors 2017, 17, 745. [CrossRef] [PubMed]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s18072014
http://www.ncbi.nlm.nih.gov/pubmed/29932441
http://dx.doi.org/10.3390/s18020611
http://www.ncbi.nlm.nih.gov/pubmed/29462962
http://dx.doi.org/10.3390/s17122726
http://www.ncbi.nlm.nih.gov/pubmed/29186846
http://dx.doi.org/10.3390/s17010207
http://www.ncbi.nlm.nih.gov/pubmed/28117742
http://dx.doi.org/10.3390/s17112603
http://www.ncbi.nlm.nih.gov/pubmed/29137159
http://dx.doi.org/10.3390/s17040745
http://www.ncbi.nlm.nih.gov/pubmed/28368297
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Proposed Solution 
	EMI Measurement Technique 
	Machine Learning Algorithms 
	Gramian Angular Field (GAF)
	Local Phase Quantisation (LPQ)
	Local Binary Pattern (LBP)
	Random Forest (RF)

	Application to EMI data 
	Results and Discussion 
	Advantages and Limitations of the Proposed Algorithms

	Conclusions
	References

