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Abstract: Further applications of impulse radio ultra-wideband radar in mobile health are hindered
by the difficulty in extracting such vital signals as heartbeats from moving targets. Although the
empirical mode decomposition based method is applied in recovering waveforms of heartbeats and
estimating heart rates, the instantaneous heart rate is not achievable. This paper proposes a Heartbeat
Estimation And Recovery (HEAR) approach to expand the application to mobile scenarios and extract
instantaneous heartbeats. Firstly, the HEAR approach acquires vital signals by mapping maximum
echo amplitudes to the fast time delay and compensating large body movements. Secondly, HEAR
adopts the variational nonlinear chirp mode decomposition in extracting instantaneous frequencies of
heartbeats. Thirdly, HEAR extends the clutter removal method based on the wavelet decomposition
with a two-parameter exponential threshold. Compared to heart rates simultaneously collected by
electrocardiograms (ECG), HEAR achieves a minimum error rate 4.6% in moving state and 2.25% in
resting state. The Bland–Altman analysis verifies the consistency of beat-to-beat intervals in ECG
and extracted heartbeat signals with the mean deviation smaller than 0.1 s. It indicates that HEAR is
practical in offering clinical diagnoses such as the heart rate variability analysis in mobile monitoring.

Keywords: electrocardiography; ultra wide band radar; variational nonlinear chirp mode
decomposition; large body movement compensation

1. Introduction

Ultra-wideband (UWB) radar has been widely developed for heart rate monitoring, since it
provides a contactless measurement. In contrast to the dynamic Electrocardiogram (ECG) monitoring,
UWB radar acquires heart rates or respiratory rates without bringing inconveniences in users’ activities
in scenarios such as the sleep apnea monitoring. However, it is difficult to sense vital signs of targets
with large body movements. A solution [1] for keeping measurements steady chooses to quit detecting
when the existence of motion artifacts is recognized. It restricts targets in static states to avoid
interferences in extracting vital signs. In order to promote applications of UWB radars in mobile health
monitoring, it is necessary to release constraints on targets’ statuses.

To cancel artifacts of large body movements, different strategies are adopted in vital signs monitoring
based on the UWB continuous-wave (CW) radar and the impulse radio UWB (IR-UWB) radar. CW radars
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relieve body movement artifacts by integrating with cameras [2] for phase compensations, implementing
self-injection-locked radars [3] or using self and mutual injection locking [4]. In addition, CW radars
adopt the empirical mode decomposition (EMD) to cancel sensors’ motion artifacts [5] and applies
cross correlations to reduce body movement artifacts [6]. However, CW radars are subject to null-point
issues and the small angle approximation. These two issues, which impose limits to single-channel
CW architectures, are solved by applying in-phase and quadrature (I/Q) receivers and arctangent
demodulations. Special designments, which adopt a single channel mixer to generate a baseband signal
linear to vital signals, enable the single-channel CW radar to overcome these two issues as well [7].
In contrast, IR-UWB radar captures vital signs from echos’ time of arrival and thus avoids the null point
issue. Therefore, IR-UWB radar is applied in this paper to detect vital signs of moving targets.

IR-UWB radars compensate large body movements by estimating antenna-target distances τ0

and calibrating echos according to τ0. Specifically, in [8], the antenna-target distance τ0 is estimated
by locating the time-varying distance with maximum energies along slow time and then fitting
with a series of sinusoidal functions. In [9], each echo is calibrated with the first-received echo by
the time delay estimation based on cross correlations. After the large body movement is canceled,
static-target-oriented methods are applicable to extract heart rates and respiratory rates. The body
movement compensation in CW radars is focused on a movement range within 20 cm [3]. The body
movement compensation in IR-UWB radars is designed for either large body movements in a range
greater than 20 cm [8] or random body movements around a fixed distance [10,11]. In [10], vital
signs of a driver are derived by reducing interferences of random body movements of hands, lips
or heads. In [11], vital signs of elderly people are detected with canceling random body movements
of eating, cooking or sleeping. Contrast to random body movements, body movements of large
antenna-target distance changing, such as walking, are compensated in experiments of a virtual thorax
motion phantom [9] rather than human targets. It is still challenging to cancel large body movements
in real detections of a moving target.

The waveform of heartbeat signals supplies useful information for the heart rate variability
analysis in the mobile health monitoring system [12]. Existing methods for extracting heartbeat
waveforms include the EMD-based method [13,14] and the variational mode decomposition
(VMD) [15,16] based method. EMD-based methods decompose signals into a series of intrinsic
mode functions (IMFs), and the IMF whose spectrum is within the heartbeat band is selected as the
reconstructed heartbeat signal. The mode mixing issue of EMD causes the coexistence of heartbeats,
respiratory harmonics and their intermodulations in one IMF. The frequency resolution of EMD is
inadequate to separate close modes. Unlike EMD recursively recovering modes in time domain, VMD
simultaneously extracts modes through jointly optimizing in frequency domain. Although VMD
gains a better partition of spectrums, it cannot separate wide-band modes with overlapped spectrums.
In addition, both EMD and VMD are not capable of obtaining features such as the instantaneous
frequency (IF). Since IF affects the beat-to-beat intervals used in the HRV analysis, it is worth trying to
acquire precise IF. The variational nonlinear chirp mode decomposition (VNCMD) [17] is capable in
decomposing close modes and extracting IF.

This paper puts forward a Heartbeat Estimation And Recovery (HEAR) approach for extracting
instantaneous heart rate from a non-stationary target using the IR-UWB radar, as in Figure 1. Firstly,
HEAR builds a mapping from amplitude attenuations to antenna-to-target distance variations to
compensate large body movements. Based on this mapping, the body movement compensation is
achieved by calibrating fast time drifts caused by large body movements. The calibration subtracts
the fast time drift estimated by the extended Kalman filter from mapped antenna-to-target distance
variations. Secondly, HEAR designs a VNCMD-based heartbeat extraction with optimized initial
frequencies. Thirdly, for the clutter removal, HEAR extends the wavelet-based method by designing
an exponential threshold with two parameters. The Bland–Altman analysis is carried out to evaluate
the consistency of beat-to-beat intervals in ECG and recovered heartbeat signals.
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The rest of this paper is organized in the following. Section 2 presents the modification to the
wavelet-based clutter removal, states the body movement compensation method and describes the
improvement in the VNCMD-based heartbeat extraction. Section 3 presents experimental results and
their analyses. Finally, Section 4 concludes our paper.
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Figure 1. Processing flow of impulse radio-ultra wideband radar data and ECG signal.

2. Methods

HEAR recovers heartbeat signals as procedures in Figure 2. In addition to the clutter removal
based on the moving averaging [18], HEAR adopts a wavelet-based method to reduce clutter. HEAR
applies a Kalman filter with multiple innovations and observations to denoise the estimations of
antenna-to-target distances. A method for cancelling body movements is designed by HEAR according
to attenuation characteristics. In order to acquire instantaneous frequencies and waveforms of
heartbeats, HEAR extends the VNCMD-based extraction with optimizing initial modal frequencies.
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Figure 2. Flow of clutter removal and heartbeat extraction in Heartbeat Estimation and Recovery approach.
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2.1. Static Clutter Removal in IR-UWB Radar

Since heartbeat signals are weak body movements, they are easily buried by the static clutter which
is the unwanted reflection from surroundings. It is essential to suppress static clutter, caused by the
antenna coupling, the impedance mismatch response and the ambient static clutter. Existing algorithms
for clutter removal are based on the principal component analysis (PCA) [19], the wavelet [20],
the moving averaging and its extensions [18]. Given that the static clutter is similar in different echo
signals, the moving averaging algorithm estimates the static clutter by taking a fraction of the previous
clutter and a fraction from the current echo signal. In [18], the modeling of static clutter is given by

C(t, τ) = a · C(t− 1, τ) + (1− a) · x(t, τ), (1)

where t is the slow-time, τ is the fast-time delay, C(t, τ) is the current clutter, x(t, τ) is the raw echo
signal, C(t− 1, τ) is a previous clutter, and a is the suppressing parameter between [0, 1]. If a = 1,
the current clutter is equal to the previous clutter. If a = 0, the current clutter is equal to the raw
echo signal.

Figure 3a illustrates the result of moving averaging with strong static clutter. Since static
clutter is preserved after the clutter removal based on moving averaging, HEAR proposes to further
reduce interferences by subtracting background echos in multiple levels of wavelet decompositions.
Specifically, HEAR adopts an adaptive threshold as

thr1=

{
sign(s(t, τ))∗||s(t, τ)|−|Cb(t, τ)|| , |s(t, τ)|> |Cb(t, τ)|,

s(t, τ)/2, otherwise,
(2)

where Cb(t, τ) is the background echos that are collected when there is no target. s(t, τ) is acquired
in the scenario with one target. HEAR adopts the biorthogonal wavelet (bior2.6) [21] to decompose
echos into 8 levels. Then, thr1 is applied to the first four levels to remove background echos.
The biorthogonal wavelet is selected to denoise IR-UWB radar data and meanwhile reduce distortions
produced by reconstructions. Since the biorthogonal wavelet is able to solve the contradiction between
symmetry and orthogonality requirements, it offers linear phases and assures an accurate signal
reconstruction. Reconstruction errors of six kinds of wavelet families are calculated and the least
two errors of each wavelet family are listed in Table 1. Errmax is the maximum reconstruction error and
Erravg is the average reconstruction error. As the comparison shows, Erravg of biorthogonal wavelets
is smaller than that of other five categories of wavelets. The energy of bior2.6 is more concentrated in
the first four levels than that of bior2.4. For a specific echo, the energy ratio of first four levels to all
levels decomposed by bior2.6 is 98.27% while the energy ratio by bior2.4 is 65.85%. Therefore, HEAR
chooses bior2.6 to decompose echos into eight levels and performs the threshold-based denoising in
the first four levels.

As in [22], the amplitude of arrival clusters follows an exponential decay with the arrival time of
clusters and multipaths. HEAR applies an exponential threshold to detailed coefficients at first four
levels of wavelet decompositions as

thr2(y + x) = ae−bx/Ne−2cy/M, (3)

where y is the arrival time of clusters and x is the arrival time of multipaths. N is the multipath
number in a cluster and M is the total multipath number in all clusters. b and c are respectively the
attenuation factors of multipaths and clusters. a is the proportion factor of echos to unit channel
models. HEAR determines N by taking a cluster as 0.5 m. c is calculated as the ratio of the maximum
to the average of an echo. b is set as 0.5. thr2 is applied to the first four levels to reduce multipath
interferences. After background echos and multipath interferences are removed, the inverse wavelet
transform is carried out to recover target echos. Figure 3b depicts echos with static clutter subtracted
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by the wavelet-based method. As the specific filtered echo in Figure 3c shows, multipath interferences
are reduced effectively.

(a) (b)
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Figure 3. (a) Echos filtered by moving averaging methods; (b) echos filtered by wavelet-based methods;
and (c) a specific echo filtered by wavelet-based methods.

Table 1. Comparisons on reconstruction errors of six kinds of wavelets with impulse radio-ultra
wideband radar data.

bior2.4 bior2.6 Haar db2 db6

Errmax 2.7756× 10−16 2.7756× 10−16 2.2204× 10−16 9.2937× 10−13 8.5720× 10−13

Erravg 1.1118× 10−18 1.1365× 10−18 1.3234× 10−18 7.5501× 10−15 1.0843× 10−14

sym8 sym5 coif1 coif3 meyr

Errmax 1.9307× 10−13 2.2660× 10−13 1.6060× 10−12 1.1326× 10−12 1.4447× 10−6

Erravg 1.9147× 10−15 2.2487× 10−15 1.2080× 10−14 1.4078× 10−14 2.4692× 10−8

2.2. Body Movement Compensation

As stated in [23,24], a time-varying channel impulse response is set as

h(t, τ) = hstatic(t, τ) + hmobile(t, τ)

=
M

∑
i=1

αiδ(τ − τi)+
N

∑
j=1

αjδ(τ − τj(t)),
(4)

where M denotes the number of channel responses from static backgrounds, N denotes the number of
channel responses from the target, t is slow-time, τ is fast-time, τi and τj represent the reflection delay,
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αi and αj are amplitudes of the channel response. The received echo signal is obtained as a convolution
of the channel response and the transmitted impulse p(τ), as

s(t, τ) = p(τ) ∗ h(t, τ)

=
M

∑
i=1

αi p(τ − τi) +
N

∑
j=1

αj p(τ − τj(t)).
(5)

According to [25], the transmitted impulse is a mixture of derivatives of Gaussian impulse,

as p(τ) = ∑
i

bie
− 2π(τ−τi)

2

β2 . The formation parameter β2 = 4πσ2 and σ2 is the variance of Gaussian

pulses. It is supposed that the response of static channel is removed by the clutter removal, i.e.,
M
∑

i=1
αi p(τ − τi)=0. Therefore, the received echo signal is formulated as

s(t, τa) =
N

∑
j=1

αj p(τ − τj(t)) =
N−1

∑
j=1

sj + sc, (6)

where sc = Ace
− 4π(τ−τc(t))2

β2 . Ac is the amplitude after impulses pass through the channel and τc(t) is
the vibration of chest. s(t, τ) contains series of sub-echos sj reflected from different positions of the
target, including the specific echo sc from the chest.

According to the above modeling, it is feasible to extract the vital signal from the changing
fast-time delay related to maximum echo amplitudes. In Equation (5), when s(t, τ) reaches its
maximum at the slow time ti, the corresponding fast-time delay is denoted as τa. The HEAR approach
treats the τa as a weighted sum of the reflection delay τj of sub-echos, as

τa(ti) =
N−1

∑
j=1

wjτj(ti) + wcτc(ti), (7)

where wj and wc are weights related to the energy ratio of each sub-echo to the mixed echo, wc is

the weight of sub-echos from the chest, and
N−1
∑

j=1
wj + wc = 1. As in [26], the vibration of chest

τc(t) is modeled as a sum of the antenna-to-target distance τd(t) and the vital signal τv(t) containing
harmonics of respiration and heart beating, as

τc(t) = τd(t) + τv(t)

= τd(t) + ∑
p

τ
p
b sin(p fbt + φb) + ∑

q
τ

q
h sin(q fht + φh),

(8)

where p and q denote the harmonic order, fb and fh are respectively the respiratory frequency and the
heartbeat frequency, and φb and φh are respectively initial phases of respiration and heartbeat.

Vital signals are generated by body micromovements such as breathing and heart beating.
τd(t) changes as target’s large body movements including walking or body shifting of a sitting target.
In order to reduce interferences of large body movements, HEAR estimates body micromovements by
amplitude attenuations and then compensating large body movements τd by an extended Kalman filter.

• Large body movement estimation

Large body movements are estimated by adopting a distance estimation method which
integrates the multi-innovation Kalman (MIK) filter and the k-Nearest Neighbor. MIK filter applies
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multiple innovations of previous moments to predict antenna-to-target distances, achieving smoother
estimations than conventional Kalman filters. MIK updates distance estimations as [27]

x̂k = x̂k|k−1 +
p

∑
i=1

Ki(k)(zk−i+1 − Ck−i+1 x̂k−i+1|k−i), (9)

where x̂k is the updated distance estimation at current time k. x̂k|k−1 is the posteriori distance estimation
at time k. zk is the observation of antenna-to-target distances at time k. Ki is the optimal Kalman gain.
Ck is the noise covariance matrix. p is the number of previous innovations used for current predictions.

Because of multipath interferences, there are multiple observations of distances for one target
at time k. HEAR combines the MIK filter with KNN to avoid deviations imported by selecting one
distance from all observations as the input of MIK filtering. Specifically, during each iteration of
MIK filtering, KNN is employed to select out the distance value zk which is most close to previous
p estimations of distances {x̂k−1, · · · , x̂k−p}. HEAR applies the extended MIK filtering to predict the
fast time delay τa varying as large body movements. Figure 4 illustrates large body movements τa

estimated by the extended Kalman filter and the correlation-based approach.
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Figure 4. Large body movements τa estimated by two approaches.

• Body micromovement estimation

Existing methods recover heartbeat waveforms by decomposing echo amplitudes with EMD,
which depends on maximums and minimums of amplitudes. Body movements enlarge multipath
interferences in echo amplitudes and therefore cause distortions in heartbeat waveforms reconstructed
by EMD. To reduce interferences of body movements in recovering heartbeat waveforms, HEAR
transfers amplitude variations into relative fluctuations of the fast time delay.

Supposing the echo amplitude s(t, τ) reaches its maximum sm at τm along the slow time, amplitude
attenuations compared to sm are proportional to increments of the fast time delay compared to τm. It is
assumed that the channel fading follows a Rayleigh distribution. The attenuation ratio of a specific
amplitude sa to sm is equivalent to the ratio of their amplitudes appearing possibilities P(τ ≥ τa)

and P(τ ≥ τm). As shown in Figure 5a, the difference of τ0 and max(τa) is determined by the
attenuation ratio of sa to sm. Given that max(τa) and sm are constants, τ0 varies corresponding to
variations of sa. As to the instance in Figure 5a, the attenuation ratio of sa to sm at time ti is larger
than that at ti−1 marked in the red line, and the difference max(τa)− τ0 at ti is greater than that at ti−1.
Specifically, the transform from amplitudes sa to the fast time delay τ0 is calculated by solving the
following equation:

sa(ti, τa)

sm(tm, τm)
=

P(τ ≥ τa)

P(τ ≥ τm)
=

e−(τa+τ0(ti))
2/2σ2

e−(τm+τ0(ti))
2/2σ2

, (10)
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where the variance σ is set as 1
3 [max(τa) − (τ0)]. The probability of amplitudes attenuation is

P(τ ≥ τa) = e−τ2/2σ2
. After acquiring τ0(ti) from Equation (10), the distance τd(ti) is obtained as

max(τa)− τ0(ti). Figure 5b shows the relation between τ0 and τd.
Figure 6b illustrates the aligned echos after compensating large body movements in Figure 6a.

The large body movement is compensated by subtracting τd from τa. The vital signal τv(t) is contained
in the subtraction between τa and τd as in Equation (11), and therefore it is extractable by applying
VNCMD in the following procedure. Algorithm 1 describes specific procedures for capturing the vital
signal τv(t):

τa(t)− τd(t) =
N−1

∑
j=1

wj[τj(t)− τd(t)] + wcτv(t). (11)

After mapping maximum amplitudes to the fast time delay, large body movement compensations
become feasible by a simple subtraction. In addition, waveform distortions of vital signs caused by
large body movements are relieved.
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Algorithm 1: Flow of extracting vital signal τv(t).
Input: Filtered echo matrix s(ti, τj), 1 ≤ i ≤ L, 1 ≤ i ≤ K.
Output: Chirp signal g(ti) containing the vital signal τv(ti), 1 ≤ i ≤ L.

1: Along the ridgeline of s(ti, τj), save the amplitudes in to a vector sa(ti), 1 ≤ i ≤ L;
2: Along the ridgeline of s(ti, τj), save the fast time delay in to a vector τa(ti), 1 ≤ i ≤ L;
3: Find the maximum in s(ti, τj), note the amplitude as sm, and save the fast time delay as τm;
4: Obtain the relative fast-time delay τd(ti) as max(τa(ti))− τ0(ti) by solving Equation (10);
5: Compensate large body movements as Equation (11);
6: return g(ti);

2.3. Separation of Heartbeats and Respirations by VNCMD

EMD is a method more general than filtering methods for separating heartbeats and respirations.
However, the mode mixing problem in EMD hinders separating heartbeats from those respiratory
harmonics whose energies are greater than heartbeats’ in the heartbeat band [1 Hz, 2 Hz]. VMD is
an adaptive decomposition method which suppresses mode mixing problems in EMD. As in [17],
VNCMD overcomes limitations that VMD cannot acquire instantaneous amplitudes and instantaneous
frequencies from each mode. In order to obtain instantaneous heart rates and heartbeat waveforms,
the HEAR approach adopts the VNCMD to extract heartbeat signals.

As in Equation (11), the vital signal is contained in a chirp signal g(t), which is equivalent to

g(t) = τa(t)− τd(t)

= ∑
p

τ
p
b sin(p fbt + φb) + ∑

q
τ

q
h sin(q fht + φh)

+ ∑
j

τ
j
b+h sin((n fh + k fb)t + φb+h) + n(t),

(12)

where j, τ
j
b+h and φb+h are respectively the number, the fast time delay and the initial phase of

intermodulations of respirations and heartbeats. The intermodulations are imported to the fast time
delay τv by the mapping from amplitudes, since the amplitude is regulated by the intermodulations as
well. Specifically, the echo amplitude sc in Equation (6) is expanded by the Taylor series as

sc = e−(∆τ−sin( fbt)−sin( fht))2

= 1 +
∞

∑
n=1

1
n!
(∆τ − sin( fbt)− sin( fht))2n

=1 +
∞

∑
n=1

1
n!
(∆τ2 − 2∆τ sin( fbt)− 2∆τ sin( fht)+h(t))

n

(13)

h(t) =1− cos(( fb + fh)t) + cos(( fb − fh)t)

− 1
2

cos(2 fbt)− 1
2

cos(2 fht),
(14)

where ∆τ = τa − τd. To be simplified, the coefficients of Gaussian impulses are omitted and no
harmonic of respirations and heartbeats is considered in Equation (13). Therefore, the chirp signal g(t)
comprises multiple frequencies including respiration rate fb, heartbeat rate fh, their harmonics and
intermodulations. VNCMD is capable of recovering the time-varying heartbeat signal as a nonlinear
chirp mode (NCM) decomposed from g(t). VNCMD requires initial frequencies for each NCM to be
recovered. It is feasible to initialize modal frequencies by extracting ridge curves of the short time
Fourier transform (STFT).

As discussed in [17], the convergence of VNCMD depends on the noise level and the specified
initial modal frequencies. A good initialization of modal frequencies helps VNCMD in converging
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in noisy situations. If the relative error between initial frequencies and real frequencies is smaller
than 60%, the VNCMD still has a great success rate to converge to correct modal frequencies even
at a strong noise level. To ensure that the VNCMD converges at the respiratory frequency and the
heartbeat frequency rather than their harmonics, the initial modal frequency should contain frequency
estimations of respirations and heartbeats. Since respiratory harmonics are stronger than heartbeats in
spectrums in some cases, it is not sure that the frequency extracted by STFT in the heartbeat band is
the heartbeat frequency. It is necessary to optimize the initial modal frequencies to prevent them from
losing the respiratory frequency and the heartbeat frequency. HEAR recovers the initial frequencies of
respirations and heartbeats by solving the following quadratic programming issue:

min
3

∑
i=1

fi − n fh − k fb − (m fh + t fb), (15)

s.t. k fb= f1,
n fh= f2,
m fh + t fb= f3,

(16)

where fi is the frequency extracted on ridges in STFT of the vital signal. fb is the respiratory frequency
and fh is the heartbeat frequency. n, k, m and t are respectively orders of respiratory harmonics and
heartbeat harmonics. The lower bound for the vector x = { fb, fh, n, k, m, t} to be optimized is set as
[0.01, 1, 0.5, 0.7,−5, 0.7], and the upper bound is set as [0.8, 2.5, 4, 1.5, 5, 1.5].

The above optimization assumes that all frequencies extracted from STFT are composed of
kth respiratory harmonics k fb, nth heartbeat harmonics n fh and their intermodulations m fh + t fb.
The optimization poses constraints on both harmonic orders and frequencies of respirations
and heartbeats. Specifically, values of respiratory harmonics, heartbeat harmonics and their
intermodulations are restricted as respectively equal to an extracted frequency in { fi}, as described in
formula (16). The optimization is achieved by reducing each discrepancy between the harmonic and
the corresponding extracted frequency in { fi}. Figure 7b illustrates frequencies derived from the STFT
in Figure 7a and estimated by VNCMD.
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Figure 7. (a) Results of short time Fourier transform (STFT), and (b) extracted frequencies by STFT and
variational nonlinear chirp mode decomposition (VNCMD).
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3. Experiments

In experiments, ECG recordings are collected simultaneously with IR-UWB radar data and further
processed to extract beat-to-beat intervals as references.

3.1. Experimental Settings

The HEAR approach is implemented in the following settings:

1. The applied radar equipment is the NVA-R661 radar module, which is based on single chip
CMOS NVA6201 impulse radar transceiver. It offers a spacial resolution of 1/256 m.

2. The deployed ECG acquisition module is based on the BMD101 chip and a bluetooth module
BC147413. This ECG sensor is able to detect biological signals within µV to mV range. It provides
information of real-time heart rate and respiration rate.

3. Experiments are carried out in resting scenarios and moving scenarios, as shown in Figure 8.
In the resting scenario in Figure 8a, a tester stays static 1 m in front of the radar in three spots.
The antenna-to-target angles θ1, θ2 and θ3 are respectively π

2 , −π
4 and π

4 .
In the moving scenario in Figure 8b, a tester reciprocates on three tracks. Since it is difficult to
assure a specific antenna-to-target angle during moving, the tester is merely required to face the
radar in front in all tracks. Angles between tracks 1–3 to the radar correspond to π

2 , −π
4 and

π
4 . To test the effectiveness in different distances, the track is respectively set within 1–2 m and

1.5–4.5 m. Each recording of activities lasts for 50 s.
4. The comparison experiment applies the STFT to acquire instantaneous frequencies and adopts

VNCMD for one iteration to recover heartbeat waveforms. The HEAR approach employs VNCMD
for 300 iterations with initial frequencies generated by STFT.

Track1 

Track3Track2

Spot1

Spot3Spot2

(a) (b)
Figure 8. Experimental scenarios for static and moving targets. (a) Spot settings in static scenarios, and
(b) track settings in moving scenarios.

3.2. Results Evaluation

3.2.1. Evaluations on Heart Rate Detections

(1) Resting scenario evaluation

Figure 9a shows heart rates measured on five resting testers in the spot1. The variable HRecg

is the reference heart rate detected in ECG recordings. Variables HRvncmd and HRst f t are heart rates
respectively extracted by HEAR and the scheme of STFT. Black lines illustrate the variance of measured
and estimated heart rates. It observes that HEAR estimates heart rates with a variance smaller than
that of the comparison scheme.
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The error rate of heart rates is defined as Errvncmd =
|HRvncmd−HRecg|

HRecg
. Figure 9b shows error

rates corresponding to Figure 9a. Errmax is the maximum error and Errmin is the minimum error.
Err_avg_vncmd is the average error of HEAR and Err_avg_st f t is the average error of STFT. It observes
that the average error rate of HEAR is smaller than that of the comparison scheme.

Figure 10a illustrates heart rates tested in three spots 1–3. Figure 10b depicts error rates of heart
rates corresponding to three spots. Variables HR_ecg_1, HR_ecg_2 and HR_ecg_3 are obtained on
corresponding spots 1–3. It shows that error rates on different spots are similar in average values. For a
specific resting tester, the error rate in spot 1 is slightly smaller than error rates in spots 2 and 3. The HEAR
approach achieves a smaller average error rate compared to the scheme of STFT in three spots.

(2) Moving scenario evaluation

Figure 11a illustrates heart rates tested within a near distance 1–2 m in Track 1. Figure 11b
depicts error rates of heart rates corresponding to Figure 11a. Figure 12a shows heart rates detected
within a range 1.5–4.5 m in Tracks 1–3. Figure 12b displays error rates of heart rates corresponding to
Figure 12a. From the comparison between error rates in near and long distances in Track 1, it observes
the increments in error rates as the distance increases.

0

20

40

60

80

100

120

1 2 3 4 5

H
e
a
rt

 r
a
te

 (
b

p
m

)

Tester number

HR_ecg HR_vncmd HR_stft

(a) Heart rates of static targets in 1 m.

0
5

10
15
20
25
30

1 2 3 4 5

E
rr

o
r 

ra
te

 (
%

)

Tester number

Err_max     Err_min      Err_avg_stft      Err_avg_vncmd

(b) Error rates of static targets in 1 m.
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Figure 12. Results on moving testers in Tracks 1–3.

3.2.2. Evaluations on HRV Analysis

Tables 2 and 3 display discrepancies of parameters in HRV analysis compared with the reference
ECG records. Specifically, SDNN is the standard deviation of R wave-to-R wave (RR) intervals,
i.e., intervals between normal heartbeats. HF is the normalized power in the high frequency band
0.15–0.4 Hz and LF is the normalized power in the high frequency band 0.04–0.15 Hz. RMSSD is the
root mean square of RR interval differences. The discrepancy of SDNN obtained by HEAR and ECG
is calculated as SDNNerr_vncmd =

∣∣SDNNecg − SDNNvncmd
∣∣. The difference of SDNN derived by the

scheme of STFT and ECG is computed in the same way. Similarly, deviations of RMSSD, LF and HF
are acquired by the same computation. It is observed in Tables 2 and 3 that the discrepancies of SDNN,
LF and HF generated by HEAR are smaller than those obtained by the scheme of STFT. Compared to
the scheme of STFT, the HEAR approach achieves a deviation of RMSSD smaller in the static scenario
while larger in the moving state. It is attributed to interferences that large body movements introduce
to the stableness of RR sequences in radar data.

Table 2. Heart rate variability analysis on resting testers in Spot 1.

Tester 1 Tester 2 Tester 3 Tester 4

SDNNerr_vncmd (ms) 117.99 99.92 116.02 138.71
SDNNerr_st f t (ms) 186.33 118.21 179.38 202.88

RMSSDerr_vncmd (ms) 136 131.23 101.52 129.99
RMSSDerr_st f t (ms) 204.93 157.21 151.34 191.86

LFerr_vncmd (ms2) 842 892 838 1077
LFerr_st f t (ms2) 21,041 13,649 13,715 16,500

HFerr_vncmd (ms2) 2102 2676 705 2242
HFerr_st f t (ms2) 50,863 33,294 30,517 40,397
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Table 3. Heart rate variability analysis on on moving testers in Track 1.

Tester 1 Tester 2 Tester 3 Tester 4

SDNNerr_vncmd (ms) 73.18 169.65 74.09 169.7
SDNNerr_st f t (ms) 96.37 194.58 83.05 185.5

RMSSDerr_vncmd (ms) 43.49 144.34 137.36 162.1
RMSSDerr_st f t (ms) 36.41 137.72 156.34 130.3

LFerr_vncmd (ms2) 1787 1837 2316 1549
LFerr_st f t (ms2) 14,497 15,045 10,654 10,950

HFerr_vncmd (ms2) 3788 2629 4672 1700
HFerr_st f t (ms2) 29,747 33,061 23,093 23,476

3.2.3. Evaluations on Bland–Altman Analysis

The difference of RR intervals in ECG and heartbeats is marked as RRd. The average of RRd
is denoted as Bias. The discrepancy between Bias of VNCMD and the scheme of STFT is calculated
as ∆Bias =

∣∣∣Biasst f t

∣∣∣− |Biasvncmd|. The standard deviation of RRd is recorded as SD. The difference

between SD of VNCMD and the comparison scheme is computed as ∆SD=
∣∣∣SDst f t

∣∣∣− |SDvncmd|.
Tables 4 and 5 list parameters of the Bland–Altman analysis, respectively, on different static and

moving testers. It proves the consistency that the value of Bias is close to zero. It shows that the
HEAR approach is able to acquire beat-to-beat intervals consistent with reference RR intervals in ECG.
The discrepancy between RR intervals in ECG and the scheme of STFT is decreased through applying
the VNCMD.

Figure 13 illustrates scatters of RR intervals in the Bland–Altman analysis. Scatters of RR intervals
obtained by VNCMD are distributed more centrally within the upper limit UL and the lower limit LL
that are respectively determined by Bias± 1.96SD. It indicates that HEAR achieves a heartbeat signal
whose RR intervals are more consistent with those of ECG, compared to heartbeats extracted by the
scheme of STFT.
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Figure 13. Scatters of R wave-to-R wave (RR) intervals in Bland–Altman analysis.
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Table 4. Bland–Altman analysis on resting testers in Spot 1.

Tester 1 Tester 2 Tester 3 Tester 4

∆Bias (ms) 15.15 40.77 35.75 72.43
∆SD (ms) 93.71 37.4 29.97 1.59

Table 5. Bland–Altman analysis on moving testers in Track 1.

Tester 1 Tester 2 Tester 3 Tester 4

∆Bias (ms) 25.51 10.23 21.09 2.52
∆SD (ms) 26.58 29.35 36.33 18.77

3.2.4. Evaluations on HEAR Approach with Different Motion Frequencies

In order to analyze influences of motion frequencies to the HEAR approach, the tester is required
to reciprocate within 1–2 m in different times. Experiments are repeated for seven times and evaluation
parameters of heart rates and the HRV analysis are summarized in Table 6. In addition, the difference
between real and estimated breathing times is calculated as well, denoted as ∆BR in Table 6. It shows
that HEAR acquires an average error as 2.19 breathing times during 50 s. The motion frequency is
equal to 0.16 Hz when the tester walks back or forth for eight times in 50 s. The average of error rates
of heart rates Errvncmd is 6.15% and the fluctuation of Errvncmd shows no obvious relation with motion
frequencies. In spite of fluctuations, RMSSDerr and SDNNerr take on a decreasing trend as the motion
frequency increases.

Table 6. Respiration rate and heart rate estimation and HRV analysis with different motion frequencies.

Parameters Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Average

motion frequency (Hz) 0.16 0.22 0.29 0.41 0.5 0.77 0.8 -
maximum speed (m/s) 1.01 1.35 1.24 1.28 1.8 1.79 2.82 -

∆BR 4.64 0.34 1.67 2.42 0.61 4.65 1.07 2.19
Errvncmd(%) 7.07 6.02 0.54 12.39 8.82 0.47 7.73 6.15

SDNNerr_vncmd (ms) 66.4 134.7 15.7 127.2 16.1 124.9 47.3 76
RMSSDerr_vncmd (ms) 150.9 33.6 34.5 132.6 93 168.4 23.9 91

LFerr_vncmd (ms2) 11,712 1167 2997 2502 1387 808 746 3045
HFerr_vncmd (ms2) 7282 5855 9939 1839 1815 924 107 3966

To analyze the time profiling of HEAR, the running time of three procedures in HEAR is counted
and averaged with different time lengths of input radar data. Table 7 shows time consumptions of
procedures for the wavelet-based filtering, the body movement compensation and the VNCMD-based
estimation. Specifically, the input radar data which lasts for 5 s contains 200 echos, since the time
sampling rate is 40 Hz. In this case, for a specific echo, the time consumption of wavelet-based filtering
is 45.85 ms. Although the time consumption of the VNCMD-based estimation increases as the length
of input data arises, its values are smaller than 1 s.

To compare the heart rates estimated by VNCMD with and without optimizations in initial
frequencies, results of comparison experiments are listed in Table 8. The variable Erroriginal denotes the
error rate between heart rates obtained by ECG and the original VNCMD method without optimizing
initial frequencies. Errst f t is the error rate of heart rates introduced by initial frequencies determined
by the STFT method. Errvncmd is acquired with optimized initial frequencies. From the comparison
between Errst f t and Erroriginal in Table 8, it indicates that the original VNCMD method fails to reduce
error rates with unoptimized initial frequencies.
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Table 7. Time profiling of Procedure 1 for wavelet-based filtering, Procedure 2 for body movement
compensation and Procedure 3 for variational nonlinear chirp mode decomposition based estimation
in Heartbeat Estimation And Recovery approach.

Test 1 Test 2 Test 3 Test 4

Input data length (s) 5 10 15 20
Procedure 1 (s) 9.17 20.14 31.6 45.5

Procedure 2 (ms) 0.9 0.9 1.1 1.5
Procedure 3 (ms) 150.7 262.3 193.6 392.6

Total time per echo (ms) 46.61 51 52.99 57.37

Table 8. Comparisons on estimated heart rates with and without optimizations in initial frequencies
of VNCMD.

Test 1 Test 2 Test 3 Test 4 Test 5

Errvncmd(%) 1.82 3.79 10.35 7.7 6.76
Errst f t(%) 7.07 17.05 18.92 17.78 13.91

Erroriginal(%) 13.38 21.49 20.89 18.59 19.48

4. Conclusions

This paper proposed a Heartbeat Estimation And Recovery approach to extract instantaneous
heartbeat signals using an IR-UWB radar. To remove static clutter, HEAR modifies the wavelet-based
methods with a two-parameter exponential threshold, according to characteristics of amplitudes
attenuations. The HEAR approach builds a mapping from maximum echo amplitudes to the fast time
delay to acquire a chirp signal which contains body micromovements and large body movements.
Based on this mapping, it is feasible to cancel large body movements estimated by the extended
Kalman filter through a simple subtraction. Then, HEAR adopts the VNCMD to obtain instantaneous
frequencies and waveforms of heartbeats with optimizing initial modal frequencies. Results of the
HRV analysis and the Bland–Altman analysis validate that HEAR captures instantaneous heartbeat
signals of moving targets by effectively compensating large body movements.
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