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Abstract: The problem of target localization in WSN (wireless sensor network) has received much
attention in recent years. However, the performance of traditional localization algorithms will
drastically degrade in the non-line of sight (NLOS) environment. Moreover, variable methods have
been presented to address this issue, such as the optimization-based method and the NLOS modeling
method. The former produces a higher complexity and the latter is sensitive to the propagating
environment. Therefore, this paper puts forward a simple NLOS identification and localization
algorithm based on the residual analysis, where at least two line-of-sight (LOS) propagating anchor
nodes (AN) are required. First, all ANs are grouped into several subgroups, and each subgroup can
get intermediate position estimates of target node through traditional localization algorithms. Then,
the AN with an NLOS propagation, namely NLOS-AN, can be identified by the threshold based
hypothesis test, where the test variable, i.e., the localization residual, is computed according to the
intermediate position estimations. Finally, the position of target node can be estimated by only using
ANs under line of sight (LOS) propagations. Simulation results show that the proposed algorithm
can successfully identify the NLOS-AN, by which the following localization produces high accuracy
so long as there are no less than two LOS-ANs.

Keywords: wireless localization; non-line-of-sight error; localization residual; wireless sensor network

1. Introduction

Target localization in the wireless sensor network has received immense attention in recent
years. According to the measured localization parameter, the target localization can be classified
as: time of arrival (TOA) [1–3], time difference of arrival (TDOA) [4,5], received signal strength
indication (RSSI) [6–8], angle of arrival (AOA) [9], as well as their mixing parameters TOA/AOA [10],
TDOA/AOA [11] and RSS/AOA [12,13]. But regardless of localization parameters, the localization
accuracy will be affected by two major errors. The one is the measurement error, which is usually
defined as a Gaussian variable of zero mean [14]. The second is the non-line of sight (NLOS) error
caused by the refraction and reflection during signal propagation. In practice, the latter is much larger
than the former, and has become a crucial factor for the positioning [14,15]. In a wide area network,
such as the macro cellular network, NLOS error may approaches several hundreds meters [16], while
in the small area network, such as the WSN, it may covers tens of meters. Therefore, the NLOS error
suppression has become a key issue in the wireless localization.

In order to tackle the NLOS issue, there are three kinds of suppression algorithms. The first
is trying to model the non-line-of-sight error, and then employ this model to finely estimate the
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position of target note (TN) [17], such as RSS-based positioning method [18–21]. These methods are
usually sensitive to the propagating environment. However, it is difficult to obtain a precise as well
as universal NLOS model for complex real-world environments, thus such algorithms are difficult to
be widely used. The second algorithms attempt to weight the measured distance or the intermediate
position estimates to get a better positioning performance, where the weight plays an important role.
These weights may be relate to the geometric relationship as well as algebraic relationship between ANs
and TN, and then a typical choice is to construct the weighting function with residual parameters [22].
However, such algorithms can not eliminate the impact of large NLOS errors, and then some robust
algorithms that treat NLOS bias as nuisance parameters, are derived according to the optimization
theory [1–3,23]. Unfortunately, the optimization method improves the positioning performance at
the cost of significantly increased complexity. The final class of algorithm identifies the NLOS-AN
and then uses only LOS-AN for position estimation [8,12,13]. The advantage of such an algorithm
is the high accuracy in case of successful identification of all LOS-ANs, while the determination of
detection threshold is an essential and difficult issue. In summary, a simple as well as effective NLOS
suppression algorithm still requires further study, which is the target of our study.

According to the above discussions, this paper proposes an algorithm belonging to the third
category, where two LOS-ANs are analogous to [13]. In general, the proposed algorithm is based on
a least-squares criterion, which makes it very light in terms of computational complexity. The detail
processing of proposed algorithm can be summarized as follows. First, we group all ANs into two-AN
subgroups. Then, we obtain three intermediate position estimates for each subgroup, and calculate
the residual according to these intermediate estimates. Here the residual is defined as the distance
between two position estimates. Second, a hypothesis test is proposed according to the localization
residual, in which the threshold is determined by an analytical plus simulated way. Such a threshold
determination is simple and effective compared with previous schemes. Accordingly, in line with the
comparison of threshold and residual, the NLOS-AN can be identified. Finally, we can estimate the TN
position using only LOS-ANs. In fact, if we do not detect two LOS-ANs, we will use all ANs to do the
least-squares localization. We verify our study by computer simulations, and the results demonstrate
the high identification accuracy of NLOS-AN. Then the final TN position estimation also produces
high accuracy. Note that only two LOS-ANs are necessary for the proposed algorithm.

The rest of this paper is organized as follows. The second section presents the system model and
the third section derives the proposed algorithm. The simulation and analysis are introduced in the
fourth section and conclusions can be found in the fifth section.

2. System Model

In our study, we assume that the sensor node has the ability to estimate TOA and AOA, but the
specific estimation methods are not our goal. Moreover, analogous to conventional localization studies,
we also assume that both TOA and AOA estimates have been obtained, and these estimates are
corrupted by the measurement noise and NLOS error. Besides, we can employ the range measurement
and angle measurement of both ANs to localize the TN by some positioning methods. If a node wants
to use RSS to calculate the distance, our method is not applicable.

A simplified diagram can be found in Figure 1, where the TN and its two adjacent ANs, i.e.,AN1

and AN2, are presented. In Figure 1, the line AF denotes the intersection line of two circles centered
at AN1 and AN2 , where the circle radiuses equal to measured distances between ANs and TN.
Then the measured AOA line of AN1 (AD) intersects AF at the position A, which can be treated as
an intermediate position estimate of TN. Similarly, the position B represents the intermediate position
estimate for the measured AOA line of AN2. In addition, the circle intersecting point C can be treated
as another intermediate position estimation of TN. Obviously, due to the measurement noise and
NLOS errors, positions {A, B, C} do not coincide.
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Assuming that the coordinates of target and anchors are (x, y) and (xi, yi), we can write the
distance between TN and ANs as [24].

r2
i = Ki − 2xix− 2yiy + x2 + y2 (1)

where Ki=xi
2 + yi

2. Moreover, the AOA of ANi can be shown as

tan θi =
y− yi
x− xi

(2)

AN1 AN2

A

C

B

F

D
E

Figure 1. The diagram for localization geometry.

Without loss of generality, we denote ANs of a subgroup as AN1 and AN2 , and then have the
following distance equations: {

r2
1 = K1 − 2x1x− 2y1y + x2 + y2

r2
2 = K2 − 2x2x− 2y2y + x2 + y2 (3)

From above equations, one can obtain the line AF in Figure 1:

r2
1 − r2

2 = K1 − K2 + 2(x2 − x1)x + 2(y2 − y1)y (4)

Moreover, the formula to find the coordinates of point A is shown as follows:{
r2

1 − r2
2 − K1 + K2 = 2(x2 − x1)x + 2(y2 − y1)y

y1 cos θ1 − x1 sin θ1 = y cos θ1 − x sin θ1
(5)

The formula to find the coordinates of point B is shown as follows:{
r2

1 − r2
2 − K1 + K2 = 2(x2 − x1)x + 2(y2 − y1)y

y2 cos θ2 − x2 sin θ2 = y cos θ2 − x sin θ2
(6)

The above two equations can be transformed into the matrix form, such as for point A:

Y = AXA (7)
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with Y =

[
r2

1 − r2
2 − K1 + K2

y1 cos θ1 − x1 sin θ1

]
, A =

[
2(x2 − x1) 2(y2 − y1)

− sin θ1 cos θ1

]
, XA =

[
x
y

]
. Then the least-squares

(LS) estimation of position A can be shown as

X̂A = (ATA)
−1

ATY (8)

Similarly, the coordinates of possition B can also be obtained by solving a least-squares problem
with respect to (6). Then, the position residual is defined as the distance between point A and point B.

∆AB = AB (9)

Previous studies indicated that different localization methods produced adjacent position
estimates in the LOS environment [25], i.e., the distance between position estimates were comparable
to the standard deviation of ranging noise. By contrast, these position estimates must be obviously
deviated from each other in the NLOS environment, resulting in much larger position residuals in
comparison with those of LOS scenarios. Moreover, as pointed out above, point A, point B and point C
can be treated as TN position estimates produced by different localization methods. Therefore, in the
LOS environment, the distance between A and B, the distance between A and C, and the distance
between B and C will all be relatively small, i.e., several times of standard deviation of ranging noise.
Then, we can define two more residuals as

∆AC′ = min(AC, AF)

∆BC′ = min(BC, BF)
(10)

where the symbol C′ represents the point of {C, F} closer to point A, i.e., C′ =

{
C, if AC 6 AF
F, if AC > AF

.

3. The Proposed NLOS-AN Identification and Localization

3.1. System Error Analysis

Before the detail derivations, we must point out that our derivation is in the sense of statistic, but
the expectation symbol is omitted for simplicity. Furthermore, we assume that measurement noises of
range and angle have small variances. Now, if there is only measurement noise, we have the perturbed
version of (7)

Y0 + ∆Y =(A0 + ∆A)(X0
A + ∆XA) (11)

where(•)0 and ∆(•) denote the actual value of variable and the corresponding perturbed parts.
Equation (11) can be further expanded as

Y0 + ∆Y = (A0 + ∆A)(X0
A + ∆XA) = A0X0

A + ∆AX0
A + A0∆XA + ∆A∆XA (12)

Since Y0 = A0X0
A, Formula (12) can be simplified as

∆Y =∆AX0
A+(A0 + ∆A)∆XA (13)

Thus, the estimation error caused by measurement error can be derived as

∆XA = (A0 + ∆A)
−1

(∆Y− ∆AX0
A) (14)

Since we have assume small measurement noises in the LOS environment, we have
approximations as ∆r2

1 ≈ ∆r2
2, sin ∆θ1 ≈ ∆θ1 and cos ∆θ1 ≈ 1. Then, we can derive
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∆Y ≈
[

2r1∆r1 − 2r2∆r2

−∆θ1y1 sin θ1 − ∆θ1x1 cos θ1

]
, ∆A ≈

[
0 0

− cos θ1∆θ1 − sin θ1∆θ1

]
. Note that the expressions

of ∆Y and ∆A can also be explained by the differential theory.
Similarly, it is also possible to find the error ∆XB of point B, then the deviation between point A

and point B can be computed as
∆d =

∥∥∥∆XA − ∆XB

∥∥∥ (15)

where || • || denote the norm operation.
By applying triangular inequality, we have that

∥∥∥∆XA − ∆XB

∥∥∥ ≤ ∥∥∥∆XA

∥∥∥+ ∥∥∥∆XB

∥∥∥, then the
threshold can be defined as:

Λ = ‖∆XA‖+ ‖∆XB‖ (16)

From (15) to (16), it is suggested that if the estimating error is less than a threshold, the included
two ANs are highly possible to be LOS-ANs. In fact, our next simulation confirms this prediction.
Otherwise, there is at least one NLOS-AN. However, if we use (16) as the threshold, X0

A is unknown.
Though X0

A can be replaced with the TN position estimation (X̂A) of (8), the AOA measurement is highly

instable in the NLOS environment, which significantly affects the matrixes {(A0 + ∆A)
−1, ∆Y, ∆A}.

Finally, Formula (16) may yield a large and loose threshold, resulting in an increased missing probability
of NLOS-AN detection. Hence, we will show in the next section how to resolve this issue.

3.2. Threshold Determination and NLOS-AN Identification

In order to tackle the above problem, we look for principles from the geometric relation, and then
propose a novel threshold. From Figure 1, it is clearly that the maximal distance between point A and
point B occurs when points A and B are on the upper and lower sides of point C, and then we have

∆AB = AB = AC + CB (17)

When there is no NLOS propagation, the AOA measurement error is trivial, i.e., ∠ADC and ∠BEC
are small. Denoting these two angles as ω1 and ω2, we have the following trigonometric expression

AC ≈ r0
1 ∗ω1 (18a)

BC ≈ r0
2 ∗ω2 (18b)

Assuming the same standard deviation of AOA measurement, we can derive the
following expression

∆AB ≤ r0
1 ∗ω1 + r0

2 ∗ω2 ≤ Λ1 (19a)

Λ1 = λσa(r0
1 + r0

2) (19b)

where σa denotes the standard deviation of AOA measurement. If the parameter λ is large enough,
the inequation will be satisfied with a high possibility. Unfortunately, this single residual is not enough
for the NLOS-AN identification. For example, a large λ increases the missing probability of NLOS-AN
detection. Hence, we introduce other two residuals as detection variables

∆AC = AC ≈ r0
1 ∗ sin ω1 ≈ r0

1 ∗ω1 ≤ Λ2 (20a)

Λ2 = λσa ∗ r0
1 (20b)

∆BC = BC ≈ r0
2 ∗ sin ω2 ≈ r0

2 ∗ω2 ≤ Λ3 (20c)

Λ3 = λσa ∗ r0
2 (20d)
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where sin ωk ≈ ωk holds for small ωk in the LOS environment. We must indicate that the derivations
of (17)∼(20) are not sensitive to relative positions of {A, B, C}, i.e., the proposed algorithm still works
even if the point A is below the point B.

In real-world applications, the actual values used in (19)∼(20) are unknown, and we have
to replace them by measured values. Since λ can be determined artificially, the influence of this
substitution will be compensated by searching appropriate λ. Then, the final residual detector can be
derived as: {

∆AB ≤ Λ1 and ∆AC ≤ Λ2 and ∆BC ≤ Λ3 ⇒ Both LOS-ANs
∆AB > Λ1 or ∆AC > Λ2 or ∆BC > Λ3 ⇒ at least one NLOS-AN

(21)

However, there are three comparisons in (21), leading to large thresholds to satisfy three
inequations at the same time. Simulations demonstrate that two comparisons are enough.
Therefore, the detector (21) can be reformulated as{

Satisfy at least two of {∆AB ≤ Λ1, ∆AC ≤ Λ2, ∆BC ≤ Λ3}⇒ Both LOS-ANs
Satisfy at most one of {∆AB ≤ Λ1, ∆AC ≤ Λ2, ∆BC ≤ Λ3}⇒ at least one NLOS-AN

(22)

A complete NLOS-AN identification and localization process can be summarized as:

(1) Find the coordinates of points A and B using (8), and then solve the circle intersections C and F .
(2) Calculate the lengths of AC and AF separately, then find the nearest point C

′
of point A from

{C, F}.
(3) Treat {A, B, C’} as three intermediate position estimates.
(4) Use C

′
to calculate ∆AC as well as ∆BC, and finally compute ∆AB .

(5) Identify the NLOS-AN by the detector (22).
(6) Estimate the TN position by using LOS-ANs only.

In the above step (6), after combining range and angle measurements of LOS-ANs, we can
construct a mixed positioning equation as:

ALX = YL (23)

AL =



−2x1 − 2y1 1
...

−2xM − 2yM, 1
− tan θ1 1 0

...
− tan θM 1 0


, X =

 x
y
R

 , YL =



r2
1 − x2

1 − y2
1

...
r2

M − x2
M − y2

M
y1 − tan θ1x1

...
yM − tan θMxM


(24)

where R = x2 + y2 and M represents the number of LOS-ANs. The above equation can be solved by
least squares algorithm, such as

X̂ = (AL
TAL)

−1
AL

TYL (25)

Note that if we cannot identify at least two LOS-ANs, we will estimate the TN position according
to (8), i.e., operate the LS localization by exploiting all ANs.

In the NLOS-AN identification mentioned above, an important mission is to determine the λ and
therefore the threshold, which will be presented next.
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4. Simulation and Analysis

4.1. Threshold Determination

There are five ANs located in a 100-m × 100-m area as shown in Figure 2, and their locations are
(0, 0), (100, 100), (−100, 100), (−100, −100) and (100, −100). Without loss of generality, the TN is placed
at (58, 0), and the range and angle measurements usually satisfy

r̂k = r0
k + eNLOS

k + enoise
k (26)

θ̂k = θ0
k + zNLOS

k + znoise
k (27)

where k ∈ {1, 2, 3, 4, 5}. Moreover, both the range measurement noise (enoise
k ) and the angle

measurement noise (znoise
k ) are zero-mean Gaussian variables determined by their standard deviations.

Besides, the NLOS error of range (eNLOS
k ) is uniformly distributed between 10 m and 50 m, whereas the

NLOS error of angle (zNLOS
k ) obeys the uniform distribution between −180

◦
and 180

◦
. From (26) and

(27), we explicitly see the process to generate measurements. First, we should generate the TN position,
and then we can compute r0

k as well as θ0
k according to the geometric topology. Second, we generate

the NLOS errors according to their statistical distributions. Subsequently, the Gaussian noises are
generated according to their statistical distributions. Finally, we combine all terms according to (26)
and (27).

Here we must determine the reasonable threshold based on Formulae (18)–(20).
Since Formulae (18)–(20) are only semi-analytical derivations, the simulations are required to
final determine λ and therefore the thresholds, which will be shown in Figure 3. Figure 3 presents the
simulations of searching λ, where four typical measurement noise settings are taken into consideration,
i.e., SDR (standard deviation of range) and SDA (standard deviation of angle) take value from
{0.5 m, 0.5◦}, {1 m, 1◦}, {1.5 m, 1.5◦} and {2 m, 2◦}. Note that the last setting represents serious
measurement noises, which may improve the robustness of proposed threshold.

From Figure 3, when {SDR = 0.5 m, SDA = 0.5◦} or {SDR = 1 m, SDA = 1◦}, the NLOS-ANs
can be easily identified with a high threshold. However, as the measurement error increases, a high
threshold is prone to identification failure. Therefore, we can combine all feasible regions of four
subfigures, and then determine the final threshold according to the intersection of feasible regions.
Accordingly, if the target of detection probability is 0.95, Figure 3a–d respectively produce the feasible
regions as λ ≥ 3.1, λ ≥ 3.2, λ ≥ 3 and 3.2 ≤ λ ≤ 4.25. Thus the final feasible region is 3.2 ≤ λ ≤ 4.25.
Subsequently, a fine search of λ in the range [3.2, 4.25] reveals that λ = 4 is an appropriate threshold,
which will be further confirmed by the next positioning simulations.
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Figure 2. AN topology.
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4.2. Analysis for the Positioning Performance

After the NLOS-AN identification, we will operate the localization by the simple LS method,
where only identified LOS-ANs are included so long as there are at least two identified LOS-ANs.
As seen in Figure 3, the identification probability is large, which definitely produces superior
positioning performance as shown in next simulations. Moreover, we also choose some classical
or latest alorithms as comparisons, as described in Table 1.

Table 1. Various algorithms and their description.

Algorithm Description

RWGH Residual weighting algorithm [25]
CLS Constrained Least Squares Algorithm [26]

NI-LS Using the least squares algorithm after NLOS-AN identification
Ideal-NI-LS Using the least squares algorithm with known LOS-AN

CRLB Cramer-Rao lower bound (CRLB) with known LOS-AN [24]
SDP Convex semidefinite programming algorithm [4]

opt-LLOP Linear optimization algorithm [27]

Figures 4 and 5 compare the root-mean-square-errors (RMSE) for the tested algorithms.
From Figure 4, we explicitly see the best performance of the proposed algorithm, and the gap between
it and CRLB is small. Moreover, with the increase of LOS-AN, the RMSE of all tested algorithms tends
to decrease. Note that the gap between the CRLB and the proposed algorithm is small and tends to
be invariant, so long as the number of LOS-AN is larger than four. In fact, this gap of 3LOS-AN
is only trivially larger than that of 4LOS-AN. On the other hand, the SDP method is relatively
stable to the LOS-AN number, which make it lose its advantage in the case equipped with more
LOS-ANs. Meanwhile, the SDP method uses the optimization tool, thus its computational complexity
is higher than the non-optimization method, such as the proposed algorithm and the RWGH method.
In addition, the RWGH algorithm produces great improvements with the increase of LOS-AN number,
which is because it uses three-AN subgroups and benefit from the increase of LOS-AN number.
From Figure 5, we can find conclusions agree with those from Figure 4. Furthermore, we have seen
from Figure 5 that the angular deviation does not have a great impact on the positioning accuracy,
so long as the SDA is within a reasonable range. In fact, the proposed algorithm produces a slowly
rising RMSE w.r.t SDA, and approximately linear curves suggest good performance for even larger
SDAs. On the other hand, we must indicate that even the current AOA configuration yields a large
AOA error. First, the NLOS error of AOA is equally possible in the range of −180∼180◦, resulting in
a large value in general. Second, the measurement noise of AOA is a Gaussian variable, which may
produce a large value even for SDA = 2◦.

Figure 6 presents comparisons for the CDF performance at SDR = 2 m, SDA = 1◦, i.e., a typical
measurement noise level in existing literature [28,29]. From it, we definitely see the superior
performance of the proposed algorithm, i.e., even with only two LOS-ANs, the NI-LS method yields
about nine meters errors with probability higher than 0.95. When the LOS-AN number approaches
three, this error reaches about six meters with probability higher than 0.95. Moreover, there is still gap
between the NI-LS and ideal NI-LS, which must caused by the identification failure. The reason is that
the λ is determined to cover wide ranges of SDR and SDA, hence it is not optimal for a certain setting
of SDR and SDA, resulting in some identification failure. However, the excellent positioning accuracy
indicates that the identification accuracy is high. Meanwhile, the decreasing CDF gap between the
NI-LS and ideal NI-LS suggests that the NLOS-AN identification tends to be more and more accurate
by exploiting more LOS-ANs.

In order to test the proposed algorithm in more realistic and harsh environments, we present
new simulations in Figure 7, where the NLOS error of range is uniformly distributed within 20∼70 m.
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Moreover, the SDR reaches four meters and only two LOS-ANs are employed. From Figure 7, we clearly
see that the proposed algorithm significantly outperforms its counterparts. Moreover, we also see
the performance degradation in comparison with Figure 6, which means that the harsh environment
deteriorates localization performance. However, the proposed algorithm still produces acceptable
CDF, i.e., it is about 0.9 when the localization error is eleven meters. Therefore, the proposed algorithm
produces enough performance redundant to combat the harsh environment.

Summarizing the above discussions, we must point out that the correct NLOS-AN identification is
important for wireless localization. Fortunately, the proposed algorithm produces excellent detection
performance even in very harsh environments, and then it yields superior positioning performance in
comparison with its localization counterparts that do not distinguish between LOS/NLOS links.
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Figure 3. Threshold analysis.
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Figure 5. The influence of SDA on the accuracy: SDR = 0.5 m.
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Figure 6. The cumulative distributed function (CDF) of tested algorithms: SDR = 2 m, SDA = 1◦.
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5. Conclusions

The Non-line-of-sight error significantly reduces the localization accuracy, therefore this paper
proposes a two-step algorithm to suppress the influence of NLOS errors, where at least two LOS-ANs
are required. First, we define a novel residual addressing the positioning difference. Second, a threshold
hypothesis test is employed to identify the NLOS-AN. Finally, the target position is estimated by all
identified LOS-ANs. We test the proposed algorithm by computer simulations, and results show a good
and superior performance. In conclusion, the proposed algorithm can effectively identify the NLOS-AN
and significantly improve the positioning accuracy under the hybrid NLOS/LOS environment.
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