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Abstract: In this paper, we propose a new method of land use and land cover classification for
polarimetric SAR data. This algorithm consists of three parts. First, the multiple-component model-based
scattering decomposition technique is improved and the decomposed scattering powers can be used to
support the classification of PolSAR data. With this decomposition, the volume scattering of vegetated
areas is enhanced while their double-bounce scattering is reduced. Furthermore, the double-bounce
scattering of urban areas is enhanced and their volume scattering is decreased, which leads to
an improvement in the classification accuracy especially for the urban areas. Second, this classification
strategy is carried out on the superpixel level, which can decrease the influence of speckle noise
and speed up the classification. Moreover, the contexture and spatial features extracted from these
superpixels are utilized to improve classification accuracy. Lastly, we introduce the supervised locally
linear embedding approach to map the high dimensional features into the low dimensional features
as the inputs of classifiers. The classification is completed using the nearest neighbor classifier.
The effectiveness of our proposed method is demonstrated using the AIRSAR C-band PolSAR data set,
which is compared with the original MCSM-SVM and newly published LE-IF PolSAR classification
methods. Further investigation is also carried out on the individual contribution of the three parts to
LULC classification using AIRSAR C-band data. It indicates that all three components have important
contributions to the final classification result.

Keywords: land-cover classification; superpixel-based; multiple-component decomposition;
supervised locally linear embedding (S-LLE); polarimetric synthetic aperture radar (PolSAR)

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) can provide more useful information of targets
with four polarizations than the single polarization SAR. Therefore, the PolSAR data has been
used for various remote sensing applications such as land cover classification, urban extraction,
and analysis [1–3]. Land cover classification has attracted more and more attention. However, due to
the speckle noise within the PolSAR data, the image classification is still a challenge. Until now,
many supervised and unsupervised PolSAR image classification methods have been proposed
to resolve this issue [4–9]. In these two kinds of classification strategies, feature selection is the
key element since a set of suitable features may get a correct classification even if using a simple
classifier. In contrast, it could be difficult to achieve the satisfactory land cover classification
without well-selected features even if using a complex and advanced classifier [10]. The features
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extracted from the PolSAR image include the physical scattering features obtained from the various
decomposition methods and the statistical contexture features. Some polarimetric decomposition
theorems have been introduced [11–15] and classification methods based on decomposition results
have been explored [7–9,16,17]. However, there are some misclassifications in this kind of scattering-
mechanism-based PolSAR land cover classification for the reason that some different classes may
have the same scattering mechanism and the same classes can exhibit different scattering mechanisms
especially for the oriented urban areas and the vegetation [2,18,19]. To resolve this issue, a wide
variety of polarimetric features are used including the decomposition powers and several polarimetric
indexes such as backscattering coefficients of different polarizations (linear: HH, HV, VV; circular:
LL, RR, RL; and linear 45◦, 45C, 45X) and their ratios. In addition to polarimetric information,
some studies on PolSAR image classification are also researched from the prospects of image
understanding, which indicate the effectiveness of image texture descriptors on classification [20].
Recently, some studies have indicated that the fusion of physical and textural information derived
from various SAR polarizations is helpful in improving classification results. Tu et al. [10] proposed the
combination of various decomposition scattering powers, backscattering coefficients, and phase
differences between co-polarizations and cross-polarizations as well as some other polarimetric
signatures for PolSAR image classification. Qi et al. [21] utilized the decomposition scattering
powers, image texture, and the interferometry information to achieve classification for RADARSAT-2
data. Zhang et al. [22] utilized the scattering powers and GLCM texture features for the ESAR
image classification. While these integration methods can make full use of image information and
significantly improve classification accuracy, some deficiencies still exist. First of all, various features
have information redundancies. For instance, the Krogager rotation angle is relative to the polarization
orientation angles and the H/alpha parameters describe the chaotic volume scattering, which is
also considered in the Freeman–Durden methods. These information redundancies may lead to low
classification accuracy. Even though some dimensionality reduction techniques are utilized to diminish
these redundancies [10,23,24], the computation time of these methods for so many features are very
large, which makes the classification techniques uneasy to use. Second, these classification methods
are mostly pixel-based, which results in the sensitivity to speckle noise and large computation load.

Considering the decomposition drawbacks and features redundancies in this paper, we propose
an improved multiple-component model-based decomposition method for the sake of PolSAR
image classification. It consists of two main improvements. First, the reorientation process is
applied to the coherency matrix before it is decomposed into five scattering components. Then,
two suitable volume scattering models designed for forests and oriented urban buildings are used
in the decomposition. The advantage of the proposed decomposition is that volume scattering of
vegetation is enhanced while its double-bounce scattering is reduced. Moreover, double-bounce
scattering of urban buildings is enhanced and its volume scattering decreases. Therefore, the scattering
powers obtained using the improved decomposition method has a good ability in discriminating the
urban areas. After that, five decomposition powers are selected for the classification instead of using
numerous polarimetric features.

Compared with pixel-based image classification methods, region-based classification is
a promising scheme. After segmenting images under some constraints such as intensity, location,
texture, and edge, we can get many homogeneous regions and then classification is based on these
regions instead of pixels. A superpixel [25] denotes a local, coherent region, which is approximately
homogeneous in size and shape just like pixels. Xiang et al. [25] proposed a superpixel generating
algorithm based on pixel intensity and location similarity for the SAR image and extracted the Gabor
filters and GLCM from each superpixel for classification. For PolSAR data, Xiang et al. [26] proposed
an adaptive superpixel generation method based on the spherically invariant random vector product
model, which can generate satisfactory superpixels with good boundary adherence and compactness.
In this paper, we extract the superpixels using Xiang’s method [26]. Afterwards, GLCM features
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and the spatial relationships (e.g., mean and variance values of each superpixel) are extracted for
superpixel-based classification.

Even though the number of polarimetric features is much less than those of other classification
methods, texture features and spatial information also have some feature redundancies. There are
many linear and nonlinear dimensionality reduction methods proposed to project high-dimensional
data into a new space of lower dimensionality including principal component analysis (PCA) [27],
linear discriminated analysis (LDA) [28], locally linear embedding (LLE) [29], isometric feature
mapping (ISOMAP) [30], and Laplacian eigenmaps (LE) [31]. Shi et al. [24] used a linear dimensionality
reduction technology named SGE to obtain a low-dimensional subspace that can preserve the
discriminative information from training samples. Tu et al. [10] pointed out that it is more effective to
use a nonlinear local dimensionality reduction method considering the nonlinearity of the polarimetric
manifold. Hence, they used Laplacian eigenmaps to map the high dimensional polarimetric features
into lower dimensionality feature vector for PolSAR image classification. However, this method
is an unsupervised learning algorithm, which means it assumes no prior information on the
input data. In addition, the size of the neighborhood needs to be set before mapping, which is
inflexible [32]. To improve the classification performance, the discriminative information from the
given training samples should be considered. Considering the advantages of LLE such as being
non-iterative and avoiding the local minima problems in this paper, we propose to use the supervised
locally linear embedding (S-LLE) to reduce the feature redundancies. It has favorable properties.
(i) It adaptively estimates the local neighborhood surrounding each sample and (ii) the objective
function simultaneously maximizes the local margin between heterogeneous samples and it also
pushes the homogeneous samples closer to each other.

The main contributions of this paper mainly lie on the following aspects: (1) the improved
decomposition scattering powers proposed for PolSAR image classification, (2) superpixel-based
classification strategy, and (3) supervised locally linear embedding approach for feature dimensionality
reduction. Even though the superpixel-based classification strategy is already widely used, the scattering
power features extracted from the superpixels and the dimensionality reduction are both improvements
we proposed in this work. Therefore, the contributions and structure of our method are dramatically
different from the existing approaches. The remainder of this paper is organized as follows. Section 2
describes the decomposition scattering powers obtained from the improved multiple-component
decomposition technique. In Section 3, the superpixels generated from PolSAR data and the
corresponding features extraction are described. In Section 4, the S-LLE technique is described and
the dimensional reduction performances of different methods are compared. We show the study area
and further compare the experimental results with other methods in Section 5. Section 6 concludes
the paper.

2. Decomposition Scattering Powers

In this study, we depict the improved multiple-component decomposition algorithm, which includes
the reorientation processing of the polarimetric coherence matrix, two volume scattering models designed
for the vegetation and oriented buildings, and the branch condition to decide which land cover contributes
to the volume scattering.

2.1. Deorientation Processing of the Coherence Matrix

The fully polarimetric SAR system obtains a 2× 2 scattering matrix S for each pixel with four
polarizations HH, HV, VH, and VV like [33].

S =

[
SHH SHV

SVH SVV

]
(1)
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where SHH, SHV, SVH, and SVV represent the complex scattering coefficients. Then the Pauli vector kp

is defined below [33].

kp =
1√
2
[SHH + SVV, SHH − SVV, 2SHV]

T (2)

which assumes the reciprocal condition of SHV = SVH. The corresponding coherency matrix 〈[T]〉 can
be created from the Pauli vector kp and defined by the formula below.

〈[T]〉 = kpk†
p =

 T11 T12 T13

T∗12 T22 T23

T∗13 T∗23 T33

 (3)

where the symbol 〈·〉 represents the ensemble average and the superscript † denotes the complex
conjugation and transposition. To minimize the cross-polarization term T33, the coherency matrix 〈[T]〉
is generally rotated by an angle θ as seen in the equation below.[

T′
]
= [R(θ)][T][R(θ)]† (4)

where [R(θ)] is the rotation matrix and is depicted by the formula below.

[R(θ)] =

 1 0 0
0 cos 2θ sin 2θ

0 − sin 2θ cos 2θ

 (5)

Then, the rotation angle can be obtained by making the derivative of T′33 with respect to θ equal
to zero. Therefore, the expression for the rotation angle is represented by Equation (6) below [34].

θ =
1
4

tan−1
(

2Re{T23}
T22 − T33

)
(6)

where Re{T23} is the real part of T23. In this way, the cross-polarization term T33 is minimized and the
other terms of the rotated coherency can be obtained according to Equations (3) and (5).

After the rotation, the measured coherency matrix can be decomposed into five components
similar to the original multiple-component model-based (MCSM) decomposition [12], which is shown
in Figure 1. These correspond to the surface scattering, double-bounce scattering, volume scattering,
helix scattering, and wire scattering mechanisms [12]

〈[T]〉 = fs〈[T]〉surface + fd〈[T]〉double + fv〈[T]〉volume + fh〈[T]〉helix + fw〈[T]〉wire (7)

where fs, fd, fv, fh, and fw are the expansion coefficients to be determined. 〈[T]〉surface,
〈[T]〉double, 〈[T]〉volume, 〈[T]〉helix, and 〈[T]〉wire are expansion matrices corresponding to the surface,
double-bounce, volume, helix, and wire scattering mechanisms, respectively.

Sensors 2018, 18, x FOR PEER REVIEW  4 of 21 

 

〈[܂]〉 = 〈୮ற࢑୮࢑〉 = ൥ ଵܶଵ ଵܶଶ ଵܶଷଵܶଶ∗ ଶܶଶ ଶܶଷଵܶଷ∗ ଶܶଷ∗ ଷܶଷ൩ (3) 

where the symbol 〈∙〉 represents the ensemble average and the superscript † denotes the complex 
conjugation and transposition. To minimize the cross-polarization term ଷܶଷ, the coherency matrix 〈[܂]〉 is generally rotated by an angle ߠ as seen in the equation below. [܂ᇱ] =  ற (4)[(ߠ)ܴ][܂][(ߠ)ܴ]

where [ܴ(ߠ)] is the rotation matrix and is depicted by the formula below. 

[(ߠ)ܴ] = ൥1 0 00 cos2ߠ sin20ߠ −sin2ߠ cos2ߠ൩ (5) 

Then, the rotation angle can be obtained by making the derivative of ଷܶଷᇱ  with respect to ߠ equal 
to zero. Therefore, the expression for the rotation angle is represented by Equation (6) below [34]. ߠ = 14 tanିଵ ቆ2Reሼ ଶܶଷሽଶܶଶ − ଷܶଷቇ (6) 

where Reሼ ଶܶଷሽ is the real part of ଶܶଷ. In this way, the cross-polarization term ଷܶଷ is minimized and 
the other terms of the rotated coherency can be obtained according to Equations (3) and (5). 

After the rotation, the measured coherency matrix can be decomposed into five components 
similar to the original multiple-component model-based (MCSM) decomposition [12], which is 
shown in Figure 1. These correspond to the surface scattering, double-bounce scattering, volume 
scattering, helix scattering, and wire scattering mechanisms [12] 〈[܂]〉 = ୱ݂〈[܂]〉ୱ୳୰୤ୟୡୣ + ݂ୢ ୭୳ୠ୪ୣୢ〈[܂]〉 + ୴݂〈[܂]〉୴୭୪୳୫ୣ + ୦݂〈[܂]〉୦ୣ୪୧୶ + ୵݂〈[܂]〉୵୧୰ୣ (7) 

where ୱ݂, 	݂ୢ , 	 ୴݂, 	 ୦݂, and ୵݂ are the expansion coefficients to be determined. 〈[܂]〉ୱ୳୰୤ୟୡୣ, 〈[܂]〉ୢ୭୳ୠ୪ୣ, 〈[܂]〉୴୭୪୳୫ୣ, 〈[܂]〉୦ୣ୪୧୶, and 〈[܂]〉୵୧୰ୣ are expansion matrices corresponding to the surface, double-
bounce, volume, helix, and wire scattering mechanisms, respectively. 

 
Figure 1. Improved multiple-component model-based decomposition framework. 

The expansion matrices for the surface scattering, double-bounce scattering, helix scattering, and 
wire scattering in Equation (6) are the same as those in the original MCSM decomposition, which can 
be found in Reference [12]. The only difference is the volume scattering models, which are designed 
for vegetated areas and the orientated buildings, respectively. In the MCSM decomposition, the 
volume scattering model 〈[܂]〉୴୭୪୳୫ୣ is defined by the formula below. 

୴୭୪୳୫ୣ〈[܂]〉 = 14 ൥2 0 00 1 00 0 1൩ (8) 

which is the same as that in the Yamaguchi four-component model-based decomposition [11,13]. 

Figure 1. Improved multiple-component model-based decomposition framework.



Sensors 2018, 18, 3054 5 of 21

The expansion matrices for the surface scattering, double-bounce scattering, helix scattering,
and wire scattering in Equation (6) are the same as those in the original MCSM decomposition,
which can be found in Reference [12]. The only difference is the volume scattering models, which are
designed for vegetated areas and the orientated buildings, respectively. In the MCSM decomposition,
the volume scattering model 〈[T]〉volume is defined by the formula below.

〈[T]〉volume =
1
4

 2 0 0
0 1 0
0 0 1

 (8)

which is the same as that in the Yamaguchi four-component model-based decomposition [11,13].
Generally, buildings parallel to the radar flight path have strong double-bounce scattering and

can be modeled by the dihedral corner reflector with a zero polarization orientation angle [13,15].
Nevertheless, for buildings not parallel to the radar flight path, i.e., the orientated buildings in
Figure 1, the cross-polarized component is generated, which exhibits a relatively large term in the
scattering matrix [26,35–37]. This cross-polarized component of the oriented buildings contributes to the
HV scattering component dramatically. Since the original volume scattering of MCSM, as depicted
in Equation (8) assumed that HV component solely reflects the volume scattering, there will be
overestimation of volume scattering in the orientated buildings. To resolve this problem, the volume
scattering model is modified by many methods to reduce the volume scattering and enhance
double-bounce scattering for the urban areas at the same time [38–41]. Nevertheless, these new
volume scattering models may bring underestimation of volume scattering over vegetated areas [42].
Consequently, in this paper, we propose to use two different volume scattering models to describe the HV
scattering of vegetated areas and orientated buildings, which will be presented in the following subsection.

2.2. Two Different Volume Scattering Matrices

It is demonstrated that both surface scattering and double-bounce scattering are definite scatterings
while the volume scattering is not. The volume scattering represents a chaotic scattering state and it can
be regarded as a combination of several kinds of scattering mechanisms [41]. The cross-polarization
term, i.e., T33, is induced both by vegetated areas and oriented buildings. For these two land covers,
there should be two different matrices to describe the scattering.

As we know, the volume scattering model proposed by Freeman assumes that volume scatterers
consist of a cloud of randomly oriented dipoles and the orientation angle distribution is uniform.
In fact, the elementary volume scatterers can be extended from dipoles to more general targets with
the following scattering matrix when in standard orientation [15].

S =

[
SHH 0

0 SVV

]
(9)

The orientation angles of vegetation are still assumed to respect the uniform distribution. Then the
incoherent averaging of these targets is given by Equation (10) below [14,33].

〈[T]〉veg
volume =

∫ π

−π

1
2π

Tr(θ)dθ (10)

where Tr(θ) denotes the coherency matrix of the elementary scatterer. Using Huynen’s parameters,
we can get the integration result as shown by the formula below.

〈[T]〉veg
volume =

 2A0 0 0
0 B0 0
0 0 B0

 (11)
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where A0 = 1
4 |SHH + SVV|2 and B0 = 1

4 |SHH − SVV|2. If we use a parameter δ to describe the
relationship between A0 and B0, then Equation (11) is depicted below.

〈[T]〉veg
volume =

1
3− δ

 1 + δ 0 0
0 1− δ 0
0 0 1− δ

 (12)

where (2A0/B0) = (1 + δ)/(1− δ) and the normalization coefficient 1/(3− δ) is used to make the
trace equal to one. Actually, Equation (12) is the same as the volume scattering model used in
References [43,44] and is effective in the case of volume scattering from vegetated areas. The difference
is the physical meaning of δ. Freeman pointed out that the volume component can be modified by
varying the shape parameter δ that runs continuously from δ = 1/3 (corresponding to dipoles) to
δ = 1 (corresponding to spheres), which is shown in Figure 2.Sensors 2018, 18, x FOR PEER REVIEW  6 of 21 
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However, if we consider that δ = 0, we can get the volume scattering model shown in the
equation below.

〈[T]〉veg
volume =

1
3

 1 0 0
0 1 0
0 0 1

 (13)

where it can be observed that this model is also a cloud of elementary scatterers as that of the Freeman
volume scattering model. The difference is the value of δ. When δ = 1/3, we get Freeman volume
scattering as depicted in Equation (8), which can be decomposed as seen in Reference [41].

〈[T]〉volume =
3
4
〈[T]〉veg

volume +
1
4

 1 0 0
0 0 0
0 0 0

 (14)

It can be observed that the Freeman volume scattering model regards some surface scattering as

volume scattering. If δ = 1, Equation (12) becomes

 1 0 0
0 0 0
0 0 0

, which is a pure surface scattering

model. Therefore, we can conclude that if δ > 0, more surface scatterings are regarded as volume

scattering caused by vegetation. In contrast, if δ = −1, Equation (12) becomes 1
2

 0 0 0
0 1 0
0 0 1

where the

elementary volume scatterers are small dihedrals. This kind of volume scattering model only consists
of a cloud of double-bounce scatterers. Hence if δ < 0, there are more double-bounce scatterings in the
volume scatting model. So parameter δ can be regarded as a trade-off factor. From the above analysis,
we can conclude that δ = 0 corresponds to pure volume scattering caused by vegetation, which is
shown in Equation (13).

For oriented buildings, since the buildings usually have different orientation angles, which will
influence the building scattering mechanism significantly, we introduce the cross scattering model to
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describe the volume scattering of buildings, which was proposed by Xiang et al. in [45]. This cross
scattering model incorporates the dominant orientation angle of buildings into the cosine distribution
to implement ensemble averaging of dihedral corner reflectors, which makes it flexible and adaptive
in the model-based decomposition. The volume scattering model for oriented buildings is defined by
Equation (15) below [45].

〈[T]〉ori
volume =

 0 0 0
0 1

2 −
1

30 cos(4θdom) 0
0 0 1

2 + 1
30 cos(4θdom)

 (15)

where the dominant angle of buildings θdom can be obtained using Equation (6) in a local image patch.
Further information about the cross scattering model can be found in Reference [45].

2.3. Branch Condition

Since we considered to use two different volume scattering models for the vegetated areas
and oriented buildings respectively, there should be a branch condition to determine whether the
volume scattering is induced by vegetation or by the oriented buildings. It is already known in
References [11,13,46] that the double-bounce scattering caused by the oriented buildings makes
Re{SHHS∗VV} < 0 while a non-dihedral structure such as the vegetated area leads to Re{SHHS∗VV} > 0.
Therefore, similar to Reference [46], we get the following equation for the Re{SHHS∗VV} as shown in
Equation (16) below.

Re{ fsβ + fdα∗}+ 1
3

fv −
1
4

fc + Re{γ} fw = Re{SHHS∗VV} (16)

where β, α, and γ are the parameters involved in the scattering matrices of surface, double-bounce
and wire scattering mechanisms [12]. Based on this equation, we can get the condition in the formula
shown below.

C1 = T11 − T22 +
1
2

fc − 2Re{γ} fw. (17)

Therefore, if C1 > 0, it can be decided that the volume scattering is caused by vegetated areas
while, if C1 ≤ 0, the volume scattering is deduced by the oriented buildings.

Lastly, the decomposition scattering powers, i.e., Ps, Pd, Pv, Pc, and Pw can be obtained with the
manner similar to the original MCSM decomposition method [12], which will not be further discussed
in this paper. We give the mathematical expressions, respectively, below.

Pw = fw

(
|γ|2 + 1 + 2|ρ|2

)
, Pc = fc = 2|Im[T23 − fwρ∗(γ− 1)]|

Pv = fv =


(

T33 − 1
2 fc − 2|ρ|2 fw

)
/ 1

3 , vegetation area(
T33 − 1

2 fc − 2|ρ|2 fw

)
/
(

1
2 + 1

30 cos(4θdom)
)

, oriented buildings

Pd = fd

(
1 + |α|2

)
fd =

 T22 − 1
3 fv − 1

2 fc − 1
2

(
|γ|2 − γ∗ − γ + 1

)
fw, vegetation area

T22 −
(

1
2 −

1
30 cos(4θdom)

)
fv − 1

2 fc − 1
2

(
|γ|2 − γ∗ − γ + 1

)
fw, oriented buildings

Ps = fs

(
1 + |β|2

)
,

fs =

 T11 − 1
3 fv − 1

2

(
|γ|2 + γ∗ + γ + 1

)
fw, vegetation area

T11 − 1
2

(
|γ|2 + γ∗ + γ + 1

)
fw, oriented buildings

(18)

3. Superpixel Generation and Feature Extraction

Object based segmentation and classification for PolSAR images have attracted more and more
attention for the reason that it is computational efficient and can reduce the effect of speckle noise by
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taking the image objects as the processing unit instead of using isolated pixels [1,26]. A superpixel
is defined as a local homogeneous region that can preserve most of the object information and
adhere to the object boundaries. Furthermore, the features extracted from a superpixel usually
exhibit more useful information than those extracted with a pixel since the superpixel may contain
many neighborhood pixels. Therefore, it is helpful in improving the image classification accuracy [25].
Several superpixel generation methods for PolSAR images have been proposed. In this paper, we adopt
the adaptive polarimetric SLIC, i.e., Pol-ASLIC approach, which was proposed by Xiang et al. [26] to
produce superpixels. This method can generate superpixels with an adaptive shape and compactness
according to the image content. Furthermore, the boundary adherence is quite good, which shows
potential ability to classify the land covers. The detailed information about the Pol-ASLIC can be found
in Reference [26]. Figure 3 gives one illustration of the superpixel generation using AIRSAR C band
data where we can find that the urban buildings can be discriminated very well and the superpixel
boundary is quite clear and accurate.Sensors 2018, 18, x FOR PEER REVIEW  8 of 21 
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Figure 3. Illustration of the superpixel generation using AIRSAR C band data: (a) PolSAR image with
Pauli color-coding (red: |HH−VV|; green: |HV|; blue: |HH+VV|), and (b) superpixel map.

Note that the superpixels are obtained based on the polarimetric coherency or covariance matrix.
Therefore, the polarimetric information can be fully considered and the superpixel boundary can
accurately discriminate the objects with different scattering mechanisms. Consequently, in this work
we apply the superpixel boundaries on five decomposition scattering power images and extract
some texture and spatial features from these images for each superpixel. These features contain:
(1) spatial features, i.e., mean and variance values of each superpixel; (2) texture features that include
the homogeneity of gray-level co-occurrence matrix (GLCM), GLCM contrast, GLCM dissimilarity,
and GLCM entropy of four directions (0◦, 45◦, 90◦, 135◦). Therefore, for each superpixel, we can get
five polarimetric scattering powers and 90 texture and spatial features. Even though the dimension of
this feature set is large, it is much smaller than that of the features used in Reference [21]. It is worth
pointing out that, although the dimension of polarimetric scattering power features is dramatically
reduced, the polarimetric information of the whole feature set is enough for further classification
since all of the spatial and texture features are calculated based on the scattering powers with the
assistance of superpixels, which are also obtained based on the scattering matrix. The effectiveness of
classification features using in our proposed method is discussed in the following sections.

4. Dimensional Reduction of the Features for PolSAR Image Classification

As we discussed in the above section, features with a large dimension may result in information
redundancies, which can reduce the classification accuracy. Therefore, feature dimensionality reduction
is necessary for image classification and has been widely studied. There are two kinds of dimensionality
reduction techniques, i.e., linear and nonlinear methods. In our research, since the features lie on
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a complicated nonlinear manifold, nonlinear methods are more reasonable than linear dimensionality
reduction to discover the intrinsic structure in the data. For PolSAR image classification, we aim to
aggregate the pixels of the same class and separating the pixels of different classes. That means the
local structure of data needs to be retained so that data pointing in the same class are clustered while
data points in different classes are kept away from each other. Therefore, local nonlinear dimensionality
reduction techniques are optimal in PolSAR image classification. Now there are many local nonlinear
dimensionality reduction techniques such as locally linear embedding (LLE) [29], Laplacian eigenmaps
(LE) [31], and local tangent space alignment (LTSA) [47]. These methods are all unsupervised learning
algorithms, which consider no prior information on the original data. Furthermore, some parameters
need to be set before mapping such as the neighborhood size. This section presents a supervised
LLE (S-LLE) method, which can estimate the neighborhood size adaptively and also takes in the
discriminable information of training samples.

Let the data matrix Z with size D×M be the input of S-LLE approach, which includes M columns
D dimensional feature vectors. The output of S-LLE approach is a new data matrix Y with size d×M
where the dimension of feature vector d ≤ D in the embedded space. S-LLE is implemented with the
following steps.

4.1. Estimation of the Adjacency Graph

The unsupervised LLE method finds the K nearest neighbors for each data point Zi in the data
matrix Z using the Euclidean distance measure and then we can obtain the proximity matrix A with
size K ×M. The ith column contains the indices of K points, which are the neighbors of Zi. It can
be seen that the neighborhood size K is essential in the LLE algorithm, which should be determined
before the feature mapping. In our work, for the sake of exploring geometrical and discrimination
information of the data, the neighboring graph can be split into two components, which are the
within-class neighboring graph Gw and between-class neighboring graph Gb. Therefore, for each data
point Zi, we can calculate two neighborhood subsets called Nw(Zi) and Nb(Zi). Note that Nw(Zi)

represents the neighbors having the same class label with Zi and Nb(Zi), which denotes the neighbors
with different labels with Zi. It can be seen that, unlike the classical unsupervised LLE approach,
the proposed algorithm adjusts the neighborhood size K, according to the similarity measure between
the local sample point Zi and the rest of the samples. The two neighborhood subsets Nw(Zi) and
Nb(Zi) are calculated using the equations below.

Nw(Zi) =
{

Zj
∣∣L(Zj

)
= L(Zi), ED(j, i) < D(Zi)

}
(19)

Nb(Zi) =
{

Zj
∣∣L(Zj

)
6= L(Zi), ED(j, i) < D(Zi)

}
(20)

D(Zi) =
1
M ∑M

k=1 ED(k, i) (21)

where L(Zi) denotes the class label of Zi, ED(k, i) represents the Euclidean distance between data
points Zk and Zi, and D(Zi) denotes the average distance between Zi and all other samples. What we
can see from Equation (19) is that the set of within-class neighbors of Zi, i.e., Nw(Zi), is all data samples
with the same class label with Zi and the distance is lower than the average distance associated with
Zi. There is a similar interpretation for the set of between-class neighbors Nb(Zi). Thus, it is clear that
the neighborhood size is adaptive for every data sample, which is shown in Figure 4 and can bypass
the setting of parameter K.
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4.2. Computation of the Weights for Neighbors

Different from the traditional unsupervised LLE approach, in this paper, we divide the single
weight matrix W into two sub-weight matrices Ww and Wb, which denote the weights of the
within-class neighbor graph and the between-class neighbor graph, respectively. Note that the weight
value in the matrices measures the closeness of two data points, which can be further used to measure
the contributions of the nearest neighbors to the reconstruction of a given point. The sub-weight
matrices Ww and Wb can be obtained by optimizing the following task as shown below.

min ∑M
i=1 ‖Zi −∑M1

j=1 Ww,ijZj −∑M2
j=1 Wb,ijZj‖

2

Ww,ij = Wb,ij = 0, i f Zi and Zj are not neighbors
∑M1

j=1 Ww,ij + ∑M2
j=1 Wb,ij = 1

(22)

where M1 and M2 are the number of samples within the class neighborhood Nw(Zi) and the
between-class neighborhood Nb(Zi), respectively.

4.3. Solution of the Mapping Projections

The feature vector mapping projection can be obtained with the optimization of two objective
functions as shown below.  min ∑M

i=1 ‖Yi −∑M1
j=1 Ww,ijYj‖

2

min ∑M
i=1 ‖Yi −∑M2

j=1 Wb,ijYj‖
2 . (23)

With this optimization, it can be found that, after the feature mapping, the data points within
the same class become closer to each other and data points within different classes are farther away
than before. Therefore, after this supervised feature dimensionality reduction, different classes can be
distinguished quite well. With the condition YTY = I, the two objective functions (23) can be further
combined into one objective function, which is shown below.

max
{

γTr
(

YTWbY
)
+ (1− γ)Tr

(
YTWwY

)}
(24)

where Tr(·) is the matrix trace operator and the parameter γ is a balance factor that control the
within-class and between-class objective function. With B = γWb + (1− γ)Ww, Equation (24) can be
further written as maxTr

(
YTBY

)
. Then solving this maximization problem is equivalent to optimizing

the eigenvector problem BY = λY with the largest nonzero Eigen value.
After mapping the polarimetric, spatial, and textural features from a high dimensional vector

to a low dimensional vector, the nearest neighbor (NN) classifier is utilized to achieve the image
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classification, which adopts the low dimensional feature vector as the input. Figure 5 gives the whole
flowchart of our proposed methodology.
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5. Experimental Results and Discussions

In this section, to test the performance of the proposed image classification method, we carry
out experiments on PolSAR dataset from AIRSAR with the C-band. The result of the improved
multiple-component model-based decomposition technique is compared with those of other algorithms.
In addition, the performance of the S-LLE dimensional reduction method is demonstrated on
polarimetric features. Moreover, additional comparisons are also made to investigate the detailed
contribution of three components of our method to the LULC classification.

5.1. Study Area Description of AIRSAR Data with the C-Band

In this section, we introduce the study area of this paper and the corresponding PolSAR dataset.
Figure 6a shows the location site of the study area, which has a coverage of the Long Beach, i.e.,
a city in Los Angeles County of the USA. Figure 6b presents the high-resolution optical image of the
study area, which was obtained from Google Earth. There are some forests, water, bare soil and dense
buildings with different orientation angles in this study area. Figure 6c gives the Airborne Synthetic
Aperture Radar (AIRSAR) C band PolSAR data with Pauli color coding of this study area where the
double-bounce scattering is depicted with a red channel. The volume scattering is described with
a green channel and the surface scattering is described with a blue channel. This AIRSAR data were
acquired on October 24th in 1998 over the study area. Note that the image rows denote the azimuth
direction and the columns correspond to the range direction. The image resolution of the PolSAR data
is 4.62 m in the range direction and 3.33 m in the azimuth direction and the image size of is 5291 by
2560 pixels.

From Figure 6b, we can see that the urban areas consist of buildings parallel to the radar flight path
and oriented buildings, which are not parallel to the radar flight path. Some buildings are surrounded
with vegetation, which creates the back scattering complex. Although the oriented buildings are quite
different from the vegetated areas in Figure 6b, they all show a green color in Figure 6c, which means
that, similar to vegetation, oriented buildings also contribute to the volume scattering and are often
difficult to distinguish from the vegetated areas.
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Figure 6. The optical image and PolSAR data of the study area: (a) map of the study area; (b) optical
image that has been registered from Google Earth; (c) AIRSAR C band Pauli coded SAR image (red:
|HH-VV|; green: |HV|; blue: |HH+VV|).

5.2. Illustration of the Decomposition Results

Figure 7 presents the polarimetric decomposition results of the AIRSAR C band data by different
methods, respectively, where Figure 7a gives the results of the original multiple-component model-based
decomposition [12]. Figure 7b is the result of the Yamaguchi four-component decomposition with
a rotated coherency matrix [11], i.e., Y4R and Figure 7c is the result of our improved multiple-component
model-based decomposition. From Figure 7a,b, we can see that, compared with the Y4R method,
the MCSM can obtain stronger double-bounce scattering for urban areas especially for the oriented
buildings. The reason is that the MCSM decomposition considers wire scattering, which is suitable
for the description of the urban scattering mechanism. Therefore, the double-bounce scattering of
urban buildings is enhanced and the volume scattering is reduced. However, we can also observe
that, for the vegetated areas, the MCSM decomposition performs inadequately because the volume
scattering of vegetated areas in the MCSM decomposition is not as strong as with the volume of the Y4R
decomposition, which indicates that the volume scattering is suppressed. In comparison, Figure 7a–c
shows more satisfactory decomposition as a result. It can be observed that the double-bounce scattering
powers of buildings with different orientation angles are strong, which indicate that the HV scattering
model of oriented buildings is effective. Moreover, the vegetated area in Figure 7c exhibits stronger
volume scattering than that in Figure 7a, which is shown in the circular and rectangular regions marked
with white lines. This demonstrates that, using the improved MCSM decomposition, volume scattering
within vegetated areas can be well preserved. Consequently, using two different scattering models to
describe the volume scattering from oriented buildings and vegetation is valid with our method.
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Figure 7. Polarimetric decomposition results of the AIRSAR dataset by (a) the original MCSM method,
(b) the Yamaguchi four-component method with rotated coherency matrix, and (c) our proposed
improved MCSM decomposition method (red: Pd; green: Pv; blue: Ps).

Figure 8 gives the scattering plots of the above three decomposition results. Specifically,
the decomposed scattering power images are segmented into many small homogeneous superpixels
and each superpixel is associated with a data point in Figure 8. The red color points represent urban
areas, green points represent vegetation, yellow color points describe bare soil areas, and blue color
points are water. Compared with Figure 8b, what we can see from Figure 8a is that urban areas are
more aggregated and fewer vegetation areas are mixed up with urban buildings. However, in the
upper-left corner of Figure 8a, there are still some green points in the red color region. In addition,
the vegetation points are dispersed and some are mixed up with bare soil areas. In Figure 8c, there are
more red points, which indicates that the double-bounce scattering power is enhanced. Moreover,
there are very few mixed points between urban and vegetation areas. Bare soil and vegetation can
be distinguished better in Figure 8c than in Figure 8a. In forest areas, volume scattering power gets
stronger. Water and bare soil points, which are both surface scattering, do not change dramatically in
these three methods. This also exists with the decomposition results in Figure 7.Sensors 2018, 18, x FOR PEER REVIEW  13 of 21 
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5.3. Demonstration of the Supervised S-LLE Dimensional Reduction Method

Since the scattering powers are obtained with the improved decomposition approach in this paper,
we demonstrate the effectiveness of the supervised S-LLE on feature dimensional reduction. For the
simplicity of observation, only decomposition scattering powers of the improved MCSM technique,
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which is shown in Figure 9c, are used to compare the performance of various dimensional reduction
methods, which can be seen in Figure 10.

From Figure 9, we can see that all the four methods can map high dimensional feature space into
low dimensional feature space. However, the degrees of feature distinguishability are quite different.
In Figure 9b, it can be seen that, by using the LLE method, urban areas can be easily separated from
other classes while bare soil and vegetation are mixed up to a great extent. Water areas are also quite
dispersed. Figure 9c,d depict the performance of the LE and LTSA methods, respectively. We can
find that the LE can distinguish different classes well even though there are some mixed data points
between the water and urban areas. LTSA performs worse than LE because there are lots of mixed
points especially in the urban, vegetation, and bare soil areas. In Figure 9c,d, the feature points are all
dispersed, which is not beneficial for image classification. In Figure 9e, S-LLE can separate different
classes quite well. Furthermore, the feature points aggregate, which is good for the image classification.
The above dimensional reduction results are in accordance with Section 4. Thus, it is reasonable using
the S-LLE approach to reduce feature redundancy for PolSAR image classification.
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Figure 9. Feature dimensional reduction performance with four different methods: (a) original
improved MCSM decomposition scattering powers in the 3-D space; (b) two-dimensional embedding
by the LLE; (c) two-dimensional embedding by the LE; (d) two-dimensional embedding by the LTSA;
(e) two-dimensional embedding by the S-LLE (red: urban areas; green: vegetated areas; blue: water
areas; yellow: bare soil areas).

5.4. Comparison of the Classification Results Using Different Methods

In this subsection, we give the classification result of the K-nearest neighbors classifier with
our proposed features and the S-LLE dimensional reduction approach. Moreover, we adopt the
original MCSM classification with the support vector machine classifier (MCSM-SVM) [22] and
LE-IF with the k-nearest neighbors method (LE-IF KNN) [10] for comparison. In the MCSM-SVM
classification, the polarimetric scattering powers obtained from the original MCSM decomposition
and the texture features obtained with the GLCM method are regarded as the input of the LIBSVM
classifier. Note that the radial basis function kernel is chosen in the LIBSVM and the cost and
gamma parameters are selected by cross validation. In the LE-IF KNN method, the Laplacian
eigenmaps dimensional reduction method is utilized to map the various polarimetric features into
three dimensional features, which are considered as the input of the KNN classifier. In our proposed
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method, the S-LLE dimensional reduction method is used to map the improved MCSM polarimetric
decomposition scattering powers including spatial and textural features extracted from the superpixels
into low dimensional features, which are also regarded as the input of the KNN classifier. It is worth
pointing out that, in the MCSM-SVM classification, there is no feature dimensional reduction stage
while, in the LE-IF KNN classification, the whole feature set is mapped to a three-dimensional vector.
Therefore, in order to achieve a fair comparison, we also map the 95-dimensional features to a three
dimensional feature vector in our proposed method. The classification results of three methods are
shown in Figure 10.Sensors 2018, 18, x FOR PEER REVIEW  15 of 21 
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Figure 10. Classification results of the AIRSAR image: (a) result of the MCSM-SVM method; (b) result
of the LE-IF KNN method; (c) result of our proposed method.

From Figure 10a, it can be found that the MCSM-SVM method can accurately distinguish the
vegetation, bare soil, water, and buildings parallel to the radar flight path. However, most of the
buildings not parallel to the radar flight path are misclassified to the vegetation. The reason is that, in the
MCSM decomposition, although the wire scattering can improve the urban scattering, the double-bounce
scattering of the oriented buildings is still seriously underestimated. The HV scattering caused by oriented
buildings is regarded as the volume scatting, which leads to scattering mechanism ambiguity. In Figure 10b,
we can find that the classification result is much better than that in Figure 10a. The vegetation, bare soil,
and water can be well classified. Moreover, most of the buildings including some of the oriented buildings
can be effectively discriminated. This is mainly beneficial from various types of polarimetric features,
which can provide sufficient information for land cover classification. Moreover, it also can be seen that the
LE dimensional reduction technique has the ability to reduce the dimensions of original PolSAR features
and preserve the local property at the same time, which is useful for image classification. Nevertheless,
there still exist some misclassifications in Figure 10b. For example, lots of roads between the oriented
buildings are classified as vegetated areas. What we can observe from Figure 10c is that, not only most of
the vegetation, water, and bare soil areas can be correctly classified but also the building with different
orientations can be clearly discriminated, which leads to a much better classification result than the
other two methods. Although there are some tiny misclassifications between the vegetation and bare
soils, most of the main land covers can be correctly classified. More importantly, the classification
result of our method has few isolated pixels and noise contamination due to the superpixel-based
processing. In addition, the time cost is much lower than those of the other two methods. The satisfactory
classification result also demonstrates the effectiveness of the S-LLE dimensional reduction method where
the redundant information of different features is reduced and the discriminating information is well
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preserved. The individual contributions of decomposition, superpixel-based processing, and S-LLE
dimensional reduction are discussed in detail in the next subsection.

For the sake of quantitative comparison, we give the confusion matrices of the classification
results for different methods in Tables 1–3, respectively, where the matrix columns denote the results
of the classifiers and the rows represent the true land covers. Considering that the PolSAR data were
acquired on 24 October 1998, the ground truth image of the study area is hard to obtain due to the
rapid urbanization. Therefore, in this paper, we investigate the optical image with the assistance
of Google Earth for acquiring the ground truth. In the calculation of image classification accuracy,
we choose samples of different classes from the optical image and the classification image, respectively.
It can be seen from Table 3 that the overall accuracy of our proposed method is above 88% and the
kappa coefficient is about 0.85, which are quite good. Tables 1 and 2 give the accuracy assessment
measures for the MCSM-SVM classifier and the LE-IF KNN classifier, respectively. We can observe that
many buildings are misclassified as vegetation and the bare soils are classified as water and vegetation.
Even though the latter misclassification may also exist in our proposed method, large percentage of
bare soils reaching 89.32% can still be classified correctly. The overall accuracies of these two classifiers
are lower at about 13% and 7% than the percentages of our proposed method. It is worth pointing
out that the vegetation accuracy of our proposed method is worse than those of the MCSM-SVM
and LE-IF KNN classification methods. The reason is that, after the deterioration processing of the
coherency matrix, the double-bounce scattering of vegetation areas may be enhanced to some extent
because some trees can exhibit ground-trunk double-bounce and triple-bounce reflections. Moreover,
the branch condition may regard this kind of vegetation areas as oriented buildings, which makes
the vegetation areas exhibit low volume scattering and high double-bounce scattering. Therefore,
there exist some misclassifications in our method.

Table 1. Confusion matric of the MCSM-SVM classification result.

Class Building Bare Soil Water Vegetation Prod. Acc.

Building 47.33% 1.24% 0.00% 51.43% 47.33%
Bare soil 2.17% 67.55% 10.41% 19.87% 67.55%

Water 0.00% 10.77% 89.12% 0.11% 89.12%
Vegetation 0.28% 2.33% 0.12% 97.27% 97.27%
User. Acc. 95.08% 82.49% 89.43% 57.66%

Overall accuracy = 75.32%, Kappa coefficient = 0.6709

Table 2. Confusion matric of the LE-IF KNN classification result.

Class Building Bare Soil Water Vegetation Prod. Acc.

Building 70.51% 0.77% 0.00% 28.72% 70.51%
Bare soil 1.25% 73.24% 11.78% 13.73% 73.24%

Water 0.00% 9.84% 90.08% 0.08% 90.08%
Vegetation 5.23% 1.01% 0.04% 93.72% 93.72%
User. Acc. 91.58% 86.30% 88.40% 68.78%

Overall accuracy = 81.88%, Kappa coefficient = 0.7585

Table 3. Confusion matric of the proposed classification result.

Class Building Bare Soil Water Vegetation Prod. Acc.

Building 88.67% 1.15% 0.00% 10.18% 88.67%
Bare soil 2.55% 89.32% 1.67% 6.46% 89.32%

Water 0.00% 13.25% 86.57% 0.18% 86.57%
Vegetation 7.32% 1.68% 0.17% 90.83% 90.83%
User. Acc. 89.98% 84.74% 97.91% 84.37%

Overall accuracy = 88.85%, Kappa coefficient = 0.8513
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5.5. Contribution Analysis of Three Components to the LULC Classification

Since this proposed method is conducted by three components, which are the improved MCSM
decomposition, the superpixel-based image processing strategy, and the S-LLE dimensional reduction
technique, we need to discuss the contribution of each component to the final LULC classification
individually. To achieve this task, we carry out three classification experiments. The first is superpixel-based
image classification using the Pauli decomposition and the S-LLE dimensional reduction technique,
which is designed to test the performance of our improved MCSM decomposition for the classification.
To demonstrate the advantage of the superpixel-based processing strategy, the second experiment is
pixel-based image classification using the improved MCSM decomposition and the S-LLE dimensional
reduction technique. The last experiment is a superpixel-based image classification system using the
improved MCSM decomposition powers as well as spatial and textural features without any dimensional
reduction method. Figure 11 shows the classification results of the above three experiments.
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Figure 11. Classification results of the AIRSAR image with a different strategy: (a) result without the
improved MCSM decomposition; (b) result without the superpixel-based processing strategy; (c) result
without the feature dimensional reduction.

Figure 11a shows the classification result using the Pauli decomposition from which we can
see that lots of building areas are misclassified as vegetation. The reason is that building areas
with different polarimetric orientation angles cannot be detected well by the Pauli decomposition
features. However, in our improved MCSM decomposition, the oriented buildings and vegetated
areas can be distinguished clearly, which is shown in Figure 10c. Moreover, the improved MCSM
polarimetric parameters are also beneficial in discriminating the vegetation from the bare soil areas.
The pixel-based classification result is depicted in Figure 11b. It can be seen that there are lots of
isolated pixels and misclassifications. This is because the speckle noise affects the classification results
significantly. Besides the speckle noise within the coherency matrices, there is also large noise in the
extracted decomposition parameters. Another problem of Figure 11b is that the time cost of pixel-based
classification is really high since there are about 1.3× 107 pixels that need to be processed. However,
in our superpixel-based processing approach, there are only about 90,000 superpixels, which reduce the
computation load dramatically. Therefore, superpixel-based image analysis contributes substantially
to the final accuracy of PolSAR LULC classification. Apart from providing useful textural information
to support the classification, other significant advantages are the reduction of the speckle noise effect
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in PolSAR images and the efficient classification. Figure 11c describes the classification result using the
original features without the dimensional reduction where we can see that the result is very similar to
that shown in Figure 10c, which demonstrates that the S-LLE can reduce the dimensions of the original
feature space while preserving the discriminating information, which is beneficial to the classification.
Another advantage of dimensional reduction is that the classification can be increased using low
dimensional features.

Table 4 presents the accuracies of the individual classification results shown in Figure 11. It can
be seen that, without the improved model-based decomposition scattering powers, the classification
accuracy of buildings decreases significantly, which leads to a quite low overall classification accuracy.
If the classification is performed with decomposition scattering powers but without the superpixel
generation, the classification accuracy of buildings achieves 65.85%, which is much higher than the
classification result without decomposition scattering powers. However, the overall classification
accuracy is still not satisfactory. Feature dimensional reduction does not have significant impact on
the overall classification accuracy. We can see from Table 4 that the classification accuracy is 86.49%,
which is a little bit lower than the accuracy of our proposed classification result. This indicates that the
feature redundancy may decrease the overall classification accuracy slightly.

Table 4. Accuracy of the individual classification results in Figure 11.

Without Decomposition Without SuperPixel
Processing

Without Feature
Dimensional Reduction

Building 32.32% 65.85% 84.66%
Bare soil 80.41% 75.38% 90.01%

Water 82.25% 83.31% 83.25%
Vegetation 82.62% 84.58% 88.07%

Overall 69.40% 77.28% 86.49%

Figure 12 gives the bar graph of overall classification accuracies and time costs of three above
experiments. From Figure 12a, we can see that there is a big gap (about 15%) between Figure 11a and the
proposed method, which indicates the significant contribution of the improved MCSM decomposition
to the LULC classification. The gap between Figure 11b and the proposed method is lower, which is
about 7%. This shows that the superpixel-based processing strategy is also important for classification.
The S-LLE dimensional reduction technique improves the overall classification accuracy. However,
based on Figure 12b, we find that it can reduce the time consuming dramatically, which is from 325.45 s
to 64.15 s. Compared to the time costs of Figure 11b with the proposed method, it is also apparent that
the superpixel-based processing strategy can also speed up the classification. Our experiments are
conducted on a desktop PC with an Intel Core i7-4702 CPU of 2.2 GHz and 8 GB Memory.
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6. Conclusions

This paper proposed a new approach for PolSAR image classification, which incorporated
the improved multiple-component model-based decomposition, superpixel-based image analysis,
and the S-LLE dimensional reduction technique. The comparisons between the proposed method
and the original MCSM-SVM as well as recently published LE-IF PolSAR classification methods were
conducted to demonstrate the performance of LULC classification. The experimental results show
that the proposed method can dramatically improve the overall classification accuracy and kappa
coefficient. In addition, the processing speed is increased. The detailed discussions of individual
contributions of three components indicate that the improved MCSM decomposition parameters
are related to the scattering properties of the observed objects. Therefore, they have significant
implications for the classification of PolSAR data. The overall accuracy of LULC classification
can be improved by 15% if the improved decomposition parameters are used in the classification.
The superpixel-based image analysis strategy is quite helpful in improving the accuracy of PolSAR
image classification since it can reduce the effect of speckle within PolSAR images and can extract
more textural information for the classification than the pixel-based strategy. The overall accuracy of
superpixel-based classification of PolSAR data increased by 7% compared with that of conventional
pixel-based classification. Furthermore, the time cost of classification is also reduced. The S-LLE
dimensional reduction technique contributes to classification efficiency. The similar overall accuracies
of the proposed method with and without dimensional reduction methods show that S-LLE can
effectively reduce the feature redundancy and, at the same time, can preserve the distinguishability
of features.

Future research will focus on the physical interpretations of the low dimensional features obtained
by the S-LLE. In addition, more textural features should be investigated to improve the classification
accuracy of natural areas.
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