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Abstract: In order to improve the angle measurement performance of a coprime linear array, this
paper proposes a novel direction-of-arrival (DOA) estimation algorithm for a coprime linear array
based on the multiple invariance estimation of signal parameters via rotational invariance techniques
(MI-ESPRIT) and a lookup table method. The proposed algorithm does not require a spatial spectrum
search and uses a lookup table to solve ambiguity, which reduces the computational complexity. To
fully use the subarray elements, the DOA estimation precision is higher compared with existing
algorithms. Moreover, the algorithm avoids the matching error when multiple signals exist by
using the relationship between the signal subspace of two subarrays. Simulation results verify the
effectiveness of the proposed algorithm.
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1. Introduction

DOA estimation is an important problem in array signal processing, and is widely used in radar,
communication, sonar, and other detection equipment [1–6]. Traditional subspace-based methods,
which include the multiple signal classification (MUSIC) algorithm [7] and the estimation of signal
parameters via rotational invariance techniques (ESPRIT) [8,9], have been verified as efficient estimation
techniques by using the eigenvalue decomposition of the received covariance matrix. Previous studies
focused on the uniform array, such as the uniform linear array, uniform circular array, etc. Many DOA
estimation algorithms have been proposed [10–13]. However, as the number of array elements and
array aperture are restricted in practice, the uniform array is not the optimal array structure. The
sparse array has attracted considerable attention because it obtains a larger array aperture without
increasing the number of array sensors, thus producing better DOA estimation performance. The
earliest sparse array is the minimum redundancy array (MRA). However, MRA cannot obtain the
closed form expression, which makes it impossible to apply in practice. Subsequently, Vaidyanathan
proposed the nested array and coprime array [14,15]. The application of the nested array is restricted
by the mutual coupling of array elements. The coprime array is a non-uniform array system whose
inter-element spacing is larger than half-wavelength. The coprime array processes spatial signals in a
sparser array structure, which results in good angle measurement performance. Compared with the
uniform array, it has a larger array aperture when the number of array elements is the same, and fewer
array sensors are required when the array aperture is the same. Additionally, the mutual coupling of
array elements is reduced, which weakens the influence on the DOA estimation performance.

For the coprime linear array (CLA), two mainstream DOA estimation methods exist: the
virtualization array sensor method [16–20] and the solving-ambiguity-based method [21–26]. In
the solving-ambiguity-based method, CLA can be decomposed into two uniform linear subarrays,
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and then DOA can be achieved according to conventional DOA estimation algorithms [7–9]. This
method sacrifices some degrees of freedom (DOF), that is to say, it reduces the number of signals that
the CLA can detect. By adding a number of array sensors, we can improve the DOF. In addition, the
virtualization array sensor method can add DOF by extending the virtual array aperture. However,
this method is highly computationally complex and has demanding requirements for snapshots of the
received signals, which is difficult in practical engineering applications. In order to achieve a better
trade-off between the DOF and practical applications, we mainly studied the solving-ambiguity-based
method in this paper.

In the solving-ambiguity-based method, the CLA is first decomposed into two uniform linear
subarrays. Since inter-element spacing is larger than half-wavelength, the DOA estimation results are
ambiguous. In order to obtain the true DOA, solving ambiguity must be performed. Zhou et al. [23]
proposed a DOA estimation algorithm for CLA by combining the MUSIC of two subarrays for the
corresponding coprime array signal processing. They obtained the DOA by searching the closest
spectral peaks of two subarrays, but this method has higher computational complexity. In order
to reduce the computational complexity, the reference [24] proposed a partial spectral search DOA
estimation method. By using the Root-MUSIC algorithm for CLA, the reference [25] avoided spectral
peak search. In the reference [26], a fast DOA estimation algorithm was proposed based on the unitary
transformation technique, and the complexity was further reduced. The reference [27] proposed a fast
search-free DOA estimation for CLA by using projection processing in the search for optimal DOAs.
However, solving modular equations in the reference [27] required an iterative process, which still has
a large computational burden.

In order to ease the limitations of the existing algorithms, this paper proposes a novel DOA
estimation method for CLA based on the MI-ESPRIT and lookup table (LUT). MI-ESPRIT fully uses
elements of every subarray, so the angle measurement precision is improved compared with the
algorithm proposed by the reference [28], which was based on the ESPRIT algorithm. In addition,
the computational complexity is reduced because the proposed method avoids spectral peak search.
After obtaining the DOA estimation results of two subarrays, solving ambiguity faces the problem of
traversal searching, and the computational complexity increases in the presence of multiple signals. In
engineering applications, the common method of reducing computational complexity is to use the
LUT. So, we use the LUT method to solve ambiguity in the CLA. Finally, by using the transformation
relationship between the signal subspace of the two subarrays, the matching error among multiple
signals is avoided. The proposed method is ultra-high speed, has higher DOA estimation precision, no
matching error, and low memory usage, rendering it suitable for engineering applications.

The remainder of this paper is organized as follows: Section 2 formulates the coprime linear array
data model. In Section 3, the proposed method based on MI-ESPRIT and LUT is outlined in detail.
Section 4 provides the numerical simulations and the proposed algorithm is discussed referring to the
simulation results. Section 5 concludes the paper.

Notations: Throughout this paper, we use lower-case letters and capital letters to represent
the vector and matrix, respectively. Superscript (·)−1, (·)H , and (·)+ denote the inverse, conjugate
transpose, and pseudo-inverse operator, respectively. The notation [A]ij represents the (i,j)th element
of the matrix A. The symbol E denotes the statistical expectation operator and ‖·‖ is the Euclidean
norm operator. arcsin(•) denotes the anti-sinusoidal operator and IM stands for the M ×M identity
matrix. Moreover, we use R(•) to represent the rounding operator.

2. CLA Data Model

We considered a CLA consisting of two uniform linear subarrays. The number of array elements
are M1 and M2, where M1 and M2 are the coprime integers. The inter-element spacings are
d1 = M2λ/2 and d2 = M1λ/2, where λ is the signal wavelength, as shown in Figure 1a. By aligning
the first elements of the two subarrays, we obtain the CLA, which includes M1 + M2 − 1 elements, as
shown in Figure 1b. Assuming that K far-field signals imping on the array from angles θ1, θ2, · · · , θK.
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Figure 1. Topological structure of a coprime linear array (CLA): (a) Two uniform linear subarrays; (b) 
Coprime array formed by aligning the above two linear subarrays. 

Since the distance between adjacent elements is unequal, there is no general steering vector 
expression. So, we constructed the output vector model from the perspective of two subarrays. For 
the thi  subarray with iM  elements, the output vector can be modeled as: 
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estimate DOAs for the CLA. According to the reference [29], in order to obtain the multiple invariance 
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Figure 1. Topological structure of a coprime linear array (CLA): (a) Two uniform linear subarrays;
(b) Coprime array formed by aligning the above two linear subarrays.

Since the distance between adjacent elements is unequal, there is no general steering vector
expression. So, we constructed the output vector model from the perspective of two subarrays. For the
ith subarray with Mi elements, the output vector can be modeled as:

Xi(t) = AiS(t) + N(t), (1)

where S(t) is the signal vector and N(t) is the additive white Gaussian noise vector. The steering
vector Ai can be expressed as:

Ai = [ai(θ1), ai(θ2), · · · , ai(θK)]. (2)

The array manifold of the kth signal is:

ai(θk) = [1, e−j 2π
λ di sin(θk), · · · , e−j 2π

λ (Mi−1)di sin(θk)]T , (3)

where di is the inter-element spacing and i = 1, 2.
Then, we calculated the covariance matrix RXiXi of the output vector Xi(t):

RXiXi = E{XiXi
H} = AiRS Ai

H + σ2
n Ii. (4)

The eigen-decomposition of RXiXi can be expressed as:

RXiXi = USi ΣSi USi
H + UNi ΣNi UNi

H , (5)

where USi is the signal subspace of the ith subarray.

3. Proposed Algorithm

3.1. DOA Estimation Based on the MI-ESPRIT Algorithm

The ESPRIT algorithm achieves DOA estimation by taking advantage of only a single displacement
invariance in the sensor array. However, there are many situations where the subarray possesses
multiple invariance structures. In order to make full use of the displacement invariance of the subarray
and improve angle measurement precision, we used the MI-ESPRIT algorithm to estimate DOAs for
the CLA. According to the reference [29], in order to obtain the multiple invariance structures, the
ith subarray is divided into p arrays, and each array owns h elements. There are h− 1 overlapping
elements between adjacent arrays. Therefore, the number of arrays and the number of array elements
satisfy the following relationship:

p + h− 1 = Mi, (6)

where Mi denotes the number of the ith subarray’s elements, as shown in Figure 2.
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Figure 2. Array structure of the multiple invariance estimation of signal parameters via rotational
invariance technique (MI-ESPRIT).

The signal subspace USi and the steering vector of the ith subarray span the same space, i.e.,

span
{

USi

}
= span{Ai(θ)}. (7)

For the CLA, a unique non-singular matrix T exists:

US =

[
US1

US2

]
=

[
A1(θ)

A2(θ)

]
T. (8)

According to the MI structure of the subarray, we constructed a singular value decomposition
(SVD)-like matrix Ei

Ei =
[

USi1 USi2 · · · USip

]T
, (9)

where USij = USi (j : j + h− 1, :), (j = 1, 2, · · · , p) means extracting the jth row to the (j + h− 1)th row
of USi as a new matrix.

Define matrix Ei1 and Ei2 from Ei:

Ei1 =


USi1

USi2
...

USi(p−1)

 = Qi1 T, Ei2 =


USi2
USi3

...
USip

 = Qi2 T. (10)

From Equation (10), we see that Qi1 and Qi1 exist in the following relationship:

Qi2 = Qi1 ψi, (11)

where ψi = diag(e−j 2π
λ di sin(θ1), e−j 2π

λ di sin(θ2), · · · , e−j 2π
λ di sin(θK)) is a diagonal matrix and ψi contains

the direction information of incoming signals. Thus, we obtain:

Ei2 = Qi2 T = Qi1 ψiT = Ei1 T−1ψiT. (12)

Define Ωi = T−1ψiT. Equation (12) can be modified as:

Ωi = Ei1
+Ei2 , (13)

where Ei1
+ denotes the Moore-Penrose pseudo-inverse of Ei1 .

Since T is non-singular matrix, Ωi and ψi have the same eigenvalues. After completing
eigen-decomposition on matrix Ωi, we obtain K eigenvalues λi1 , λi2 , · · · , λiK . According to
λik = e−j2πdi sin(θk)/λ, the DOAs of K signals can be estimated:

θ̂ik = arcisn(angle(λk)c/2πdi fk). (14)
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3.2. Solving Ambiguity Based on the LUT

Since the inter-element spacing of each subarray was larger than a half-wavelength, the DOA
estimation results were ambiguous. In Section 3.1, for every incoming signal, only an estimated value
was obtained based on the MI-ESPRIT algorithm. First, we needed to calculate all estimated values
according to the coprime property, which includes real DOA and ambiguous DOA. Then, by using the
solving ambiguity method, real DOA can be obtained. The earliest solving ambiguity method obtains
the real DOA by searching the nearest value from all DOA estimated values of two subarrays, which is
computationally complex. Additionally, matching errors may occur when the incoming wave contains
multiple signals. The reference [27] proposed a search-free solving ambiguity method, but solving
the modular equations requires an iterative process, which still requires considerable calculation.
Therefore, a solving ambiguity method with ultra-high speed is urgently required. In engineering
applications, we usually take advantage of the LUT method to reduce the computational complexity.

3.2.1. Construct the LUT

For any signal, real DOA θ̂r and ambiguous DOA θ̂a satisfy:

sin(θ̂r)− sin(θ̂a) =
2lm
M

, (15)

where M is the number of subarray elements and lm is a non-zero integer number between −(M− 1)
and (M− 1). For subarray 1, M = M2. For subarray 2, M = M1.

In order to simplify the procedure of constructing the LUT, we performed the transformation as
u = sin(θ̂),−1 ≤ u ≤ 1. Thus, Equation (15) can be written as:

ur − ua =
2lm
M

. (16)

In the transformation domain, it can be seen from Equation (16) that the estimated values are
uniformly distributed.

{−1 + (i− 1)
2
M
≤ u ≤ −1 + i

2
M
}, (i = 1, · · · , M). (17)

By calculating Equations (14)–(17), we obtain all DOA estimation values of the two subarrays.
According to the reference [23], real DOAs uniquely exist, which satisfies the estimated values of the
two subarrays. We considered one signal impinging on the CLA. Denote

{
θ̂m1

}
as the estimated values

set of subarray 1 and denote
{

θ̂m2

}
as the estimated values set of subarray 2, where m1 = 1, 2, · · ·M2,

m2 = 1, 2, · · · , M1. By solving the minimum of the following formula,

min
m1,m2

‖
{

θ̂m1

}
−
{

θ̂m2

}
‖, (18)

we can obtain the real DOA:

θ̂ =
θ̂m1 + θ̂m2

2
. (19)

For the given CLA, the number of subarray elements is determined. In the transformation domain,
the estimated values of subarray 1 are uniformly distributed in {−1 + 2

M2
(i− 1) ≤ u1 ≤ −1 + i 2

M2
},

i = 1, · · · , M2 and those of subarray 2 are uniformly distributed in {−1+ 2
M1

(j− 1) ≤ u2 ≤ −1+ 2
M1

j},
j = 1, · · · , M1.

For any incoming signal θk ∈ [−π/2, π/2], every subinterval always has an estimated value, and
all DOA estimated values can be obtained according to any subinterval estimated value. Select any
subinterval of two subarrays as the reference interval, as shown in the solid line of Figure 3. So, we
chose the reference interval of the two subarrays in the transformation domain to construct the LUT.
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In the reference interval, we set ds as the step. The smaller the ds, the higher the angle measurement
precision. However, too small ds increases the size of the table, so we generally chose ds = 0.01 in
practice. As the two subarrays traverse the entire reference interval at step ds, we can obtain the
corresponding incident angle:

θ1(I1) = arcsin((I1 − 1)ds)

θ2(I2) = arcsin((I2 − 1)ds)
, (20)

where I1 = 1, · · · , (R(2/M2ds) + 1) and I2 = 1, · · · , (R(2/M1ds) + 1), R(·) represents the
rounding symbol.
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Firstly, the estimated values set to {θ1(I1)} and {θ2(I2)}, which correspond to θ1(I1) and θ2(I2),
are calculated based on Equations (16) and (17), respectively. Then, substituting {θ1(I1)} and {θ2(I2)}
into Equations (18) and (19), respectively, we obtain the real DOAs corresponding to {θ1(I1)} and
{θ2(I2)}. Finally, the real DOA of each pair I1 and I2 is stored in the table. We then constructed the
LUT by traversing I1 and I2. Since the LUT is only constructed in the reference interval, the table
is smaller.

3.2.2. Solving Real DOA Based on the LUT

The established LUT in the above section assumes there only one signal exists. When K(K ≥ 2)
signals impinge on the CLA, each subarray can have K estimated values based on MI-ESPRIT. However,
there is no consistent one-to-one matching relationship between the estimated values of the two
subarrays. In order to perform DOA estimation based on the above LUT, it was necessary to find the
pairing relationship between the estimated values of the two subarrays.

This problem has been mentioned by the reference [25]. We defined H1 and H2 according to the
signal subspace of the two subarrays.

H1 = US2U+
S1

= A2TT−1 A1
+, (21)

H2 = US1U+
S2

= A1TT−1 A2
+, (22)

which means
A2 = H1 A1, (23)

A1 = H2 A2. (24)

Considering that K signals imping on the CLA from angles θ1, θ2, · · · , θK. Based on the MI-Esprit
algorithm, subarray 1 can obtain estimated values θ̂1k and subarray 2 can obtain estimated values θ̂2k,
where k = 1, 2, · · · , K. Taking the first estimated value θ̂11 of θ̂1k, we can obtain the corresponding
array steering vector a11 = [1, e−j 2π

λ d1 sin(θ̂11), · · · , e−j 2π
λ (M1−1)d1 sin(θ̂11)]T . According to Equation (23),
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we know a12 = H1a11. Meanwhile, K estimated values of subarray 2 also correspond K array steering
vectors a21, a22, · · · , a2K. We can obtain matched θ̂2k by calculating the minimum

θ̂2k = min
a12,a2k

‖a12 − a2k‖. (25)

According to Equation (25), the remaining estimated values θ̂12, · · · , θ̂1K of subarray 1 correspond
to the matched estimated values in subarray 2, which can also be solved. Finally, the pairwise
combination of the two subarrays’ DOA estimated values can be achieved.

For any set of estimated values θ̂1k and θ̂2k of the two subarrays, we first calculated their
corresponding u1k and u2k in the transformation domain, and then obtained their index values in
the table.

I1k =


R( u1k+1

ds
) − 1 ≤ u1k ≤ −1 + 2

M2
...

R(
u1k+

2
M2
−1

ds
) 1− 2

M2
≤ u1k ≤ 1

I2k =


R( u2k+1

ds
) − 1 ≤ u2k ≤ −1 + 2

M1
...

R(
u2k+

2
M1
−1

ds
) 1− 2

M1
≤ u2k ≤ 1

. (26)

Substituting I1k and I2k into the LUT, the real DOA θ̂k can be solved. The complete calculation
procedure of the algorithm is shown in Figure 4. The proposed method realizes DOA estimation
of multiple signals, by only using one signal to construct the LUT, which is relatively simple and
convenient for practical application. In practical engineering, the proposed algorithm in this paper
could be implemented on the hardware platform composed of the digital signal processor (DSP) and
field-programmable gate array (FPGA), where the LUT is built in the microwave darkroom in advance
and stored in the RAM module of the FPGA chip.
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4. Simulation Analysis

Consider a CLA consisting of two uniform linear subarrays with M1 = 13 and M2 = 11 elements,
and inter-element spacing of d1 = M2λ/2 and d2 = M1λ/2, respectively. In MI-ESPRIT, we take
h = 4, and then the subarray 1 can be divided into pM1 = 10 arrays and subarray 2 can be divided into
pM2 = 8 arrays. Two signals imping on the CLA from −20◦, 20◦. In order to verify the performance
of the proposed algorithm, we performed comparison simulations between the previously proposed
methods [23,25,28] and our method. In the reference [23], the rough step was dS1 = 0.1◦ and the fine
step was dS2 = 0.2◦. Moreover, in order to illustrate the advantage of CLA, a comparison with the
uniform linear array (ULA) was added to the simulation, in which the number of array elements was
consistent with the CLA, i.e., M1 + M2 − 1. We performed 1000 independent Monte Carlo simulations.
We recorded 512 snapshots and Figure 5a shows that the DOA estimation root mean square error
(RMSE) of the six algorithms varied with the signal-to-noise ratio (SNR). When the SNR = 10 dB, the
DOA estimation RMSE of the six algorithms versus snapshots is shown in Figure 5b.
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Figure 5. DOA estimation precision analysis: (a) Root mean square error (RMSE) of DOA estimation
versus the signal-to-noise ratio (SNR), and (b) RMSE of DOA estimation versus snapshots.

With increasing SNR or snapshots, the DOA estimation RMSE of the algorithms decreased rapidly.
Compared with the ULA, the DOA estimation precision of CLA was significantly better. Compared
to both CLA and ULA, the DOA estimation precision of MI-ESPRIT was better than ESPRIT. This is
because the MI-ESPRIT algorithm makes full use of the subarray elements, so the angle measurement
precision of the proposed algorithm is better than that of the reference [28], which was based on
the ESPRIT algorithm. The DOA estimation precision of the reference [25] was between that of the
reference [28] and the proposed algorithm. It can be seen from Figure 5 that the DOA estimation
precision of the algorithm introduced by the reference [23] is basically consistent with our proposed
method when SNR is low. With increasing SNR, the DOA estimation precision of the algorithm of
the reference [23] was poor compared to our proposed method. Because the angle measurement
accuracy in the reference [23] is closely related to the precision of the fine spectrum search step dS2, if
we continued to reduce dS2, the DOA estimation precision of the reference’s algorithm [23] may be
better at high SNR, but the high computational complexity caused by the fine spectrum search would
be unfeasible. In summary, the proposed algorithm possesses the best DOA estimation accuracy.

In order to verify the angular resolution of the proposed method, other simulation conditions
remained unchanged and the DOAs of two signals were reduced to −10◦, 10◦; −5◦, 5◦ and −0.5◦, 0.5◦.
The SNR = 5 dB, SNR = 10 dB, and SNR = 15 dB DOA estimation results are shown in Table 1. It
can be seen from Table 1 that the proposed method could still distinguish two signals, although the
DOA spacing was 1◦. This is because the MI-ESPRIT algorithm has higher DOA estimation precision.
Additionally, in the process of constructing the lookup table, we set the step ds = 0.01 in the reference
interval, which guarantees high estimation accuracy. Higher DOA estimation precision means higher
angular resolution. Therefore, the angular resolution of the proposed method can achieve 1◦.

Table 1. The angular resolution analysis of the proposed method.

θ1 = −10◦ θ2 = 10◦ θ1 = −2◦ θ2 = 2◦ θ1 = −0.5◦ θ2 = 0.5◦

SNR = 5 dB −9.9934◦ 10.0055◦ −1.9952◦ 2.0019◦ −0.4965◦ 0.4918◦

SNR = 10 dB −9.9991◦ 9.9992◦ −1.9992◦ 1.9997◦ −0.4996◦ 0.5011◦

SNR = 15 dB −10.0002◦ 10.0000◦ −2.0000◦ 2.0004◦ −0.5002◦ 0.4999◦

The computational complexity of the various algorithms are analyzed in Table 2. The CLA consists
of two uniform linear subarrays with M1 and M2 sensors. Consider that K signals impinge on the
CLA and T snapshots are used, and the number of searches in the reference [23] is set as S. It can be
seen from Table 2 that the computational complexity of each algorithm is mainly created by two parts.
The first part obtains the estimated values, which include covariance matrix estimation, eigenvalue
decomposition, and solving estimated values, so the computational burden of the four algorithms is
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different. The second part is the solving ambiguity; the computational complexities in the previously
formulated algorithms [23,25,28] are the same, i.e., K2M1M2, which is larger than the complexity in
our method. In the proposed algorithm, by simply indexing in the LUT, the real DOA can be obtained.
In general, the computational burden of the first part is larger than the second part.

Table 2. Comparison of computation complexity.

Algorithm Computation Complexity

CLA-Decom-MUSIC [23] O((M1
2 + M2

2)T + (M1
3 + M2

3) + (M1
2/M2 + M2

2/M1)S + K2 M1 M2)
CLA-Root-MUSIC [25] O((M1 + M2)

2T + (M1 + M2)
3 + (M1

3 + M2
3) + K2 M1 M2)

CLA-ESPRIT [28] O((M1
2 + M2

2)T + (M1
3 + M2

3) + (3(M1 + M2) + 4K)K2 + K2 M1 M2)
The proposed method O((M1

2 + M2
2)T + (M1

3 + M2
3) + (3(M1 + M2) + 4K)K2 + K)

In the reference [23], the computational burden is caused by the spectrum peak search
process and S is usually much larger than other variables, so CLA-Decom-MUSIC [23] has the
highest computational complexity. CLA-Root-MUSIC [25] estimates the covariance matrix and
performs the eigenvalue decomposition by combining the two subarrays, which increases the
computational complexity, and the polynomial root finding is very time-consuming in practice.
Therefore, CLA-Root-MUSIC [25] also has higher computational complexity, which second to
CLA-Decom-MUSIC [23]. Both CLA-ESPRIT [28] and our proposed algorithm are essentially based
on the ESPRIT algorithm, whose computational complexity is lower than CLA-Decom-MUSIC [23]
and CLA-Root-MUSIC [25]. For the ESPRIT algorithm, because the computational burden of solving
estimated values can be ignored, its computational burden of the first part mainly includes covariance
matrix estimation and eigenvalue decomposition of both the covariance matrix RXiXi and matrix
Ωi, and the corresponding complexities are (M1

2 + M2
2)T, (M1

3 + M2
3) and (3(M1 + M2) + 4K)K2,

respectively. The MI-ESPRIT algorithm uses the multiple invariance structure of ESPRIT, which only
adds the linear transformation of the matrix compared to ESPRIT. The added computational burden
can also be neglected. Therefore, the proposed algorithm has approximately similar computational
complexity in terms of the first part compared with CLA-ESPRIT [28]. However, we simplified
the solving ambiguity by using a LUT, which substantially reduces the computational burden, i.e.,
K � K2M1M2. Therefore, the proposed algorithm is more efficient.

According to the above simulation conditions, M1 = 13 remains unchanged and M2 is 8, 10, 12, 14,
and 16. We compared the processing time of the four different algorithms in Figure 6. The processing
time was determined by a PC (Lenovo manufactory, Beijing, China) with AMD Phenom™ IIX6 1055T
Processor 2.8 GHz CPU and 8 GB RAM by running the MATLAB codes in the same environment. It
can be seen from Figure 6 that the proposed algorithm has the highest computational efficiency.
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5. Conclusions

CLA has been widely studied due to its superior DOA estimation performance. This paper
proposed a novel DOA estimation algorithm for CLA based on MI-ESPRIT and LUT. MI-ESPRIT fully
uses the subarray’s elements, which improves the angle measurement accuracy. Then, according to the
property of the CLA, the phase ambiguity was solved using the LUT, which reduced the computational
complexity. At the same time, using the relationship between the signal subspace of two subarrays,
matching errors were avoided when in the presence of multiple signals. Compared with the existing
algorithms, the proposed method not only has higher DOA estimation accuracy, but also has lower
computational complexity. Additionally, our DOA estimation method, which is based on the LUT,
has broad application prospects in practice. However, in our study, the coprime array achieved DOA
estimation by decomposing CLA into two uniform linear subarrays, which sacrifices the degrees of
freedom, i.e., a reduction in the number of sources that the CLA can resolve. By increasing the number
of CLA sensors, we could obtain increased DOFs. In addition, the virtualization array sensor method,
using the Khatri-Rao transformation, could also be applied to the CLA to yields the virtual array
structure. Based on the extended virtual array aperture, the DOFs can also be increased. Therefore,
future research efforts will aim to improve the DOF of CLA.
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