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Abstract: In Global navigation satellite system (GNSS) data processing, integer ambiguity acceptance
test is considered as a challenging problem. A number of ambiguity acceptance tests have been
proposed from different perspective and then unified into the integer aperture estimation (IA)
framework. Among all the IA estimators, the optimal integer aperture (OIA) achieves the highest
success rate with the fixed failure rate tolerance. However, the OIA is of less practical appealing due to
its high computation complexity. On the other hand, the popular discrimination tests employ only two
integer candidates, which are the essential reason for their sub-optimality. In this study, a generalized
difference test (GDT) is proposed to exploit the benefit of including three or more integer candidates to
improve their performance from theoretical perspective. The simulation results indicate that the
third best integer candidates contribute to more than 70% success rate improvement for integer
bootstrapping success rate higher than 0.8 case. Therefore, the GDT with three integer candidates
(GDT3) achieves a good trade-off between the performance and computation burden. The threshold
function is also applied for rapid determination of the fixed failure rate (FF)-threshold for GDT3.
The performance improvement of GDT3 is validated with real GNSS data set. The numerical results
indicate that GDT3 achieves higher empirical success rate while the empirical failure rate remains
comparable. In a 20 km baseline test, the success rate GDT3 increase 7% with almost the same
empirical failure rate.

Keywords: GNSS; Ambiguity Resolution; Quality Control

1. Introduction

In the global navigation satellite system (GNSS) data processing and GNSS based remote
sensing applications, integer ambiguity resolution is an important and challenging research problem.
The mathematical model for carrier phase based GNSS positioning model can be expressed as [1]:

E(y) = Aa + Bb, D(y) = Qyy, a ∈ Zn, b ∈ Rp (1)
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where a and b are the integer and real-valued parameters, respectively. A and B are corresponding
design matrices. The observation vector y follows m dimensional multivariate normal distribution
with its variance-covariance (vc) matrix Qyy.

The mixed integer model can be solved by a four-step procedure [2]:

1. Estimating a and b using a least-squares estimator or Kalman filter. The integer nature of a
is not considered in this step and corresponding estimated parameters are regarded as the
’float solution’. The float solution and its variance-covariance matrix are denoted as:(

â
b̂

)
,

(
Qââ Qâb̂
Qb̂â Qb̂b̂

)
(2)

2. Mapping the real-valued ambiguity to integer with the integer estimator. The integer estimation

procedure can be described as
^
a = I(â), with I : Rn → Zn .

3. Performing ambiguity acceptance test. The fixed integer
^
a is validated with ambiguity acceptance

tests. If
^
a is rejected by the test, the procedure is finished and the float solution will be used as

the final solution
4. Updating real-valued parameters by

^
b = b̂−Qb̂âQ−1

ââ (â−^
a ) if

^
a is accepted by the ambiguity

acceptance test.

The ambiguity acceptance test problem can be solved by either an integer aperture estimator or a
hypothesis test. A typical hypothesis test problem involves three aspects: probability basis, a threshold
determination approach and a test statistic. The integer aperture estimation for ambiguity acceptance
test is based on the ambiguity residual distribution, which considers the stochastic property of the fixed
integer candidate, thus provides a sound probability basis. The ambiguity residual is defined as [3,4]:

^
ε = â−^

a ,
^
a ∈ Zn, â ∈ Rn (3)

The probability density function (PDF) of the ambiguity residual
^
ε is defined as [4]:

f^
ε
(x) = ∑

z∈Zn
f â(x + z)s0(x), s0(x) = { 1 if x ∈ S0

0 otherwise
(4)

where Sz is the pull-in region of integer estimation centered at integer vector z; f â(x) is the PDF of float
ambiguity â, which follows the multivariate normal distribution. f â(x) can be calculated with:

f â(x) =
1√

|Qââ|(2π)n
exp{−1

2
‖x− a‖2

Qââ
} (5)

where | · | is the determinant of the matrix; exp{·} is the exponential operator. ‖ · ‖2
Qââ

is the squared

Mahalanobis distance operator [5,6], which can be calculated by (·)TQ−1
ââ (·).

Integer aperture (IA) estimation is a class of ambiguity estimator, which can map the real
ambiguity into either integer or float solution. IA estimators allow for presence of gaps between
the adjacent acceptance regions, so the integer estimation is only a special case of IA estimation [7,8].
According to the IA estimation theory, the probability of the ambiguity acceptance test outcomes can be
calculated by [9]:

Ps = P(a = a) =
∫

Ωa
f â(x)dx

Pf = P(a 6= a) =
∫

Ω\Ωa
f â(x)dx = ∑

z 6=a

∫
Ωz

f â(x)dx =
∫

Ω0
( f^

ε
(x)− f â(x + a))dx

Pu = P(a = â) = 1− Ps − Pf

(6)



Sensors 2018, 18, 3018 3 of 18

where Ps, Pf and Pu are the success rate, the failure rate and the undecided rate respectively. a is the
output of an IA estimator. Comparing to the integer estimator, the IA estimator is a mixed estimator,
since its outcomes can be either an integer vector or a real-valued vector. Ω and Ωa are acceptance
region space and a particular acceptance region centered at a. There are four types of threshold
determination methods in ambiguity acceptance test: the empirical method, significance test, likelihood
ratio approach and the fixed failure rate approach [10]. The empirical method can only provide a crude
threshold but it is still the most popular way. The significance test approach is popular in early stages
but it is not considered suitable for ambiguity acceptance test, since the ambiguity acceptance test
cannot be treated as the standard hypothesis test problem. The likelihood ratio approach is a standard
hypothesis test, but its performance in ambiguity acceptance test has not been systematically studied.
The fixed failure rate (FF-) approach can control the probability of type II error, thus being considered
promising but its computation burden hinders its application in real-time scenarios. In order to reduce
the computation burden of the FF-approach, a number of methods have been proposed, such as the
look-up table method [11,12] and the threshold function method [2,13,14].

The third aspect of the hypothesis test is about the test statistics of the ambiguity acceptance test,
which has been the major focus of ambiguity acceptance test research. In early stages, many ambiguity
acceptance tests have been derived from different perspective, such as the F-ratio test [15,16],
the ratio test [17], the difference test [18], the projector test [19,20] and so forth. These test statistics
are empirically efficient, although some of them are not theoretical rigorous [21]. Within the
framework of the integer aperture estimation, the ellipsoidal integer aperture (EIA) [9], integer aperture
bootstrapping (IAB) [22], integer aperture least-squares (IALS) [23], penalized integer aperture
(PIA) [24] and optimal integer aperture (OIA) [25] were proposed. An extensive comparison between
different integer aperture estimators has been made and the results indicate that the ratio test and
the difference test are suboptimal estimator in terms of fixed failure rate [8,10]. A comparison among
the OIA, the ratio test and the difference test indicates that the OIA is theoretically optimal, although
it is not computationally efficient. Meanwhile, the ratio test and the difference test are efficient but
suboptimal [26]. The difference test is a rough approximation of the OIA and can be generalized to
bridge the gap between the difference test and the OIA. The generalized difference test employs
information of multiple integer candidates, which makes the difference test more rigorous without
significantly increasing the computation cost.

In this study, we propose the generalized difference test (GDT), which improves the
performance of the difference test by employing more than two integer candidates. The relationship
between the difference test and the OIA and the GDT is also analyzed.

2. The Sub-Optimality of the Difference test

Currently, the most popular methods for the ambiguity acceptance tests include the ratio test and
the difference test. Both employ two squared Mahalanobis distances for construction of test statistics
with the difference in their test statistics formation. According to a previous comparison between
the ratio test and the difference, the difference test is theoretically better than the ratio test [26,27],
so we focus on the difference test in the remaining discussion. In this section, we compare the difference
test and the OIA to reveal the sub-optimality of the difference test.

2.1. The Difference Test

The difference test is defined as [18]:

‖â−^
a 2‖

2
Qââ
− ‖â−^

a ‖
2
Qââ
≥ µD (7)

where
^
a and

^
a 2 are known as the ’best integer candidate‘ and the ’second best integer candidate‘

respectively. The difference test uses the difference between two squared Mahalanobis distance as the
test statistics. µD is the threshold for the difference test. In the integer least-squares estimation, the best
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integer candidate is defined as the integer vector has the shortest squared Mahalanobis distance to the
float solution, which is expressed as:

^
a = argmin

z∈Zn
‖â− z‖2

Qââ
, z ∈ Zn (8)

Similarly, the second-best candidate has the second shortest squared Mahalanobis distance.
The acceptance region of the difference test can be explicitly expressed and the difference test is a
member of IA estimator, which is known as the difference test integer aperture (DTIA). Comparing to
the OIA, DTIA only employs two integer vectors in the test statistics construction, while OIA involves
infinite number of integer candidates.

The probability basis of the DTIA can be derived from the PDF of the float solution. It is noticed
that the PDF of the multivariate normal distribution presents the exponential relationship with the
squared Mahalanobis distance. Hence, the ratio of the two PDFs subject to the best and the second-best
integers can be expressed as:

f â(x + a−^
a 2)

f â(x + a−^
a )

= exp
{
−1

2

(
‖x−^

a 2‖
2
Qââ − ‖x−

^
a ‖

2
Qââ

)}
(9)

where a is the true integer vector but it is unknown in reality. According to the definition of the
IA estimator, the acceptance region of the IA estimators is ’z-translational invariant’, which means
the shape of the acceptance region is independent from its center. The relationship expressed in
Equation (9) also holds for any other integer vector offset. Applying the ’z-translational invariant‘
property again, we have:

f â(x + a)
f â(x− z2)

= exp
{
−1

2

(
‖x‖2

Qââ − ‖x− z2‖2
Qââ

)}
, z2 6= 0 (10)

The equation shows that the difference test statistics lies in the ratio of the two PDFs; taken the
log form of the equation, then we have:

‖x− z2‖2
Qââ − ‖x‖2

Qââ = 2 loge

{
f â(x + a)
f â(x− z2)

}
(11)

The equation shows that the difference test is actually equivalent to the ratio of two PDFs.
Then substituting Equation (7) into Equation (9), we get another form of the difference test:

ΩDTIA,0 = {x ∈ S0|
f â(x− z2)

f â(x + a)
≤ exp{−1

2
µD}} (12)

The equation shows that the threshold of the test can be derived from µD.
Applying the ’z-translational invariant‘ property, the acceptance region of the difference test

integer aperture (DTIA) estimator can also be expressed as:

ΩDTIA,0 = {x ∈ S0|
f â(x + a)
f â(x− z2)

≥
√

eµD} (13)

2.2. The Optimal Integer Aperture Estimation

The optimal integer aperture (OIA) estimator is derived from a constrained optimization problem.
It is optimal in sense of the maximum success rate with given failure rate constraint. In the ambiguity
acceptance test problem, the success rate and the failure rate are both positively correlated to the
acceptance region size. For a particular IA estimator, more optimistic threshold always means higher
success rate and higher failure rate at the same time, In other word, it is impossible to pursue the
highest success rate without increasing its failure risk. As a trade-off, one can strive for the highest
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success rate with certain failure rate constraint. The objective function of the constrained optimization
problem in ambiguity acceptance test can be expressed as [25]:

maxΩ0⊂S0 Ps subject to : Pf ≤ c (14)

where Ps, Pf are the success rate and failure rate of the IA estimator, which can be calculated with
Equation (6); c is the failure rate tolerance.

The Neyman-Pearson lemma gives a solution to this constrained maximization problem [28].
The Neyman-Pearson lemma states that the constrained maximization problem

maxΩ⊂Rn

∫
Ω

f (x)dx subject to :
∫

Ω⊂Rn
g(x)dx = c (15)

can be solved by:
Ω = {x ∈ Rn| f (x) ≥ λg(x)}, λ ∈ R (16)

where f (x) and g(x) are integrable functions over Rn; λ is an unknown scalar to be determined.
It is obvious that the parameter λ is connected to the constraint parameter c, although their relationship
may not be explicit.

The problem solved by the Neyman-Pearson lemma is defined on Rn space, which cannot be
directly applied to the ambiguity acceptance test problem. Then, the lemma was extended to the
’z-translational invariant‘ case and the extended Neyman-Pearson lemma can be used to solve the
ambiguity acceptance test problem. The extended Neyman-Person lemma is given as [8,25]:

Ω = {x ∈ Rn| ∑
z∈Zn

f (x + z) ≥ λ ∑
z∈Zn

g(x + z), λ ∈ R} (17)

More specifically, the two integrable functions f (x) and g(x) in the ambiguity acceptance test
problem can be expressed as:

ΩOIA,0 = {x ∈ S0| ∑
z∈Zn

f â(x + z) ≥ λ( ∑
z∈Zn

f â(x + z)− f â(x + a)), z ∈ Zn} (18)

where S0 is the pull-in region of integer estimator centered at 0. The equation shows that the OIA also
can be written into the ratio of two PDFs form.

Considering the definition of the PDF of the ambiguity residuals, Equation (18) can be rewritten as:

ΩOIA,0 = {x ∈ S0|
f â(x + a)

f^
ε
(x)

≥ µO, µO =
λ− 1

λ
} (19)

where µO is the threshold of the OIA. Similar to the parameter λ, it also has implicit relationship with
the failure rate tolerance c. The equation can also be equivalently expressed as:

ΩOIA,0 = {x ∈ S0|
f â(x + a)

∑
z∈Zn

f â(x + z)
≥ µO, µO =

λ− 1
λ
} (20)

There are two challenges in OIA implementation: (1) determining the threshold µO according to
the failure rate tolerance, and (2) calculating the test statistics involving infinite number of PDF terms.

The first challenge comes from the implicit relationship between the threshold µO according to
the failure rate tolerance. The implicit relationship can be numerically determined with the
Monte-Carlo method and then the threshold can be determined by a root-finding algorithm.
The detailed algorithm can be found in the studies [10,29]. The Monte-Carlo procedure is computation
extensive, while it can be mitigated with the look-up table or threshold function method.
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The second challenge is solved by an approximation method. As the float solution follows
multivariate normal distribution, corresponding squared Mahalanobis distance follows χ2(n)
distribution. Since

∫ ∞
0 ‖x‖

2
Qââ

dx = 1, it is possible to find a finite radius R fulfilling the following
requirement: ∫ R

0
‖x‖2

Qââ
dx = 1− ε (21)

where ε is the probability tolerance controlling the implementation error. Smaller ε means
the implementation is closer to the theory and consequently heavier computation burden.
Then, the integers within the radius R are considered as the valid integer set and used to compute the
f^

ε
(x) [4,30,31]. The integer set can be defined as:

‖z− â‖2
Qââ
≤ R, ∀z ∈ Zn (22)

The radius parameter R can be determined according to the cumulated distribution function
(CDF) of the χ2(n) distribution. An example of integer number in OIA implementation with the
probability tolerance ε = 10−12 is presented in Figure 1. The figure shows that the integer number
and its variability are dramatically decreases as the integer bootstrapping (IB) success rate increases.
IB success rate serves as a tight lower bound of the integer least-squares (ILS) success rate and can
present the underlying model strength. The weaker underlying model means the lower IB success
rate. Therefore, the figure shows that the number of integer candidates is correlated to the underlying
model strength. For most cases, the computation of OIA involves hundreds of integer candidates
with the given significance level. A larger integer candidate set means more extensive computational
burden. Therefore, computation complexity is the one of the major challenge of OIA in practice.
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2.3. The Discrepancy between the DTIA and the OIA

It is noticed that both the DTIA and the OIA can be expressed as the ratio of PDFs, while the
difference is the denominator. Comparing Equation (13) and (20), it is realized the sub-optimality of
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the difference test is actually the result of only taking the PDF contribution of z2 while OIA takes all
z ∈ Zn. It can be anticipated that that the performance of the DTIA would be closer to OIA when the
contribution of z3, z4, · · · are negligible. If the PDF contribution of the remaining integers, such as
z3, z4, · · · in f^

ε
(x) is not negligible, the performance of the difference test would be more distant

from OIA. A two-dimensional demonstration of the acceptance region difference between the OIA
and the DTIA is illustrated in Figure 2. The figure compares two scenarios with stronger underlying
model and weaker underlying model, with their integer bootstrapping (IB) success rate 0.850 and 0.974
respectively. For each model, different thresholds are compared. The acceptance region of the OIA and
the DTIA are given with the same λ. The figure also presents the PDF contribution of z3, z4, · · · in the
ambiguity residual PDF in different colors. Dark color means more significant PDF contribution to
f^

ε
(x). For the two-dimensional case, the acceptance region of integer least-squares estimator (ILS) is

typically a hexagon, which has 6 adjacent pull-in regions. The hexagon can be further divided into 6
parts, which corresponds to 6 different ’the second-best integer candidates’. The boundaries of these
6 parts are highlighted with the dash line. It is noticed that â falling in the region close to the dash
line has similar Mahalanobis distance to the ‘second best integer candidate’ and the ‘third best integer
candidate.’ Therefore, the value of f â(x + z2) and f â(x + z3) should be the similar, especially for the
corners of the hexagon. However, DTIA only considers f â(x) and f â(x + z2), while f â(x + z3) is not
taken into consideration. Therefore, the most significant discrepancy between the acceptance region of
DTIA and the OIA are the corner regions. The figure indicates that the PDF contribution of z3, z4, · · ·
in weaker model is more significant than the stronger model. Correspondingly, the acceptance region
discrepancy between DTIA and OIA is more obvious in the weak model than the strong model.
Moreover, the discrepancy also depends on the selection of λ. Stricter thresholds cause more significant
discrepancies between DTIA and OIA. Generally, the DTIA is always over-optimistic than the OIA
since the potential failure risk from z3, z4, · · · is not considered. The risk is negligible in the strong
model, while it becomes more obvious as the underlying model becomes weaker. It concludes that
only considering two integer candidates is not enough for a weak underlying model.

Sensors 2018, 17, x  7 of 18 

 

2.3. The Discrepancy between the DTIA and the OIA 

It is noticed that both the DTIA and the OIA can be expressed as the ratio of PDFs, while the 
difference is the denominator. Comparing Equation (13) and (20), it is realized the sub-optimality of 
the difference test is actually the result of only taking the PDF contribution of 2z  while OIA takes 

all nz . It can be anticipated that that the performance of the DTIA would be closer to OIA when 
the contribution of 3 4, ,z z   are negligible. If the PDF contribution of the remaining integers, such 
as 3 4, ,z z   in ( )f x  is not negligible, the performance of the difference test would be more distant 
from OIA. A two-dimensional demonstration of the acceptance region difference between the OIA 
and the DTIA is illustrated in Figure 2. The figure compares two scenarios with stronger underlying 
model and weaker underlying model, with their integer bootstrapping (IB) success rate 0.850 and 
0.974 respectively. For each model, different thresholds are compared. The acceptance region of the 
OIA and the DTIA are given with the same  . The figure also presents the PDF contribution of 

3 4, ,z z   in the ambiguity residual PDF in different colors. Dark color means more significant PDF 
contribution to ( )f x . For the two-dimensional case, the acceptance region of integer least-squares 
estimator (ILS) is typically a hexagon, which has 6 adjacent pull-in regions. The hexagon can be 
further divided into 6 parts, which corresponds to 6 different ’the second-best integer candidates’. 
The boundaries of these 6 parts are highlighted with the dash line. It is noticed that â falling in the 
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3. Generalized Difference Test

Above analysis indicates that the discrepancy between the DTIA and the OIA is caused by
neglecting the probability contribution of z3, z4, · · · . For the weak underlying model, the DTIA is not
strict enough since it is over-optimistic to the failure risk. In this section, we proposed a
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generalized difference test approach, which can improve the performance of DTIA in case of weak
underlying models.

3.1. Definition of the Generalized Difference test

Current discrimination tests, such as the ratio test, the difference test, the projector test and a
few other ambiguity acceptance tests, such as the model separability based ambiguity acceptance
test approach [32] all employs the ’best integer candidate‘ and the ’second best integer candidate’.
However, above analysis indicates that employing two integer candidates may not be enough for
a weak model scenario. Therefore, we attempt to construct a new test statistic with more than two
integer candidates.

The PDF of the ambiguity residuals can be expanded as:

f^
ε
(x) = ∑

z∈Zn
f â(x + z) = f â(x + a− z1) + f â(x + a− z2) + · · · , ∀x ∈ S0 (23)

where [z1, z2, · · · , zn] are the best integer candidate, the second-best integer candidate to the nth best
integer candidates, which are in decreasing ordered by their contribution to f^

ε
(x). Then we have

f^
ε
(x)

f â(x + a)
= 1 +

f â(x + a− z2)

f â(x + a)
+

f â(x + a− z3)

f â(x + a)
+ · · · (24)

Substituting Equations (10) into Equation (24), then the PDF ratio can be expressed by the
difference test statistics, which is given as:

f^
ε
(x)

f â(x + a)
= 1 + exp

{
1
2

(
‖x‖2

Q ââ − ‖x− z2‖2
Q ââ

)}
+ exp

{
1
2

(
‖x‖2

Q ââ − ‖x− z3‖2
Q ââ

)}
+ · · · (25)

The equation allows for incorporating more than two integer candidates into the test statistics
construction and each term has the difference test statistics form, which is denoted as the generalized
difference test (GDT). The number of integer candidates depends on the underlying model strength.
In order to discriminate the test statistics term number, the GDT with m integer candidates is denoted
as GDTm. For example, the generalized difference test with three integer candidate case is defined as:

ΩGDT3,0 = {x ∈ S0| exp
{

1
2

(
‖x‖2

Q ââ − ‖x− z2‖2
Q ââ

)}
+ exp

{
1
2

(
‖x‖2

Q ââ − ‖x− z3‖2
Q ââ

)}
≤ 1

µG3
} (26)

In the equation, the second-best integer and the third best integer depends on the value of x.
The equation shows that the difference test is only a special case of the generalized difference test,

which can be denoted as GDT2, the threshold of µD and µG2 have following relationship:

µD = 2logeµG2 (27)

However, this relationship only holds for GDT2. Another extreme case of the generalized
difference test is the OIA, which can be denoted as GDT∞ since the OIA considers all integer candidates
in the integer space Zn.

3.2. The Acceptance Region of the GDT

The generalized form of the difference test is also an integer aperture estimator. Its acceptance
region is defined as:

ΩGDTm,0 = {x ∈ S0|
m

∑
i=2

exp
{

1
2

(
‖x‖2

Q ââ − ‖x− zi‖2
Q ââ

)}
≤ 1

µGm
} (28)
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where m is the term number of the GDT, which defines the number of term in the GDT test
statistic. The GDT defines a class of scalable test statistics. Different test statistics correspond to
different acceptance regions, which are bounded by the difference test and the OIA acceptance region.
It allows the users to choose the optimal term number of GDT to balance between performance
and computation burden. Generally, the GDT with more terms means heavier computation burden
and closer to the OIA. The impact of incorporating both z2 and z3 in test statistics construction is
demonstrated in Figure 3 . The figure shows the acceptance region of DTIA, GDT3 and the OIA with the
weak model and strong model respectively. It is observed that the acceptance region of GDT3 is closer to
the OIA than the difference test. The discrepancy between GDT3 and OIA is larger under weaker
underlying model. For the same underlying model, the discrepancy also depends on the threshold
settings. The discrepancy becomes more significant for a stricter threshold. For λO = 99 case in the first
model, the discrepancy between GDT3 and the OIA is significant, while the discrepancy for λO = 4
case is less pronounced. For larger discrepancy cases, more integer candidates should be involved.
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3.3. The Optimal Term Number of GDT

According to the previous analysis, optimal determination of the term number of GDT
is meaningful to achieve good balance between the performance and the computation burden.
Considering the computation burden, it makes good sense to select fewer integer sets that play
the most important role in f^

ε
(x) computation. The contribution of PDFs depends on the Mahalanobis

distance, so we need search the best m sets of integer candidates first. In order to optimally determine
the practical GDT term number, the impact of the integer candidate number on the success rate with
fixed failure rate is examined by comparing the success rates between the OIA and the difference test,
GDT3, GDT4 and GDT5. The simulation results are presented in Figure 4. The simulation employs
about 400 examples with their IB success rate varying between 99.95% and 80%. The underlying model
with IB success rate lower than 80% is considered too weak for ambiguity resolution. 100,000 samples
are used in the Monte Carlo simulation to numerically determine the threshold, the success rate and
the failure rate for each example. The left panel presents the average success rate difference between
GDT and OIA, while the right panel shows the maximum success rate difference. The average success
rate difference between the difference test and the OIA is about 0.3~0.5% and the maximum value
reaches 1.6%. GDT3, GDT4 and GDT5 achieves higher success rate than the difference test but their
improvements are not the same. The third best integer candidate z3 contributes more than 74% out of
all success rate improved by incorporating all integers. z4 contributes about 17.5% and z5 contributes
about 3.7% on average. All the remaining integers contribute to about 3.6% success rate improvement
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on average. Overall, GDT3 yields the maximum profit and is recommended for the IB success rate
higher than 80% case. For these users who do not care about computation resources, employing GDT4
or even GDT5 still further improves the success rate.
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3.4. Rapid Determination of the Threshold of the GDT

The fixed failure rate (FF-) approach is theoretically rigorous and applicable to all IA estimators
but it is computation exhaustive. Due to the extensive computation in the Monte-Carlo procedure,
the FF-approach is difficult to be applied in real-time application. In order to improve the computation
efficiency, the lookup table method [11,12] and the threshold function method [2,13] have been
proposed. The look-up table method is applicable to all IA estimators but it is model-dependent.
Users are encouraged to create their own look up table according to the specific underlying model.
The threshold function method is independent from ambiguity dimension and underlying function
model and it was proposed for the difference test. Although this method is also attempted in the
ratio test but it becomes more complex than the difference test case [33]. The method to mitigate
computation burden for OIA has not been systematically studied.

According to the definition, the GDT is an extended form of the difference test, so we attempt to
use the similar threshold determination method to improve its computation efficiency. The threshold
function method has shown to work well for the difference test, so it is also worth to try in the
GDT threshold determination. In order to applying a similar rational function as the difference
test, the logarithm form of the GDT threshold is used. The relationship between fixed failure rate
threshold of GDT3 and IB success rate can be given as:

log µG3(x) =
e1 + e2x

1 + e3x + e4x2 (29)

where e1, e2, e3, e4 are the model coefficients; x is the IB success rate, which can be calculated with
Qââ [34,35]:

Ps,IB =
n

∏
i=1

(2Φ(
1

2σâi|I

)− 1) (30)

where Φ(·) is the cumulative distribution function (CDF) of the normal distribution. σâi|I is thei th
conditional variance subject to {1, · · · , i− 1}. The conditional variance σâi|I can be obtained by the
LDL decomposition. The decorrelation procedure has to be applied since only decorrelated IB success
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rate is a tight lower bound of integer least-squares success rate [36]. The decorrelation method and the
LDL decomposition method are described in the work [37].

The relationship between the logarithm GDT3 threshold and the IB success rate is illustrated in
Figure 5. The figure indicates that the relationship between the logarithm of GDT3 threshold and the
IB success rate is quite similar as the difference test threshold function. The Levenberg-Marquardt
curve fitting algorithm is used to find the functional relationship [38,39] and the fitted curve is marked
as the black dash line in the figure. The color dots are the threshold of GDT3 determined with the
Monte-Carlo simulation method. The figure shows that the fitted curves agree with the observed
threshold well. The impact of curve fitting on the success rate, failure rate and threshold for the
difference test has been carefully examined in Reference [2] and GDT has quite similar performance,
so it is not discussed in details. The coefficients of the threshold function for different failure rate
tolerance is listed in Table 1. It is noticed the fitted curve for GDT is the logarithm form of the threshold,
rather than the threshold.
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Table 1. The coefficient of the threshold function for the GDT3 with different failure rate tolerance.

Pf(%) e1 e2 e3 e4

0.1 1.6691 −1.6660 −1.7798 0.7849
0.2 1.6957 −1.6990 −1.7434 0.7492
0.3 1.6277 −1.6333 −1.7419 0.7491
0.4 1.5834 −1.5899 −1.7383 0.7471
0.5 1.4711 −1.4775 −1.7617 0.7723
0.6 1.4260 −1.4314 −1.7653 0.7780
0.7 1.3723 −1.3796 −1.7740 0.7875
0.8 1.3850 −1.3959 −1.7589 0.7726
0.9 1.2930 −1.3041 −1.7851 0.8001
1.0 1.2639 −1.2771 −1.7881 0.8035

3.5. The Procedure of Applying GDT

After the term number and the threshold function are determined, the procedure for how to apply
GDT in practice may be outlined. Recalling the four-step procedure to solve the mixed integer linear
problem, the second and the third step should be redefined. The procedure of applying GDT can be
summarized as follows:
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1. Finding the best m integer candidates. The optimal integer estimator, the integer least-squares,
can intermediately give an arbitrary number of best integer candidate sets. Hence, getting m best
sets of integer candidates is just a sorting procedure.

2. Constructing the test statistics of GDT. For example, the test statistics of GDT3 can be computed as:

µ̂GDT3 = exp
{

1
2

(
‖â−^

a ‖
2
Q ââ − ‖â−

^
a 2‖

2
Q ââ

)}
+ exp

{
1
2

(
‖â−^

a ‖
2
Q ââ − ‖â−

^
a 3‖

2
Q ââ

)}
(31)

where µ̂GDT3 denotes for the computed test statistics of GDT3.
^
a ,

^
a 2,

^
a 3 are the best, second best,

third best sets of integer candidates. The squared Mahalanobis distances can also be obtained
with the integer least-squares searching procedure.

3. Computing IB success rate with Equation (26), then determining the threshold logµGDT3 of
GDT using the threshold function with specified IB success rate and failure rate tolerance.
The threshold is a non-negative value, so the threshold is set to be zero if the computed threshold
logµGDT3 is negative.

4. Performing ambiguity acceptance test. If µ̂GDT3 ≤ 1
eµGDT3 , or equivalently log(1/µ̂GDT3) ≥ µGDT3,

then the best integer candidate
^
a can be accepted by the ambiguity acceptance test, otherwise,

reject it. Since the threshold function gives logµGDT3, it is necessary to recover the µGDT3 with an
exponential function.

4. Performance Evaluation of the GDT

The performance of GDT can be evaluated in terms of success rate and percentage identical to
OIA. The success rate acts as an important performance indicator for the IA estimation performance,
the IA estimator achieves higher success rate subject to the given failure rate tolerance is preferred.
The percentage identical to OIA is used to assess the optimality of the IA estimator.

Since the success rate of the GDT is difficult to compute analytically, the Monte Carlo approach
is adopted. The description of success rate computation method using Monte Carlo method can be
found in Reference [34]. About 400 samples with their IB success rates vary from 0.8 to 0.995
are selected to address the relationship between GDT performance and the underlying model.
Since the discrepancy between DTIA and GDT is IB success rate sensitive, the comparison is made on
group basis. These samples are divided into four groups with their IB success rate within [0.96,0.999],
[0.92,0.959], [0.88,0.919], [0.84,0.879] and [0.80,0.849].

The comparison results are presented in Figure 6. The left panel shows the average success
gain of OIA and GDT with respect to DTIA. The results show that the success rate gain with respect to
the difference test vanishes as the IB success rate increases. For Ps,IB ≥ 0.96 case, all tests achieve
almost the same success rate as the OIA. In case of Ps,IB ≈ 0.8 case, the average success rate between
the difference test and the OIA increases 0.8%. The discrepancy between the GDT3 and difference
tests also increases to about 0.6%. GDT3 accounts for more than 70% of the total possible success
rate improvement, which is consistency to the previous analysis. Considering more integers also
contribute to the success rate improvement, however, less significant. The figure also indicates that the
discrepancy between GDT3 and GDT4 also increased as the IB success rate decreases, which means
GDT3 may not be enough for even weaker underlying model. The success rate discrepancy between
GDT3 and GDT4 achieves 0.13% for Ps,IB ≈ 0.8 case. For these success rata critical applications,
the impact of the fourth best integer candidate also should be considered. For the model with IB
success rate lower than 0.8, maybe GDT4 or even GDT5 should be considered.

The percentage identical to OIA is used to evaluate the optimality of the GDT estimators.
The simulation results are presented in the right panel of Figure 6. The results show that the
optimality of GDT increases as the IB success rate increases. For Ps,IB > 95% case, the difference test
achieves 99.9% identical to the OIA. However, the difference test becomes less and less optimal as
the Ps,IB decreases. For Ps,IB = 80% case, the difference test only has 95.3% chance to make the same



Sensors 2018, 18, 3018 13 of 18

decision as the OIA but this percentage is improved to 97.8% by GDT3 and 99.4% by GDT5 respectively.
For the case of IB success rates higher than 0.9, GDT3 achieves the percentage of higher than 99%
identical to OIA.

Comparing the two panels, it is noticed that the percentage identical to OIA improvement is
more significant than the success rate improvement. This is because the percentage identical to OIA
is used to measure the similarity of the GDT acceptance region to OIA acceptance region, rather than
the success rate, while the acceptance region of OIA gives a good separation on failure probability and
the success probability.
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5. Numerical Results from GNSS Baseline Data

The performance of the GDT is validated by epoch-by-epoch RTK processing of GNSSdata from
the NGS CORS network, which is publicly accessible by the FTP server (ftp://geodesy.noaa.gov).
As shown in Figure 7, the inter-station distances are all within 20 km. The observations collected on
1–7 June 2017 (DOY 152–158) are used in data analysis. Ten baselines for formed and processed epoch
by epoch with the carrier phase ambiguity resolved by the LAMBDA approach [1]. The ambiguity
resolved with the coordinate constrained model is used as the true integer ambiguity. The data analyzed
with various GDT schemes are processed and the estimated integer ambiguities are compared with the
true ambiguity to obtain the empirical success rate. The threshold of the difference test and the GDT3
are determined with the threshold function method.

Since the difference test and GDT are all PDF based test statistics, it is critical to establishing a
realistic stochastic model for the observations. The stochastic modeling in the data processing can be
described as follows:

1. The ionosphere weighted model is used to capture the ionosphere biases. The elevation dependent
and baseline dependent stochastic model is used for the priori ionospheric noise. With strong
priori ionosphere constraint, the short-baseline is equivalent to the ionosphere-fixed model.

2. The elevation dependent weighting model is used to reflect the observation noise.
3. The posterior variance factor is estimated on epoch basis to adapt the temporal variation of

observation noise. Since the difference test and GDT are sensitive to the variance factor, so capture
the temporal variation of variance factor is important. A more detailed stochastic modeling
strategies can be found in the work [14].

After the integer ambiguities are estimated with the ILS estimator, the test statistics of the
difference test and the GDT3 are computed and their thresholds are computed according to the IB

ftp://geodesy.noaa.gov


Sensors 2018, 18, 3018 14 of 18

success rate and threshold function. The obtained integer solutions are compared with the true
ambiguity integers to calculate the actual success rate and failure rate, which are referred as the
empirical success rate and empirical failure rate respectively.

Sensors 2018, 17, x  14 of 18 

 

2. The elevation dependent weighting model is used to reflect the observation noise. 
3. The posterior variance factor is estimated on epoch basis to adapt the temporal variation of 

observation noise. Since the difference test and GDT are sensitive to the variance factor, so 
capture the temporal variation of variance factor is important. A more detailed stochastic 
modeling strategies can be found in the work [14].  

After the integer ambiguities are estimated with the ILS estimator, the test statistics of the 
difference test and the GDT3 are computed and their thresholds are computed according to the IB 
success rate and threshold function. The obtained integer solutions are compared with the true 
ambiguity integers to calculate the actual success rate and failure rate, which are referred as the 
empirical success rate and empirical failure rate respectively. 

  
Figure 7. The distribution of the CORS stations. 

In order to give a more intuitive comparison between DTIA and GDT3, their test statistics and 
thresholds are compared. The two baselines, P526-P295 and P067-P295 are chosen since they are the 
shortest and the longest baseline in the network respectively. The test statistics and the FF-threshold 
calculated from the threshold function are shown in Figure 8. For the convenience, the modified 
form of GDT3 is used in the comparison. The figures indicate that the amplitude of the GDT3 test 
statistics is generally smaller than that of the DTIA time series, while the corresponding threshold is 
also lower than that of the DTIA threshold. The value of GDT3 test statistics is reduced as the 
baseline length increases, while the threshold increases as the baseline length increases and 
consequently, the long baseline case has lower fix rate for both DTIA and GDT3. According to the 
threshold function, a higher value in the threshold function generally means lower success rate. 

  
Figure 8. Illustration of DTIA and GDT3 test statistics and FF-threshold for baseline P256-P259 (left) 
and P067-P259 (right). 

Te
st

 S
ta

tis
tic

s

Figure 7. The distribution of the CORS stations.

In order to give a more intuitive comparison between DTIA and GDT3, their test statistics and
thresholds are compared. The two baselines, P526-P295 and P067-P295 are chosen since they are the
shortest and the longest baseline in the network respectively. The test statistics and the FF-threshold
calculated from the threshold function are shown in Figure 8. For the convenience, the modified
form of GDT3 is used in the comparison. The figures indicate that the amplitude of the GDT3 test
statistics is generally smaller than that of the DTIA time series, while the corresponding threshold is
also lower than that of the DTIA threshold. The value of GDT3 test statistics is reduced as the baseline
length increases, while the threshold increases as the baseline length increases and consequently,
the long baseline case has lower fix rate for both DTIA and GDT3. According to the threshold function,
a higher value in the threshold function generally means lower success rate.
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Figure 8. Illustration of DTIA and GDT3 test statistics and FF-threshold for baseline P256-P259 (left)
and P067-P259 (right).

DTIA and GDT are compared by means of the empirical success rate and empirical failure rate.
The empirical failure rate of the difference test and GDT3 for all baselines is presented in Figure 9.
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The results are sorted in ascending order according to their baseline length. The ILS failure rate of
the baselines and the failure rate tolerance P f are also presented in the figure. The ILS failure rate
results stay as the upper bound of the empirical failure rate since no quality control is applied in this
case. The results demonstrate that both the difference test and the GDT3 can efficiently reduce the
failure risk. For most baselines, the empirical failure rate of GDT3 is quite similar to the DTIA and
some of them are slightly higher than the difference test, For the lower panels, both the difference test
and GDT3 can meet the failure rate tolerance, while the empirical failure rate for baseline P278-P576,
P526-P576, P295-P576 and P067-P576 do not fit with the threshold well. It is noticed that all these
baselines are connected to the P576 station, so the unexpected large failure rate may be caused by
unexpected biases or mismodeling of the station-specified observation noise. Generally, the failure
rate achieved by the threshold function of GDT remains comparable with that of the difference test.
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Figure 9. Comparison of the actual failure rate of DT and GDT3 against the failure rate tolerance.

The empirical success rates of the difference test and GDT3 are presented in Figure 10.
It is observed that for a particular baseline, the success rate increases as the failure rate tolerance
getting larger. The empirical success rate also decreases as the baseline length increases. Generally,
the GDT3 achieves higher success rate than the difference test for all baselines. Since the baselines are
sorted by their baseline length, the figures also indicate that the success rate of the baselines decreases
as the baseline length increases, while the failure rate does not have similar results. The improvement
achieved with GDT3 is more significant for the weaker underlying model. For example, the empirical
success rate of GDT3 is about 7% higher than the difference test, although they have similar empirical
failure rate.
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6. Concluding Remarks 

A generalized difference test (GDT) approach for GNSS ambiguity acceptance test has been 
investigated in this study. Current discrimination tests, such as the ratio test, the difference test, only 
consider two integer candidates in the construction of test statistics. In this work, we examined the 
role of the third, fourth and fifth best integer candidates in ambiguity acceptance test and their 
contribution to the ambiguity residual PDF is analyzed. It concludes that considering two integer 
candidates may underestimate the failure risk, especially for a weak underlying model. In order to 
improve the performance of the difference test, a generalized difference test (GDT) employing an 
arbitrary number of integer candidates is proposed. The simulation results have indicated that 
considering more sets of integer candidates in test statistics construction can improve the success 
rate and the percentage identical to OIA.  

Comparing to other GDTs, GDT3 contributes to more than 70% of the success rate gain with 
only considering one extra integer candidates. Therefore, GDT3 is considered as a first choice to 
balance between the performance and computation complexity when the integer bootstrapping 
success rate higher than 80% cases. However, more sets of integer candidates may be involved for 
even weaker underlying models to achieve higher performance. Similar to the difference test the 
rational function is constructed to rapidly determine the fixed failure rate threshold for the GDT3, 
which helps circumvent the time-consuming Monte-Carlo procedure and significantly improves the 
computation efficiency of GDT3. The performance of GDT3 is validated with real GNSS datasets 
processed in single epoch RTK mode. The test results indicate that the GDT3 achieves higher 
empirical success rate while the empirical failure rate remains comparable as the difference test in 
all tested baselines. The improvement provided by the GDT3 is more significant for the longer 
baseline case. For the 20km baseline, the empirical success rate of GDT3 gains 7% if the difference 
test and the GDT3 failure rate remains comparable. 
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