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Abstract: Damage identification that is based on modal analysis is widely used in traditional
structural damage identification. However, modal analysis is difficult in high damping structures and
modal concentrated structures. Unlike approaches based on modal analysis, damage identification
based on the frequency response function allows for the avoidance of error and easy verification
through other test points. An updating algorithm is devised is this study by utilizing the frequency
response function together with the dynamic reduction with respect to the selected design parameters.
Numerical results indicate that the method can be used to define multiple parameters with large
variation and incomplete measurement data and is robust against measurement noise. With the
purpose of avoiding the occurrence of resonance and gaining additional information, the trial and
error method has been used to choose a proper frequency. Furthermore, an experimental scale model
in a soil box is subjected to the excitation of moving load to validate the effectiveness of the damage
identification approach. The improved damage identification method for underground structures,
which is based on the analysis of the frequency response function, can be adopted as an efficient and
functional damage identification tool.

Keywords: damage identification; frequency response function; model updating; scale model
experiment; soil box

1. Introduction

Structural damage is caused by changes in the material or geometric properties of systems and it
is a general problem in the structural design phase and during the operation of structures, especially
large and complex civil urban underground infrastructures. Traditionally, the complexity of the
underground environment and the degradation failure of materials are the main causes of damage,
which affects the service performance of underground structures [1–5].

In previous research, numerous approaches have been developed for identifying damages in
structures [6–8]. These approaches can be broadly classified into global and local techniques [9–12].
Dynamic and static measures can be used for damage identification [13–15], and damage identification
based on modal analysis is the most widely adopted method [16–18]. Palaez and Krawczuk [19]
proposed a promising damage identification approach that is based on structural vibration. Juan
and Hojjat [20] proposed an approach that is based on vibration and enables real-time monitoring.
Qu and Chen [21] derived a seismic damage diagnosis method for frame structures while using
an artificial neural network (ANN). Yang and Liu [22] proposed a structural damage identification
approach with flexibility. Several methods have been proposed due to differences in parameters.
The equilateral triangle resonator (ETR) index, which was proposed by Zong and Huang [23], is the
most commonly adopted method. Meanwhile, Cha [24] and Moradipour et al. [25] utilized modal strain
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energy sensitivity for damage identification in civil structures. TaeKim et al. [26] and Feng et al. [27,
28] proposed damage detection applications utilizing mode shapes, and some progress has been
made. Sensitivity approaches generate the objective function for the first-order Taylor expansion.
This approach was used by Yi [29] to analyze the relationship between vibration characteristics
and stiffness reduction. Damage identification that is based on statistical information has been
proposed [30–33]. Compared with modal parameters based method, the FRF (Frequency Response
Function) based method [34] proposed by some researchers [35,36] has received more attention and
applications [37–40] in recent years due to its advantage, as follows: At first, the measured FRF data
can be utilized directly without transformation. In some software, the calculation of modal parameters
is based on the measured FRF data. What is more, the modal analysis is more complex, and the error
might arise from the modal identification. The identification error might greater than the modelling
error. Secondly, the FRF can be measured in more locations of the structure and taken as an objective
so it can provide more data. Tranxuan [41] detected the structural damage using measured frequency
response function data. Crema and Mastroddi [42] proposed a general procedure based directly on the
measured frequency response function data, which can update numerical spatial model or directly to
identify and quantify possible damage and failure of the structure. Zou [43] presented an approach for
structural damage identification that is based on frequency response function and genetic algorithm
(GA). Khoshnoudian and Esfandiari [44] developed a global algorithm for damage assessment of
structures based on a parameter estimation method whole using the finite element and measured the
modal response of the structure. Yang and Song [45] verified a method of truss damage identification is
proposed based on the principal component analysis and frequency response functions. What is more,
damage identification based on the frequency response function allows the avoidance of error and
easy verification through other test points [46,47]. This technique is commonly used in light structures,
mini-type structures, and bridges and is rarely adopted for long-lining underground structures.

This study devised an algorithm that utilizes the frequency response function together with the
dynamic reduction with respect to the selected design parameters (Section 2). Section 3 presents an
experiment on a scaled aluminum tube model that was conducted to validate the effectiveness of the
damage identification approach; the model was used to simulate a long-lining underground structure
subjected to the excitation of moving load. Meanwhile, the results of the experiment and simulation
were compared theoretically and experimentally. The comparison indicated that the improved damage
identification, which was based on the analysis of the frequency response function, for long-lining
underground structures could be applied as an efficient and functional damage identification tool.

2. Damage Identification Theory based on Acceleration Frequency Response Function

First, parameter estimation expressions are established by the acceleration frequency response
function, which is calculated by experimental measurement and model calculation.

The dynamic behavior of a multi-degree-of-freedom structure that is excited by a set of multiforces
is described by the following matrix equation:

Mx′′ + Cx′ + Kx = F, (1)

where M, C, and K are the mass, damping, and stiffness matrices of the structure, respectively; and x,
x′, and x′′ are the displacement, velocity, and acceleration of the structure, respectively.

By substituting x = xeiωt into Equation (1), the function in the frequency domain can be obtained,
as follows:

−Mω2xeiωt + Cωixeiωt + Kxeiωt = F0 sin ωt. (2)

Frequency response function is the ratio of the input and output of the viscous damping system,
which has 3n degrees-of-freedom, with harmonic excitation. The input is the harmonic excitation,
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and the output is the acceleration response. The frequency response function of structure can be
expressed in Equation (2).

H(ω) =
F(ω)

X(ω)
, (3)

where X(ω) is the steady acceleration response, H(ω) is the acceleration frequency response function,
and F(ω) is the harmonic excitation.

With substitution of x = xeiωt and Equations (1) into (3), the finite element analysis (FEA)
model and the acceleration frequency response function matrix are expressed as Equations (4) and (5),
respectively.

Hs(ω) = [Ms −
iCs

ω
− Ks

ω2 ]
−1

, (4)

He(ω) = [Me −
iCe

ω
− Ke

ω2 ]
−1

, (5)

where Ms, Cs, and Ks are the mass, damping, and stiffness matrices of the structure by simulation,
respectively; Me, Ce, and Ke are the mass, damping, and stiffness matrices of the structure by
experiment, respectively; and, ω is the excitation frequency.

The damping matrix has only a small effect on the damage and this part can be thus commonly
ignored. Equations (4) and (5) can be simplified as Equations (6) and (7), respectively.

Hs(ω) = [Ms −
Ks

ω2 ]
−1

, (6)

He(ω) = [Me −
Ke

ω2 ]
−1

. (7)

In the case of a damaged structure, the stiffness matrices after damage according to Equations (6)
and (7), is commonly expressed, as follows:

∆K = Ks − Ke

= (ω2M−ω2M + Ks − Ke)

= (−ω2M + Ks)− (−ω2M + Ke)

= ω2(−Hs(ω)−1 + He(ω)−1)

, (8)

where Ks is the stiffness matrices before damage, Ke is the stiffness matrices after damage, and ∆K is
the variation in the stiffness matrices after damage. Furthermore, the damping matrices are commonly
considered constant with the damage that occurs, and the degradation of mass (∆M) is regarded as
zero [48–50].

However, in this calculation of H−1, a difficult problem is that all of the frequency response
function values cannot be measured. Therefore, Equations (6) and (7) can be transformed, as follows:

Hs(ω)Ks = ω2Hs(ω)Ms −ω2 I, (9)

He(ω)Ke = ω2He(ω)Me −ω2 I, (10)

where I is identity matrix with 1’s on diagonal line and zeros elsewhere.
Take row x for example, the equation above can be considered, as follows:

[Hx1, Hx2, Hx3 . . . . . . Hxn]e(Ke)n×n = ω2[Hx1, Hx2, Hx3 . . . . . . Hxn]e(M)n×n −ω2[0, 0, . . . , 0, 1, 0, . . . , 0, 0], (11)

where [0, 0, . . . , 0, 1, 0, . . . , 0, 0] in Equation (11) is a row matrix with 1’s on the x-th element and
zeros elsewhere.
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Hi(ω) changes with parameter ω. Therefore, a new matrix can be created only by the first line of
every He(ω). Equation (11) can be written, as follows:


H11(ω1) H12(ω1)

H11(ω2) H12(ω2)

. . . H1n(ω1)

. . . H1n(ω2)

. . . . . .
H11(ωn) H12(ωn)

. . .
. . . H1n(ωn)


e


K11 K12

K21 K22

. . . K1n

. . . K2n
. . . . . .
Kn1 Kn2

. . .
. . . Knn



=


ω2

1 0
0 ω2

2

. . . 0

. . . 0
. . . . . .
0 0

. . .
. . . ω2

n





H11(ω1) H12(ω1)

H11(ω2) H12(ω2)

. . . H1n(ω1)

. . . H1n(ω2)

. . . . . .
H11(ωn) H12(ωn)

. . .
. . . H1n(ωn)


e


M11 M12

M21 M22

. . . M1n

. . . M2n
. . . . . .
Mn1 Mn2

. . .
. . . Mnn

−


1 0
1 0

. . . 0

. . . 0
. . . . . .
1 0

. . .
. . . 0




. (12)

Due to the requirement of calculation in this paper, the first two rows and two columns[
K11 K12

K21 K22

]
of stiffness matrix


K11 K12

K21 K22

. . . K1n

. . . K2n
. . . . . .
Kn1 Kn2

. . .
. . . Knn

 are extracted in Equation (12).

Moreover, because the symmetry of the simplified stiffness matrix, the number of unknown parameters

can be reduced,

[
K11

K21

]
was adopted. Therefore, Equation (12) can be simplified into Equation (13).


H12(ω1) H12(ω1)

H11(ω2) H12(ω2)

H11(ω3) H12(ω3)

. . . . . .
H11(ωn) H12(ωn)


[

K11

K21

]
=


ω2

1 H11(ω1)M11 −ω2
1

ω2
2 H11(ω2)M21 −ω2

2
ω2

3 H11(ω3)M31 −ω2
3

. . .
ω2

n H11(ωn)Mn1 −ω2
n

. (13)

However, several of the values of Hi(ω) are nearly the same due to the same size and material of
the element in practice, thereby possibly affecting damage identification. To avoid this phenomenon,
Equation (8) can be expressed, as follows:

He(ω)∆K = ω2(−He(ω)Hs(ω)−1 + I). (14)

Hs(ω)−1 can be calculated using Equation (6). Similarly, a new matrix can be created from the
first row of every He(ω). Equation (14) can be written, as follows:

[H11(ω1) H12(ω1) . . . H1n(ω1)]e


∆K11 ∆K12

∆K21 ∆K22

. . . ∆K1n

. . . ∆K2n
. . . . . .

∆Kn1 ∆Kn2

. . .
. . . ∆Knn



= ω2

[1 0 . . . 0]− [H11(ω1) H12(ω1) . . . H1n(ω1)]e


H11 H12

H21 H22

. . . H1n

. . . H2n
. . . . . .
Hn1 Hn2

. . .
. . . Hnn


s


. (15)

The degradation of stiffness (∆K) that is caused by damage is commonly simulated by ∆EI in
actual projects [51].

Therefore, Equation (11) can be written, as follows:

[Hx1, Hx2, Hx3 . . . . . . Hxn]e(K
s)× ∆(EI) = ω2[Hx1, Hx2, Hx3 . . . . . . Hxn]e([H]s)

−1 −ω2[0, 0 . . . 1, 0 . . . 0, 0], (16)

where ([H]s)
−1 = Ms − Ks

ω2 . where [Ks] is the stiffness matrix calculated by the finite element model
and is a known quantity.
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∆K can be calculated after the appearance of ∆(EI). Therefore, the location of the damage can
be easily evaluated. In this paper, the Monkey algorithm was utilized as a optimization algorithm
to fit He(ω) and Ht(ω). Monkey Algorithm (MA) is an intelligent optimization algorithm, which is
put forward by Zhao and Tang [52], is used to solve multivariable optimization and multimodal
function optimization problem. In recent years, many scientists put into the related study of Monkey
Algorithm. The establishment of a gas filling station model is shown in the work by Zhao [53], and an
intrusion detection technology is worked by Zhang and Sun [54]. Yi has studied on sensor placement
on Canton Tower for health monitoring using asynchronous-climb monkey algorithm [55]. What is
more, to overcome the limitations overcome the limitations of the monkey algorithm, a reprogram
monkey algorithm program is improved by Wang [56]. The algorithm is been inspired by the monkey
climbing process in a given field that has many mountains, which simulated by the climbing, watching,
and jumping of the monkey in order to find the highest mountaintop. The corresponding search
process is as followed: climbing is used to search the local optimal solution of the current location;
watching is used to search a better solution of the adjacent of the current location; and, jumping is used
to reach a new location which can avoid the local optimum. This algorithm is a process of constantly
looking for the optimal solution. Monkey Algorithm was used to identify the change in stiffness,
which the error requirements is 0.1% in this paper. Meanwhile, assume that the group number of
monkey is 5, and the number of each group is 4. Analysis at the situation when the step size defaults to
1. The process of damage identification that is based on the acceleration frequency response function is
shown in Figure 1.
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Figure 1. Process of damage identification based on frequency response function.

3. Experimental Study

3.1. Similarity Analysis

Knowledge of similitude rules is essential for satisfying the fundamental conditions in planning
the scaled shield tunnel model testing, because the scaled model must behave in a manner similar to
the prototype.

Models in previous studies fall into two categories of vibration research. The first category
considers the entire vibrating structure a rigid body. In the second group, the model in which
vibrations occur in the structure is with respect to its stiffness. The vibration of a scaled shield tunnel
model in a soil box with damage belongs to the second research category.
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The scaled shield tunnel model in this study is a nonlinear elastic model because it involves the
shield tunnel and soil structures. Three requirements must be satisfied simultaneously in designing
the scaled shield tunnel model.

(1) Geometry
(2) Mass and mass distribution
(3) Gravity and inertial forces

With the scaled shield tunnel model structure considered to be an infinite Timoshenko beam,
the deformation equation is expressed, as follows:

1
r
=

M
EI

, (17)

where r is the radius of curvature, E is Young’s modulus, and I is the moment of inertia.

rp

rm
=

Mm

Mp
·

Ep

Em
·

Ip

Im
, (18)

where subscripts m and p indicate the model and the prototype, respectively. According to Froude’s
scaling law [57], Equation (18) can be simplified to the following:

Im

Ip
=

(
Lm

Lp

)5
·

Ep

Em
, (19)

with I ∝ L4, where Lm and Lp are the characteristic length of the model and the prototype, respectively.
Equation (19) can be written, as follows:

Lp

Lm
=

Ep

Em
. (20)

The ratio of the similarity of the shield tunnel structural and soil inertia forces, which are indicated
by Fss and Fs, must be the same in the model and the prototype. The ratio of the structural inertia force
Fss can be expressed, as follows:

Fss = ma, (21)

where m is the mass and a is the acceleration. Thus,

Fss ∝
ρssL4

t2 , (22)

where ρss is the shield tunnel structure density and t is the characteristic time. t is directly proportional
to L

t and thus can be written as follows:

Fss ∝ ρssL2v2, (23)

where v is the velocity of moving load.
The requirement for similarity is thus as follows:

Fss

Fs
∝

ρssL2v2

ρsL2v2 = constant, (24)

where ρs is the soil density.
Meanwhile, moving load scaling should also be considered in this study because it is the source

of the main excitation that acts on the shield tunnel model. The scaling law for the situation in this
work is also considered the Froude scaling law, which dictates that the scales for the time and velocity
were equal to the square root of the length scale. All of the parameters for the shield tunnel model
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are shown in Table 1. However, using the same scale for the entire model will result in an excessively
small model and hence a conflict with the scale of the density. Similarly, the scale of density may be
remarkably small, thereby potentially causing the instability between the shield model and the soil.
To avoid these problems, aluminum model pipes are used in this experiment, and their properties are
listed in Table 1. The stiffness of the shield tunnel model and the soil box parameters are also shown in
Table 1. The sand was considered a part of the shield tunnel system in the soil box. Fine yellow sand is
used in the tests for this study.

Table 1. The properties of aluminum model pipes considered in experimental verification.

Item Scale Prototype Desired Model Adopted
Model

Soil model

Length 1
30 135 m 4500 mm 4300 mm

Height 1
30 30 m 1000 mm 800 mm

Depth 1
30 30 m 1000 mm 800 mm

Bulk density 1
1 1800 kg/m3 1800 kg/m3 1800 kg/m3

Shield tunnel
model

Inner diameter 1
30 5.4 m 180 mm 160 mm

Outer diameter 1
30 6 m 200 mm 180 mm

Length 1
30 135 m 4500 mm 4300 mm

3.2. Description of Tested Structures

The proposed damage identification procedure was verified with real measurement data from
moving load vibration tests. Shield tunnel structures are affected by components in the complex
environment, such as the surrounding soil and groundwater. Thus, the experimental tests were
conducted with a simply scaled aluminum pipe model. The model, which was subjected to the
excitation of moving load with all of the designed sensor arrangement scenarios, was placed in the soil
box for the segment of shield tunnel for structural damage identification analysis.

Although the tests were not performed in a soil environment, the testing data provided
information that demonstrated the reliability of the proposed damage index in detecting damage. In
this experiment, aluminum and yellow sand were selected to represent concrete and soil, respectively.
The experimental setup for the dynamic tests of the aluminum pipe model is shown in Figure 2.
Eighteen cases for the scaled shield tunnel model with different damage types were tested and
monitored by using acceleration sensors, as shown in Figure 3. During testing, the entire structure in
the model vibrated as a rigid body. Each segment with a flange structure that formed the entire tunnel
structure measured approximately 140 mm in length, 180 mm in outer diameter, and 160 mm in inner
diameter. The segments installed were tightened by bolts to seal the gasket and washer against the
flange, as depicted in Figure 3. Detailed size information about the experimental model is shown in
Figure 4. In the model design, each segment is equivalent to a circle, which has a stiffness reduction
according to the area and the moment of inertia.
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Two damage types were involved in the study, namely, bar and block damages. Varying damage
severities were applied to Groups A and B, which were used to simulate crack and peeling-off damages,
respectively. Each damage was located at the top of the aluminum pipe. In Group A, the bending
rigidity of the bar damage components was reduced by 5% and 10% (The size of the four damages
are 120 mm× 20 mm, 240 mm× 20 mm), as shown in Figure 5. The same was performed on Group B
(The size of the four damages are 50 mm× 50 mm, 70 mm× 70 mm), as shown in Figure 6. Nine cases
were considered for each group. An undamaged case, four single-damage cases, three double-damage
cases, and one triple-damage case were set. The details of the two groups are tabulated in Tables 2 and 3.
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Table 3. Specifications of wireless accelerometer.

Range (g) ±5
Sensitivity (mV/g) 400

Frequency Response (Hz) 0–600
Output Noise, Differential [Root Mean Square,

typical] (µg/
√

Hz)
7

Max Shock [(0.1 ms)] (g) 2000
Non-Linearity (±90%FSO) 0.5%

Bias Tem. Shift (T = −55 ◦C to + 125 ◦C) 0.0001 g/◦C
Type Micro-machined capacitive sense element

Excitation Voltage (VDC) +5.0 VDC (±0.025 VDC)
Output Impedance 50 Ω
Operating Current 15 mA @ 5.0 VDC
Differential Output ±2.0VDC FSO

Cross Axis Sensitivity <= 3%
Operating Temperature −55 ◦C to + 125 ◦C

Damping Nitrogen Gas Damped
Overal Size (A× B× C) 49.5 mm× 12.4 mm× 20.3 mm

Weight (g) 54
Housing 6061 Aluminunum, IP67 rated

Cable BDI-RC-187 (specify length)
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In the experiment, 30 aluminum segments were used to assemble the long-lining shield tunnel
structure whose total length was 4200 mm, as shown in Figure 7. Meanwhile, the wireless test system
STS LIVE (Bridge Diagnostics, Inc, Louisville, CO, USA) was used to measure and collect the real-time
accelerator signals of each sensor. The specifications of the wireless accelerometer are shown in Table 3.
Fifteen wireless sensors were evenly distributed on the pipe model.

A moving load was used to simulate the train load in the tunnel. The simulated moving load
consisted of six carriages, and each carriage had two axes with a spacing of 100 mm. The traction device,
which could provide stable power, was used to pull the train load travelling in the tunnel. The power
of the traction device was 25 watts, which was rotated at 125 revolutions per minute. The moving load
and traction device are shown in Figure 8. The sampling frequency was 1000 Hz. “Same measurements”
were taken 10 times in order to avoid mistakes and accidental errors. The number of aluminum pipes
is shown in Figure 7.

According to the testing condition, the structure was simplified to a beam, which meant that the
response of all the nodes at the same cross section were the same. The finite element model of the test
was simplified as a beam structure with 30 elements, as shown in Figure 9. In addition, the experiment
was conducted within a short time to ensure accuracy. Temperature and humidity were relatively
stable, and no interference was caused by external excitation sources.
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Figure 9. Simplified finite element model.

3.3. Experimental Results and Analysis

Real-time acceleration data were obtained by the wireless node and a wireless test system.
To limit the length of this paper, only parts of the results collected by the typical acceleration sensor are
shown here.

First, the frequency response function of the undamaged structure was tested. In the experimental
tests, the speed of the moving load is 2 m/s. The scaling law for the situation in this work is also
considered the Froude scaling law, which dictates that the scales for the time and velocity should be
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equal to the square root of the length scale. According to the reference [39], equivalent node load can
be expressed, as follows:

P(x, ω) =
F

∆T
e−s−v+

√
v2+2ax
a , (25)

where P(x, ω) is the moving load in frequency domain; s is the Laplace parameter; F is the moving
load. The frequency response can be obtained with P(x, ω). The frequency response of the simulated
moving load, which consisted of six carriages, is shown in Figure 10.
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The acceleration frequency responses of the two damages are shown in the Figures 11 and 12,
and the frequency response function of the two groups are shown in Figures 13 and 14. Due to
limitation of pages, only some representative cases are presented in Figures 11–14.Sensors 2018, 18, x 12 of 21 

 

 
(a) (b) 

 
(c) (d) 

Figure 11. Acceleration frequency response of Group A: (a) UDMa; (b) DMG1a; (c) DMG5a; and, (d) 
DMG8a. 

 
(a) (b) 

 
(c) (d) 

Figure 12. Acceleration frequency response of Group B. (a) UDMb; (c) DMG5b; and, (d) DMG8b. 

A
cc

el
er

at
io

n 
fr

eq
ue

nc
y 

re
sp

on
se

A
cc

el
er

at
io

n 
fr

eq
ue

nc
y 

re
sp

on
se

A
cc

el
er

at
io

n 
fr

eq
ue

nc
y 

re
sp

on
se

A
cc

el
er

at
io

n 
fr

eq
ue

nc
y 

re
sp

on
se

A
cc

el
er

at
io

n 
fre

qu
en

cy
 re

sp
on

se

A
cc

el
er

at
io

n 
fre

qu
en

cy
 re

sp
on

se

A
cc

el
er

at
io

n 
fre

qu
en

cy
 re

sp
on

se

A
cc

el
er

at
io

n 
fre

qu
en

cy
 re

sp
on

se

Figure 11. Acceleration frequency response of Group A: (a) UDMa; (b) DMG1a; (c) DMG5a; and,
(d) DMG8a.
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Figure 13. Frequency response function of Group A: (a) UDMa; (b) DMG1a; (c) DMG5a; (d) DMG8a;
and, (e) all cases.
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Figure 14. Frequency response function of Group B: (a) UDMb; (b) DMG1b; (c) DMG5b; (d) DMG8b;
and, (e) all cases.

The results of the frequency response function are shown in Figures 13 and 14. Undamaged cases
a and b had the same situation. Model updating was used as described in Section 2. To limit the length
of the paper, only parts of the results are shown here. The data of the undamaged case (which can
be considered the simulation model) and damage case 1a are depicted here to illustrate the effect of
damage identification. The modified EI values of the undamaged case and damaged degree of case 1a
are presented in Tables 4 and 5, respectively. Under the undamaged circumstances, the model had
been modified, which is shown as Table 4. By using the modified EI as a benchmark of undamaged
structure, the experimental data which can obtain damaged EId was adopted to identify damage which
shown as Table 5. In particular, ∆EI

EIu
is the percentage of damage degree.
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Table 4. Stiffness change of partial unit of undamaged case.

Element Number Unmodified EI Modified EI ∆EI

5 2.71 × 109 2.09 × 109 6.20 × 108

7 2.71 × 109 2.38 × 109 3.33 × 108

10 2.71 × 109 2.21 × 109 5.00 × 108

13 2.71 × 109 2.53 × 109 1.80 × 108

14 2.71 × 109 2.49 × 109 2.11 × 108

17 2.71 × 109 1.89 × 109 8.25 × 108

20 2.71 × 109 2.07 × 109 6.40 × 108

Table 5. Stiffness change of partial unit of case 1a.

Element Number Undamaged EIu Damaged EId ∆EI ∆EI
EIu

(%)

5 2.09 × 109 2.03 × 109 6.48 × 107 0.031
7 2.38 × 109 2.35 × 109 3.33 × 107 0.014

10 2.21 × 109 1.73 × 109 4.81 × 108 0.218
13 2.53 × 109 2.43 × 109 9.87 × 107 0.039
14 2.49 × 109 2.44 × 109 4.73 × 107 0.019
17 1.89 × 109 1.68 × 109 2.08 × 107 0.011
20 2.07 × 109 1.98 × 109 8.90 × 107 0.043

The variation ratios of EI obtained for each damage case of Groups A and B are shown in
Figures 15 and 16, respectively. Application of the proposed method revealed that the variation ratio of
EI (∆EI) of the damaged element showed a noticeably increasing trend. The degradation of stiffness
that is caused by damage is commonly simulated by ∆EI in actual projects. The testing result indicated
that the numerical model was correct. The variation ratios of EI were observed exactly at the damage
element locations in single- and multi-damage situations. Furthermore, the bending rigidity of element
10 in case 1a was reduced by 5%. For example, in Group A, the bending rigidity of element 10 was
reduced by 10% in case 2a. Meanwhile, the bending rigidity values of elements 15 and 20 were reduced
by 5% in cases 3a and 4a, respectively, and a 5% measurement noise was considered in all of the
cases. Figures 15 and 16 indicate that the variation ratios of EI at the damaged element were amplified
obviously. For example, in case 1a, the variation ratio of EI of the damaged element was 0.21, which
largely outweighed those of the other elements. This finding demonstrated the feasibility and accuracy
of using the proposed approach in identifying the damage locations in a single-damage situation.
Moreover, the variation ratio may also be used for quantifying the damage. In multi-damage situations,
the variation ratio tended to increase in comparison with that in the single-damage case. This result
may be attributed to the interaction between damages. A comparison of cases 5a and 7a showed that
the shorter the distance between the two damage locations, the greater the influence.

The damage detection results for elements 10, 15, and 20 under different damage cases are
shown in Figure 17. As Figure 17a shows, the variation ratios of EI of the damaged elements were
significantly larger than those in the undamaged case. This finding indicated the effective detection
of the introduced damage. In case 6a, elements 10 and 20 had damage severities of 5% and 10%,
respectively, and element 15 had no damage, as shown in Figure 17a. The damage index of element
15 showed no noticeable change in comparison with that in the undamaged case. However, the damage
index values of damaged elements 10 and 20 showed significant increases when compared with those
in the undamaged state. A comparison of cases 5a and 6a showed that the damage magnitude has
only a small influence on the effect of damage identification. Meanwhile, a comparison of cases
5a and 7a indicated that the shorter the distance between two damage locations, the greater the
influence. Figure 17b shows the situation of Group B. The proposed approach was appropriate
for detecting the damage severity in the single- and multi-damage situations. This method is thus
attractive for detecting scouring damage in shield tunnels because various uncertainties and noises
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are involved in the modeling of shield tunnel structures and measuring their dynamic responses.
However, the quantitative relation between the simulated damage and the actual damage is unclear
and it should be discussed further.Sensors 2018, 18, x 16 of 21 
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4. Discussion and Conclusions 

This work investigated the feasibility and effectiveness of using the acceleration frequency 
function to identify the structural damage in underground tunnel structures. Numerical and 
experimental studies were conducted. An aluminum pipe model with a simulated underground 
boundary condition was designed and tested in a large soil box. Different damage scenarios were 
simulated by cutting the pipe models into various damage sizes. The experimental studies performed 
covered the accelerated frequency response function used for damage identification in underground 
structures. The stiffness loss KΔ  could be calculated after the appearance of ( )EIΔ . Therefore, the 
location of the damage could be easily judged. Meanwhile, the damage magnitude had less influence 
on the effect of damage identification. Moreover, the shorter the distance between two damage 
locations, the greater the influence. Damage identification for underground structures based on the 
analysis of the frequency response function can be adopted as an efficient and functional damage 
identification tool in practical applications. However, the quantitative relation between the simulated 
damage and the actual damage should be discussed further. 
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4. Discussion and Conclusions

This work investigated the feasibility and effectiveness of using the acceleration frequency
function to identify the structural damage in underground tunnel structures. Numerical and
experimental studies were conducted. An aluminum pipe model with a simulated underground
boundary condition was designed and tested in a large soil box. Different damage scenarios
were simulated by cutting the pipe models into various damage sizes. The experimental studies
performed covered the accelerated frequency response function used for damage identification in
underground structures. The stiffness loss ∆K could be calculated after the appearance of ∆(EI).
Therefore, the location of the damage could be easily judged. Meanwhile, the damage magnitude
had less influence on the effect of damage identification. Moreover, the shorter the distance between
two damage locations, the greater the influence. Damage identification for underground structures
based on the analysis of the frequency response function can be adopted as an efficient and functional
damage identification tool in practical applications. However, the quantitative relation between the
simulated damage and the actual damage should be discussed further.
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