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Abstract: A giant magnetostrictive actuator presents advantages such as large strain, high 

precision, and quick response. It is a hotly debated research topic in the field of micro drivers; 

however, the nonlinear intrinsic relationship between its output and input signals make it difficult 

to construct its nonlinear eigen model in the process of its practical application. Therefore, the 

motivation of this paper is to study the nonlinear magnetic–mechanical coupling characteristics of 

the giant magnetostrictive actuator, which is driven by free energy hysteresis characteristics. The 

nonlinear magnetic–mechanical coupling model under the weak form solution is deduced from the 

basic electromagnetic and mechanical theories, based on the distribution law of the axial magnetic 

field simulation, carried out to analyze the output displacement characteristics of the giant 

magnetostrictive actuator under preload. Experimental characterization of the device is also 

studied in the built experiment setup. Research results show that the experimental results coincide 

well with the simulation results, which show that the designed magnetic circuit for the giant 

magnetostrictive actuator is correct, and the coupling model of magnetic and machine of the giant 

magnetostrictive actuator based on the free energy hysteresis characteristics is reasonable. 

Keywords: giant magnetostrictive actuator; free energy; hysteresis characteristics; coupling 

characteristics of magnetic and machine; COMSOL simulation 

 

1. Introduction 

At present, the functional materials used in the field of micro-actuation technology mainly 

include piezoelectric materials, shape memory alloys, and giant magnetostrictive materials [1–6]. 

Based on the giant magnetostrictive (GMS) effect, a novel giant magnetostrictive actuator with 

high actuation power is designed and implemented by Mingzhang Luo [7]. This design enables the 

generation of stress waves with high energy, and the focusing of the generated stress waves on the 

test object, it can be used in the quality assessment of rock bolt-reinforced structures and other 

nondestructive testing and evaluation applications that require high-power stress wave generation. 

Zhenyuan Jia et al. [8] used a giant magnetostrictive actuator (GMA) made of giant 

magnetostrictive material (GMM) to apply a magnetic field to strain it by using its magnetostrictive 

effect and to produce output force or displacement using its longitudinal deformation, with large 

strain, high precision, fast response, high reliability, and so on. It quickly became a research hotspot 

in the field of micro-drive. Yuanyuan Yang and his college [9] present an induced voltage linear 
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extraction method for disturbing force self-sensing in the application of giant magnetostrictive 

actuators, a Kelvin bridge combined with an active device is constructed instead of a conventional 

Wheatstone bridge for extraction of the induced voltage, the method for solving the nonlinear 

problems in GMA self-sensing signal extraction has been demonstrated. Mingzhang Luo [10] 

attempts to develop a portable, non-destructive evaluation method for assessing the length of 

installed rock bolts for inspection purposes, we proposed a portable device for the non-destructive 

evaluation of rock bolt conditions based on a giant magnetostrictive (GMS) actuator. The GMS 

actuator generates enough energy to ensure multiple reflections of the stress waves along the rock 

bolt and a lead zirconate titantate (PZT) sensor is used to detect the reflected waves. This paper can 

also be adopted for property assessment of others to accurately determine the rock bolt length. At 

present, GMA has reported on the application of precision fluid transmission and control, precision 

machining, precision peristaltic mechanism, sonar, vibration suppression, measurement and control, 

and so on. 

Research [8,11–13] shows the following points: There is a nonlinear eigen relation between the 

output signal and the input signal of the GMA. It is a major problem in the practical application of 

intelligent materials for its intrinsic nonlinearity. Because of the strong coupling property between 

the material itself and the electromagnetic heat, it is very complicated for the nonlinear problem, 

which in turn makes modeling very difficult. In the research of a multi-physics dynamic 

magnetic-mechanical coupling model, scholars at home and abroad have also done many analyses 

and much research. 

In the research by Yongxin Guo [14], a new Hammerstein model is proposed for modeling the 

rate-dependent hysteresis nonlinearity of a GMA, the proposed Hammerstein model can describe 

the hysteresis loops well within a frequency range of 0–100 Hz. However, based on this model, only 

a 2 DOF (DOF is an abbreviation for degree of freedom) control system is designed. 

A novel adaptive filter is proposed to model the rate-dependent hysteresis nonlinearity in a 

giant magnetostrictive actuator [15]. In the proposed filter, generalized play operators are combined 

with linear delayed adaptive transversal filter to compose a new serial structure of adaptive filter 

model. The proposed adaptive filter is applied to model the rate dependent hysteresis of giant 

magnetostrictive actuator. The experimental results show that the proposed generalized play 

operator adaptive filter can describe the rate-dependent hysteresis behaviors including different 

single frequency input signal and multi-frequency composite input signal. 

A.E. Clark [16] has proposed a linear piezomagnetic constitutive equation for a giant 

magnetostrictive actuator based on a large number of studies, this equation accurately describes the 

magnetic–mechanical coupling relationship of giant magnetostrictive materials, making it a 

magnetic–machine coupling basic equations in the study of giant magnetostrictive actuators. 

As early as 1995, M.E.H. Benbouzid et al. [17,18] used the finite element simulation model to 

analyze the nonlinear dynamic characteristics of the giant magnetostrictive rod, which can guide 

the optimization of the magnetic circuit design of the giant magnetostrictive actuator. However, the 

model is a two-dimensional planar model, and its dynamic characteristics are obtained from the 

static characteristics of giant magnetostrictive materials. Because static modeling has many 

parameters, the calculation is complex and susceptible to other field-related parameters; therefore, 

the model itself has certain limitations. 

Azoum [19] established a three-dimensional generalized finite element model based on the 

coupled constitutive equation of the giant magnetostrictive actuator, and simulated the solenoid 

coil. Simultaneously, Benatar [20] established a three-dimensional electro-magnetic-mechanical 

coupling model of GMM transducers used the multiphysics coupling software FEMLAB (the 

predecessor of COMSOL software which eveloped by the COMSOL group who founded in 

Stockholm, Sweden). Zhao Zhangrong and others from Zhejiang University [21] also used the weak 

solution of COMSOL software to simulate and analyze the electro–magnetic–mechanical coupling 

model of intelligent mast components of GMM, but the coefficient matrix substituted is a constant 

coefficient matrix, Therefore, the simulation result obtained is linear, and there is a certain error 

with the experimental results. 
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None of the above methods establishes a model based on the characteristics of the giant 

magnetostrictive material itself, and the giant magnetostrictive material is a ferromagnetic material, 

its essential feature is that there are intrinsic nonlinearities and hysteresis characteristics, so it is a 

reasonable method to study the intrinsic relationship between the output and input of the actuator 

based on the intrinsic nonlinearity and hysteresis characteristics of the giant magnetostrictive 

material. 

In this paper, the hysteresis characteristics and nonlinearity of giant magnetostrictive actuators 

are studied in depth by the free energy hysteresis model. The three-dimensional magnetic machine 

coupling model of the giant magnetostrictive actuator is established, and a three-dimensional 

nonlinear coupled model of the giant magnetostrictive actuator is established according to the 

free-energy hysteresis model that used the material eigen model combined with the 

three-dimensional coupled model, then the finite element simulation software is used for analysis 

and calculation to obtain the magnetic induction and strain increments. Following this, the total 

strain output is obtained, and the simulation results were verified by experiments. 

2. The Theoretical Basis of the Magnetic Machine Coupling Model for the Giant Magnetostrictive 

Actuator (GMA) 

2.1. The Fundamental Theory of the Magnetic Field Excited by the Winding for GMA 

For the giant magnetostrictive actuator system, Maxwell’s equations [22–24] are used to solve 

the distribution of the magnetic field excited by the winding. The solving variables are set as the 

vector magnetic potential (
zyx AAA ,, ) in the magnetic field. According to the differential Maxwell 

equations of the magnetic field and the principle of current continuity, the driving frequency of the 

magnetic field excited by the winding is lower than 30 MHz. The driving current source is chosen to 

be a constant current source so that the magnetic field is formed to be a constant magnetic field. 

Therefore, the electric displacement field vector D  can be neglected, then 0=




t

D . The total current 

density consists of two parts: source current density 
SJ  and applied current density 

EJ , which is 

caused by eddy current effect, then the divergence of magnetic field intensity is as follows: 

ES JJH +=  (1) 

In this equation, H  denotes the magnetic field intensity vector. 

Electric field intensity E  can be expressed by magnetic vector potential: 

−



−=

t

A
E  (2) 

where   is a scalar potential function. 

Then the applied current density caused by eddy current effect is expressed as (3): 
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where   is electric conductivity. 

Then the magnetic flux density B  is expressed by magnetic vector potential: 
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2.2. The Fundamental Theory of the Mechanical Field of GMA 

According to Newton’s Second Law, the motion of a giant magnetostrictive rod can be 

described as follows: 

2

2

dt

ud
mfT B =+  (5) 

where the displacement  Tzyx uuu=u , the stress 


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33231

23221
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T , 2112 TT = , 3113 TT = , 

3223 TT = , and Bf  is body force. 

When damping is considered, and Navier-stocks equation [23] is combined to  

derive Formula (6): 

t

u
c

dt

ud
mfT B




+=+
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2

 (6) 

where c  is the viscous damping coefficient, and m  is quality of the system. 

The solving variable of the mechanical field is set as displacement vector ( zyx uuu ,, ), then the 

relationship between the elastic strain S  and the displacement can be expressed as follows: 

uS
s=  (7) 
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. If it is substituted into Equation (7), Formula (8) is obtained 

as follows: 
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2.3. The Conversion of the Weak Form Solution 

(1) Einstein notation 

According to Einstein Notation [24], tensor ijk  is a Levi–Civita signal, which is defined as 

follows: 









===

=−

=+

=

；，

；，

；，

ikorkjji

orkjiif

orkjiif

ijk

,,,0

)2,3,1()3,1,2(,)1,2,3(),,(1

)2,1,3()1,3,2(,)3,2,1(),,(1

 (9) 

The cross product of the two variables can be expressed as follows: 

kjijki baba = )(  (10) 
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The curl of the variables is shown as follows: 

j

k

ijki
x
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= )(  (11) 

Use Einstein Notation to mark Equations (1) and (3): 
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Substituting Equation (11) into the above two equations: 
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Use Einstein Notation to mark Equation (6) and expand the formula: 
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Use weighted residual method to integrate Equations (13) and (15): 
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where i  and i  are weight function, BV  is magnetic field distribution region, and uV  is 

action area of mechanical field. 

Take partial integration for the first term on the left of the Equation (16), then Formula (17) is 

derived as. 
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Define the divergence   =
V S

ndSFFdV , according to divergence theorem, the first term on 

the right of the Equation (17) can be expressed as follows: 
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Substitute the above equation into Equation (17): 
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Then the Equation (19) can be rearranged as follows: 
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Substitute the above equation into Equation (16): 
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According to Galerkin Method [22,24], weight function is equal to basis function, where 

minimal variables ii uA ,  are used. The weight function is expanded to the following approximate 

expression: 
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This is the weak solution equation for solving the magnetic and mechanical field variables of 

GMA system under the Einstein Notation. 

(2) Matrix notation 

Equation (23) can be expressed by matrix notation as Equation (24): 
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The equations for the weak solution formally express the balance of virtual work both inside 

and outside the system. According to the kinematics relationship, the variation variables 

AB  = , uS  =  are introduced to calculate H  and T . Because the surface traction at the 

mechanical field boundaries is Tnt = , the tangential component of the magnetic field boundaries is 

nHH =T
, then the virtual work of the system can be expressed as follows: 
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2.4. Three-Dimensional Finite Element Discrimination of Virtual Work Model for the System 

Using the finite element method, the solvability domain is discretized into a finite number of 

units (the number of element is assumed to be e ), the weak form solution Equation (24) is solved on 

the element. The solving variables, the vector potential energy, offset variables of every element 



Sensors 2018, 18, 3070 7 of 21 

 

should be calculated by node value interpolation. Thus, their interpolation will be written into 

matrix form using the interpolation and the shape functions to calculate the variable node value. 

Interpolation and integration are calculated at the local coordinate  , which is combined with 

dx  and d  through the Jacobian matrix 
eJ , where ddx eJ= , 

321321)det(  dddJddddV ee == J . For the linear interpolation of geometry structure, the 

variables eA  and eu  of each element can be interpolated by node values 
A

eq  and 
u

eq : 

u
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qNu

qNA

)(

)(
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=
 (26) 

According to the Galerkin method [23,24], weight function is equal to basis function, then the 

shape function of minimal variables is written as follows: 
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Because A  is a three-dimensional vector, the interpolating matrix 
A

N  presents three lines, 
A

nN  nods in each element (
A

nN  is depended on the order of the element), and every nod can be 

described as a three-dimensional vector, which is relative with the nodal value eA . So the 

interpolating matrix A
N  consists of A

qN  columns, where A

n

A
q NN 3= . The dimension of the vector 

A

eq  is 
A
qN , and all three components in each node are eA . Because the displacement variables 

does not require the same shape function, the available number of columns of 
u

N  can be expressed 

by u

qN , which depended on the number of node 
u

nN . From the above information, it is observed 

that the total degree of freedom of each element is A

q

u

qq NNN += . 

In this paper, the typical shape functions are mainly tetrahedron elements of linear functions or 

quadratic Lagrange function [24]. Assuming that vector potential energy and displacement variables 

are expressed in four-node tetrahedral element (as shown in Figure 1), then NNN == qA
. 

Matrix shape function N  is consisted of a Lagrange function: 

,1 3214
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−−−=
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where, for node i , when ij = , 1=jN , otherwise, when ij  , 0=jN . According to the shape 

function (28), in the global coordinate system, 
1x  can be interpolated with the node value nx ,1 . 

4,143,132,121,111 xNxNxNxNx +++=  (29) 
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Figure 1. Four node tetrahedral element and its coordinate system. 

Because the four-node tetrahedral element in the finite elements is used, the dimension of 

vector 
A

eq  is 12, and the first three dimensions at node 1 are the three components of eA , which is 

followed by the three components at nodes 2, 3, and 4. The matrix of shape function is shown as 

Formula (30). 
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When local coordinate )0,0,1(=ξ  is located at node 1, 
1,ee AA = , the vector potential energy 

can be simplified to the value of node 1. Similarly, when local coordinate )0,1,0(=  is located at 

node 2, 
2,ee AA = , the vector potential energy can be simplified to the value of node 2. It is the same 

for the other coordinates. For other points in the tetrahedron, generally, the linear interpolation of 

node values is used for the shape function; for instance, local coordinates is written as 

)0,2/1,2/1(=ξ , )(2/1 2,1, eee AAA += . 

In the finite element model, the node values of the vector potential energy and the displacement 

variables are unknown. The virtual vector potential energy and the displacement variables can be set 

to be any values. In order to show finite element discretization in the virtual work expression (25), 

the magnetic flux density and the strain can be expressed in terms of vector potential energy and the 

displacement variables. 

u

ee

u

e

u

ee

A

ee

A

e

A

ee

qGqNuS

qCqNAB

===

===

)(

)(
 (31) 

The elements in the matrices 
eC  and 

eG  are the derivatives of the local coordinate system ξ  

about the global coordinate system x , which is assumed to be the discrete form of curl and 

gradient. For linear elements, Jacobean matrix 
eJ  is a constant matrix. Then, matrix 

eC  and 
eG  

does not depend on ξ . Assuming that magnetic field be divided into A
N  elements, the mechanical 

field is discretized into u
N  elements. The virtual work balance expression can be shown as follows: 
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(32) 

Because the influence of gravity and Lorentz force in the magnetostrictive device can be 

neglected, body force could be ignored [25]. Where subscript b denotes the number of boundary 

elements, A

SN  and u

SN  represents the number of boundary elements of the magnetic field and the 

mechanical field, respectively. Integral  dJ e
 means element integration in the global coordinates. 

Then, the element volume can be described as (33). 

   − − −
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x
dJ  (33) 

The integral  
S

SbS dJ ,
 means boundary element integration in the global coordinate, which 

represents the element area. 
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2.5. Magneto Mechanical Coupling Nonlinear Model 

Magneto mechanical coupling relationship [26] of the magnetostrictive actuator system can be 

described by the piezomagnetic equation: 

TSHdS

dTHB

HT

T

+=

+= 
 (35) 

where 
T

μ  is permeability tensor at constant stress; 
HS  is flexibility coefficient tensor at constant 

magnetic field intensity; and d  and S  are the piezomagnetic tensor and strain, respectively. 

The above equations show that the total magnetic flux density consisted of two parts. The first 

part shown in the first term denotes the magnetic flux density Hμ
T

 that is induced by the applied 

magnetic field, and the second terms represents magnetic flux density dT  that is caused by the 

application of mechanical stress. Similarly, the total strain is also formed with two terms, where the 

first term is the magnetic strain Hd
T

 that is caused by applied magnetic field, while the second 

one denotes the elastic strain TS H
, which is caused by the applied stress. Inside the giant 

magnetostrictive materials, its strain is immediately relevant with the magnetic intensity, stress 

state, and its material properties. The actuator’s output displacement and output force are the result 

of mutual coupling of the magnetic and elastic fields. 

The above eigenvalue equations can be expressed in incremental form as follows: 
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The increments of the magnetic field and the stress field are combined with the solution result 

calculated by the finite element through the Equation (36). Solving from the known initial solution, 

the pre-compression t , surface magnetic field strength 
TH , and source current density SJ  are all 

in incremental form. Replacing the discrete variables in the Equation (31) with Formula (36), (37) can 

be derived as follows: 
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The above equation can be substituted into Equation (32), and the symbols of the integral 

variables in the equation are defined as follows: 
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(38) 

According to the definition of the symbols shown above, the virtual work balance expression of 

the magnetic field and the mechanical field can be written as follows: 
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Reorganizing the above equation with variational principle, it can be written into a matrix 

form: 
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 (40) 

As it can be seen from the above equation, the mass matrix is singular and only the mass of 

mechanical field is included. As the giant magnetostrictive actuator is excited by a frequency lower 

than 30  MHz under normal working conditions, the electric displacement vector can be neglected. 

As a result, the second derivative term of the vector potential energy will be zero. The damping 

matrix is mainly derived from the material’s internal damping u

ed  and the eddy current damping 

A

ed  (the eddy current is depended on the conductivity). In the stiffness matrix, A

ek  depends mainly 

on the magnetic permeability and it characterizes the capability of the magnetic excitation system. 

The coupling matrix Au

e

,
k  characterizes the capability of the magnetic field converted into 
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mechanical energy by the mechanical traction vector u

bf  under the surface traction and capability 

of the mechanical energy converted into the magnetic energy at the magnetic field load vector 
A

b

J

e ff + . 

The incremental form of the coefficient relationship (36) can be solved by the free energy model. 

Its constitutive model can be written as a function of magnetic flux density B  and the mechanical 

strain S  about the magnetic field intensity H  and the mechanical stress T , and Equation (35) is 

derivative. The coefficients can be expressed in the form of the binary function’s derivative: 
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Coefficients in above formula can be written into matrix form shown as (42): 
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(42) 

For the giant magnetostrictive materials, the differences of the lattice orientation, the driving 

magnetic field, and the stress will cause the changes of the parameter matrix values. It is assumed 

that the pre-pressure of the actuator is large enough to dominate the lattice anisotropy so that the 

changes of the parameter matrix caused by anisotropy ignoring can be ignored. Then, the 

magnetostrictive material is considered to be isotropous. According to equation of HBM −= 0/   

and the scalar free energy model, the above matrix values can be solved respectively by M . 

3. Calculation of the Coupling Model of Giant Magnetostrictive Actuator (GMA) 

A giant magnetostrictive actuator is a new type of precision actuator, which is based on the 

magnetostriction deformation effect of magnetostrictive material rod when the input magnetic field 

changes. Giant magnetostrictive actuators is designed according to the properties of giant 

magnetostrictive materials. In this paper, we perform finite element simulation analysis on the 

established magnetomechanical coupling model. 

3.1. The Structure and Working Principle of the Giant Magnetostrictive Actuator 

The structure of giant magnetostrictive actuator is shown in Figure 2; it is mainly composed of 

giant magnetostrictive material rod, coil, coil bobbin outer tube, output shaft, front-end cover, rear 

end cover, shell, inlet and outlet, preloading spring, and fixing plate. In order to reduce the magnetic 

flux leakage and rise the magnetic field intensity of the center axis of the giant magnetostrictive 

material rod, the closed magnetic circuit consists of the giant magnetostrictive material rod, the 

output shaft, the shell, and the rear end cover. The output shaft, the front end cover, and the 

preloading spring form a preloading mechanism together, and pre-pressure is given to the giant 

magnetostrictive material rod in the pre-experiment period so that the giant magnetostrictive 

material rod obtains a relatively larger axial output strain under the action of the magnetic field. 

Then, greater output displacement and force are obtained. At the same time, the giant 

magnetostrictive rod is exerted with a certain pre-pressure to keep it working on a state of 

compression and prevent material’s fragmentation caused by its high brittleness. The coil bobbin 

outer tube composes a water-cooled cavity. The water inlet and outlet are used as the lead-in and 

lead-out holes to allow the overall system of the actuator to carry out water circulation, thereby 

keeping the temperature of the GMM rod within a certain range to suppress thermal deformation. 
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Figure 2. Structural diagram of giant magnetostrictive actuator with non-uniform coils. 1. shell; 2. 

coil; 3. inlet and outlet; 4. output shaft sleeve; 5. preloading spring; 6. front-end cover; 7. output shaft; 

8. fixed plate; 9. backend cover; 10. small end cover; 11. giant magnetostrictive material (GMM) rod; 

12. coil bobbin outer tube. 

The working principle of the giant magnetostrictive actuator is that the driving coil generates a 

magnetic field under the effect of the direct current signal, which causes the giant magnetostrictive 

rod to induce magnetostrictive deformation to move the output shaft and realize the output of the 

force and the displacement. Using the method of adjusting the driving DC signal can change the 

amplitude of the magnetic field. By this way, we can obtain the output of the displacement and the 

force in different sizes. 

3.2. Finite Element Simulation of the Coupling Model of Giant Magnetostrictive Actuator (GMA) 

In this study, the MATLAB2009a software demo (which is a commercial mathematics software 

produced by MathWorks, MA, USA) is used to program the model, and a demo version of 

COMSOL 4.0a software demo (which eveloped by the COMSOL group who founded in Stockholm, 

Sweden) [17] is used to simulate the coupling model of giant magnetostrictive actuator. The analysis 

process includes the following: Firstly, COMSOL finite element simulation software is used to 

construct the geometric model and mesh the actuator, and the coefficient matrix is iterated through 

the MATLAB software. Secondly, both two are invoked to complete the coupled analysis of the 

material model and the dynamic model. In theory, the magnetic field of the coil fills the whole space. 

In the finite element simulation, a larger closed cuboid air field is built to substitute the space. The 

giant magnetostrictive actuator is placed in the air field, and the boundary of air field is set to be 

magnetic insulation. 

The diameter of the GMM rod is 10 mm, and its length is 450 mm. The material of the shell is 

chosen to be 45 steel. The diameter of single wire of driving coil is 1 mm, and its height is 22 mm. 

The total number turns of winding coil is 9570 turns. The solution process of the model is shown in  

Figure 3: Firstly, the current values are inputted and the model is meshed. Secondly, the increment 

of the initial magnetic field strength can be obtained by the input of initial coefficient matrix. 

Thirdly, the coefficient matrix is updated by solving the model, where the increments of magnetic 

induction and strain should be calculated so that further new incremental magnetic field intensities 

can be obtained. The cycle is repeated until the current waveform function is terminated. 
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Figure 3. Flowchart of the model solving. 

3.3. Simulation Result of Magneto Mechanical Coupling Model of Giant Magnetostrictive Actuator (GMA) 

A meshing strategy is chosen in the finite analysis as it is shown in the literature [19,21]. In 

order to reflect the output characteristics of giant magnetostrictive material rods in a better way, the 

giant magnetostrictive material rods and output shaft are meshed more intensively (Figure 4). 

Because the driving magnetic circuit and driving coil are of a symmetrical structure, and both of 

them have large sizes, the mesh is relatively sparse so that the number of elements and the number 

of degrees of freedom in the model solving process can be reduced. Then, the operation efficiency 

can be improved. 

 

Figure 4. Meshing of a giant magnetostrictive actuator. 
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The maximum input electric current is set to be 5 A, and preloading is 10 MPa. The axial 

magnetic field distribution curve is shown in Figure 5, from which we can see that GMM rod axial 

magnetic field strength is around 250 kA/m. 

 

Figure 5. The distribution of magnetic field in the center axis of GMM rod. 

Figure 6 presents GMM rod’s H−  curve provided by Gansu Star Company (pre-pressure is 

10 MPa), as shown in the figure, the linear working area of GMM is located between the AB 

segments. According to the design requirements, the intensity of the magnetic field distributed on 

the GMM rod should be not less than 40 kA/m, taking into consideration of flux leakage and other 

factors, we know that the giant magnetostrictive actuator designed in this paper can fully meet the 

design requirements. 

 

Figure 6. The H−  curve of the GMM rod. 

When the input current increases monotonically from 0 A to 5 A, the axial output displacement 

curve of the giant magnetostrictive actuator is shown as Figure 7. When the input current is from  

0 A to 5 A, then from 5 A to 0 A, the hysteretic loop of the giant magnetostrictive actuator is shown  

in Figure 8. 
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Figure 7. Axial output displacement curve of giant magnetostrictive actuator. 

 

Figure 8. Hysteretic loop of a giant magnetostrictive actuator. 

As shown in Figure 7, the maximum output displacement is 498 μm , and when the input 

current is changed from 0 A to 3 A, the linearity of giant magnetostrictive actuator is much better. 

When the input current is greater than 3 A, the output displacement presents worse linearity. From 

Figure 8, the worst hysteresis happens in situations when the current is around 1 A, and the 

hysteresis is 25.02%. 

4. Testing and Experimental Research on Giant Magnetostrictive Actuator 

Based on the finite element analysis of the magneto mechanical coupling model of the giant 

magnetostrictive actuator [27], a system platform for performance testing of the developed giant 

magnetostrictive actuator is set up, and the experiment research on the output displacement 

characteristics of giant magnetostrictive actuator is conducted. Through comparison of the 

experimental and simulation results, the output displacement and hysteresis of the two systems will 

be comprehensively analyzed. 

4.1. Experimental Platform 

The overall experimental system platform is shown in Figure 9, it consists of a giant 
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magnetostrictive actuator, vibration isolation platform, constant current source, control system, 

displacement detection system, and constant temperature water cooling system. 

 
 

Figure 9. Overall experimental system platform. GMA—giant magnetostrictive actuator. 

In this study, a prototype of a giant magnetostrictive actuator was designed and manufactured 

as shown in Figure 10. For the system platform, which is built for the prototype, industrial PC (PC is 

an abbreviation for personal computer) is taken as its control system. Firstly, the input voltage signal 

is entered from the industrial PC to controllable DC (DC is an abbreviation for direct-current) 

voltage constant-current power supply named DH1716A (Beijing Dahua Radio Instrument Factory, 

Beijing, China), the constant current source receives the signal and outputs the corresponding 

current. The driving coil generates a magnetic field under the effect of the input current. Because of 

the action of the magnetic field, GMM rod generates deformation and outputs displacement. The 

displacement signal is detected by the LVDT (LVDT is an abbreviation for linear variable 

differential transformer, which is a linear displacement sensor) micrometer (manufactured by Bosch 

Precision Measurement and Control Company, which was founded in Stuttgart, Germany, the 

version is MDS-L-0500-M6-1A), whose accuracy reached the micrometer-level, and which will 

finally be sent to industrial PC. 

 

Figure 10. Experimental prototype of a giant magnetostrictive actuator. 

The fluxmeter used in the experiment is the HT701 digital fluxmeter produced by Shanghai 

Hengtong Magnetism Technology Company, Ltd.,which was founded in Shanghai, China. Its 

measuring range can be divided into six steps (0.2, 0.5, 1, 2, 4, 8) × 20 wb, and the measurement 

accuracy can reach ±1% of the full scale. The HAP-100 series air-cushion vibration isolation platform 

manufactured by Shanghai Tiannuo Electromechanical Company, Ltd. (which was founded in 

Shanghai, China) was used to meet the vibration isolation requirements in the experimental process. 

The application test software developed based on visual basic (VB) language runs directly on 

the industrial PC. It communicates with the constant current source and the LVDT micrometer 

through the data serial port line. By controlling the output current magnitude of the constant current 

source, the real-time displacement value displayed from the micrometer can be read, and the test 
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data will be output as TXT (TXT is an abbreviation for text document format) text document for 

archiving. 

The constant temperature hydrocooling system consists of four parts: cooling water tank, 

temperature sensor, cooling fan, and heating rod. The temperature controller used in the experiment 

is an ATC-800 Microprocessor Temperature Controller made in Shanghai Jingchuang electric 

appliance manufacturing Company. Ltd., Shanghai, China, whose measuring accuracy is 1  °C 

and whose indicating range is 0 °C–45 °C. 

4.2. Experimental Research on Giant Magnetostrictive Actuator 

In this study, a magnetostrictive experimental study of a giant magnetostrictive actuator is 

performed based on an experimental system of a giant magnetostrictive actuator. Through the 

acquired measurement data, and with the help of the analysis part of the test software we have 

already written, the useful information is extracted from the measured data and it will be analyzed. 

(1) The experiment of output characteristic 

When the pre-pressure is 10 MPa and the input current is from 0 A to 5 A, then from 5 A to 0 A, 

the hysteretic loop of the giant magnetostrictive actuator is shown in Figure 11. When the input 

current increases from 0 to 5 A monotonically, the relationship between output displacement and 

current is in the lift range. When the input current decreases from 5 A to 0 monotonously, the 

relationship between the output displacement and the current is in the return stage, and the output 

displacement exhibits a significant hysteretic effect throughout the entire return stage. 

 

Figure 11. Hysteresis loop under the action of current 5 A and preloading 10 MPa. 

The hysteresis is defined as follows: 

%100
)max(

max

1

12


−
=

y

yy
e

ii  (43) 

where 1y  is the displacement during the lift range, 1iy  denotes the displacement during the lift 

stage (when the current is i ), and 2iy  represents the displacement during the return stage (when 

the current is i ). 

From the equation above, the hysteresis is 29.74%. 



Sensors 2018, 18, 3070 18 of 21 

 

(2) Comparison between experimental results and simulation results 

The experimental results are compared with the simulation results (as shown in Table 1). The 

results of finite element analysis and the results of output data are basically consistent, and most of 

the relative errors are stable at less than 15%, which means the established finite element model of 

magneto mechanical coupling is reasonable and the analysis result is also accurate. This model 

presents certain reference effects in the design process of giant magnetostrictive actuators. Figure 12 

shows the comparison chart of the hysteretic loop between the experimental results and the finite 

element analysis results (the real line shows the experimental results, and the dotted line shows the 

finite element analysis results). 

 

Figure 12. Contrast diagram of hysteretic loop between experiment and finite element analysis. 

Table 1. Comparison between the finite element model analysis and experimental results. 

Electric Current (A) 
Output Displacement (μm) 

Error (%) 
Finite Element Simulation Results Experimental Results 

0 0 0 0 

0.5 27.94 14.61 47.71 

1 92.65 67.52 27.12 

1.5 205.88 182.65 11.28 

2 282.35 293.99 3.96 

2.5 348.53 358.52 2.79 

3 398.53 397.4 0.28 

3.5 432.35 430.27 0.48 

4 466.18 455.42 2.31 

4.5 493.12 475.99 3.47 

5 498.09 491.63 1.30 

It can be seen from Figure 12 that the experimental results (the blue curve) are basically 

coincident with the hysteretic loops of the finite element analysis (the red dotted curve). When the 

current value is lower than 2.0 A, the deviation between the experimental curve and the simulation 

curve is large; when the current value exceeds 4 A, the deviation is also significantly larger, the 

current interval with the smallest deviation is between 2.0 A and 4.0 A. The reason for this 

phenomenon is that there is an optimal working current range for the giant magnetostrictive 
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material, under the action of outside the optimal working current range, the hysteresis effect is 

obvious, and the displacement output error is large. In the actual application process, it should try to 

make it work in the best current range (the optimal working current range needs to be drawn by 

experiment). At the same time, there is a coincidence error between the finite element simulation 

curve and the experimental curve, which is because of the measurement error of the LVDT 

micrometer and the influence of the temperature change for the giant magnetostrictive material 

during the experiment. The giant magnetostrictive material has an optimum working temperature 

range, although the constant temperature treatment is adopted, the magnetic properties of the giant 

magnetostrictive material change when the temperature value changes because of the influence of 

heat generated by the current. At the beginning, the giant magnetostrictive material works at a 

constant temperature of 25 °C, when the current is entered for a period of time, the internal 

temperature of the rod of the giant magnetostrictive material increases, the hysteresis characteristic 

changes, and the linearization of the displacement output is improved. When the working time is 

slightly longer, the temperature rise is larger, the increase of the temperature affects the hysteresis 

effect, and curvature of the experimental curve of the displacement output is inconsistent with the 

simulation curve. The optimal working temperature and the optimum working current range 

require further post-experimental studies. At the same time, the multi-physics coupling 

characteristics of mechanical giant magnetostrictive materials consisting of the hysteresis 

characteristics, the mechanical properties, temperature, and others need to be further studied based 

on the research of this paper. 

Comparing the experimental hysteresis with the finite element analysis hysteresis, the 

experimental result is 29.74%, the finite element analysis result is 25.02%, and the relative error is 

15.87%. This shows that the proposed three-dimensional magneto mechanical coupling finite 

element model can describe the dynamic performance of the giant magnetostrictive actuator 

accurately and can play an auxiliary role in structural optimization. 

5. Conclusions 

For the giant magnetostrictive actuator, in this paper, at first, the eigen model of giant 

magnetostrictive material is constructed in combination with the free energy hysteresis model, and 

according to the fundamental equations of magnetic field and mechanical field of the giant 

magnetostrictive actuator, the three-dimensional nonlinear magnetic machine coupling model 

under weak solution is derived from MAXWELL equation and Newton’s second law. Then, the axial 

magnetic field distribution of the giant magnetostrictive actuator is simulated using COMSOL finite 

element simulation software and MATLAB software, and the magnetic induction intensity value 

and output strain value with the current change controlled by the magnetic field are obtained, and 

the simulation results are verified experimentally. The results show that the experimental results of 

the output displacement and hysteresis of the giant magnetostrictive actuator are basically 

consistent with the simulation results, and the relative error is 15.87%, these show that the magnetic 

field strength on the central axis of the giant magnetostrictive actuator falls within the linear 

working area of the GMM under the action of the solenoid magnetic field (working current linear 

range is 2.0 A–4.0 A), and the magnetic circuit design is reasonable, the three-dimensional magnetic 

machine coupling model of the giant magnetostrictive actuator based on free energy hysteresis 

characteristics is designed to meet the input and output characteristics of the giant magnetostrictive 

actuator. The research conclusions have important guiding significance for the structural 

optimization of giant magnetostrictive actuator and the practical application of giant 

magnetostrictive materials. 

Author Contributions: Conceptualization, Z.Y. and T.W.; Methodology, Z.Y.; Validation, Z.Y. and M.Z.;  

Formal Analysis, M.Z.; Investigation, M.Z.; Resources, Z.Y.; Data Curation, M.Z.; Writing—Original Draft 

Preparation, Z.Y.; Writing—Review & Editing, Z.Y.; Supervision, T.W.; Project Administration, Z.Y.;  

Funding Acquisition, Z.Y. 



Sensors 2018, 18, 3070 20 of 21 

 

Funding: The research is funded by Natural Science Fund of Hubei Province [Grant No. 2016CFB581] and Key 

Laboratory Open Fund of Ministry of Education of Metallurgical Equipment and Control of Wuhan University 

of Science and Technology [2013A07]. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Park, G.; Bement, M.T.; Hartman, D.A.; Smith, R.E.; Farrar, C.R. The use of active materials for machining 

processs: A review. Int. J. Mach. Tools Manuf. 2007, 47, 2189–2206. 

2. Schellekens, P.; Rosielle, N.; Vermeulen, H.; Vermeulen, M.; Wetzels, S.; Pril, W. Design for precision: 

Current status and trends. Ann. CIRP 1997, 47, 557–586. 

3. Liang, S.Y.; Hecker, R.L.; Landers, R.G. Machining process monitoring and control: The state of the art. 

ASME J. Manuf. Sci. Eng. 2004, 126, 297–310. 

4. Srinivasan, S.; McFarland, M. Smart Structure: Analysis and Design; Cambridge University Press: 

Cambridge, UK, 2001. 

5. Chopram, I. Review of state of art of smart structures and integrated systems. AIAA J. 2002, 40, 2145–2187. 

6. Inman, D.J. Smart materials in damage detection and prognosis. In Proceedings of the Fifth International 

Conference on Damage Assessment of Structures, Southampton, UK, 1–3 July 2003; pp. 3–16. 

7. Luo, M.; Li, W.; Wang, J.; Wang, N.; Chen, X.; Song, G. Development of a Novel GuidedWave Generation 

System Using a Giant Magnetostrictive Actuator for Nondestructive Evaluation. Sensors 2018, 18, 779. 

8. Jia, Z.; Yang, X.; Guo, D.; Hou, L. Theories and Methods of Designing Microdisplacement Actuator Based 

on Giant Magnetostrictive Materials. Chin. J. Mech. Eng. 2001, 37, 46–49. 

9. Yang, Y.; Wang, L.; Tan, J.; Zhao, B. Induced Voltage Linear Extraction Method Using an Active Kelvin 

Bridge for Disturbing Force Self-Sensing. Sensors 2016, 16, 739. 

10. Luo, M.; Li, W.; Wang, B.; Fu, Q.; Song, G. Measurement of the Length of Installed Rock Bolt Based on 

StressWave Reflection by Using a Giant Magnetostrictive (GMS) Actuator and a PZT Sensor. Sensors 2017, 

17, 444. 

11. Jenner, A.G.; Smith, R.J.E.; Wilkinson, A.J. Actuation and transduction giant magnetostrictive alloys. 

Mechatronics 2000, 10, 457–466. 

12. Lacheisserie, E.D.T.D. Magnetostriction Theory and Applications of Magnetoelasticity; CRC Press, Inc.: Boca 

Raton, FL, USA, 1993. 

13. Yang, Z.; He, Z.; Yang, F.; Rong, C.; Cui, X. Design and analysis of a voltage driving method for 

electro-hydraulic servo valve based on giant magnetostrictive actuator. Int. J. Appl. Electromagnet. Mech. 

2018, 57, 439–456. 

14. Guo, Y.; Mao, J.; Zhou, K. Rate-Dependent Modeling and H∞ Robust Control of GMA Based on 

Hammerstein Model With Preisach Operator. IEEE Trans. Control Syst. Technol. 2015, 23, 2432–2439. 

15. Zhang, Z.; Ma, Y.; Guo, Y. A Novel Nonlinear Adaptive Filter for Modeling of Rate-Dependent Hysteresis 

in Giant Magnetostrictive Actuators. In Proceedings of the 2015 IEEE International Conference on 

Mechatronics and Automation, Beijing, China, 2–5 August 2015; pp. 670–675. 

16. Clark, A.E. Magnetostrictive Rare Earth-Fe2 Compounds; Wohlfarh, E.P., Ed.; North-Holland Publishing 

Company: New York, NY, USA, 1980. 

17. Benbouzid, M.E.H.; Reyne, G.; Meunier, G.; Kvarnsjo, L.; Engdahl, G. Dynamic modelling of giant 

magnetostriction in Terfenol-D rods by the finite element method. IEEE Trans. Magnet. 1995, 31, 1821–1824. 

18. Pawel, I.; Krzysztof, K.; Lech, N.; Ƚukasz, K. FE transient analysis of the magnetostrictive actuator. Int. J. 

Appl. Electromagnet. Mech. 2016, 51, S81–S87. 

19. Azoum, K.; Besbes, M.; Bouillault, F. 3D FEM of magnetostriction phenomena using coupled constitutive 

laws. Int. J. Appl. Electromagnet. Mech. 2004, 19, 367–371. 

20. Benatar, J.G. Fem Implementations of Magnetostrictive-Based Applications. Master’s Thesis, University of 

Maryland, College Park, MD, USA, 2005. 

21. Zhao, Z.; Wu, Y.; Gu, X.; Xu, J.; Ge, R. Three-dimensional nonlinear dynamic finite element model for giant 

magnetostrictive actuators. J. Zhejiang Univ. 2008, 42, 203–208. 

22. Zhong, W. Ferromagnetism, 2nd ed.; Science Press: Beijing, China, 1992. 

23. Yuan, L.; Hu, Q. A Plane Wave Discontinuous Petrov-Galerkin Method for Helmholtz Equation and 

Time-harmonic Maxwell Equations with Complex Wave Numbers. J. Numer. Methods Comput. Appl. 2015, 

36, 185–196. 



Sensors 2018, 18, 3070 21 of 21 

 

24. Hou, X.; Fan, Z.; Gu, Y.; Yang, H. A Wavelet Interpolation Galerkin Algorithm for Static Electromagnetic 

Field Analysis in Irregular Regions. Chin. J. Comput. Phys. 2005, 22, 539–548. 

25. Kannan, K.S.; Dasgupta, A. A nonlinear Galerkin finite-element theory for modeling magnetostrictive 

smart structure. Smart Mater. Struct. 1997, 6, 341–350. 

26. Jia, Z.; Guo, D. Principle and Application of Micro-Displacement Actuator for Giant Magnetostrictive Materials; 

Science Press: Beijing, China, 2008. 

27. Claeyssen, F.; Lhermet, N.; Le Letty, R.; Bouchilloux, P. Actuators transducers and motors based on giant 

magnetostrictive materials. J. Alloy. Compd. 1997, 258, 61–73. 

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).  


