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Abstract: Fingerprinting-based indoor localization suffers from its time-consuming and
labor-intensive site survey. As a promising solution, sample crowdsourcing has been recently
promoted to exploit casually collected samples for building offline fingerprint database. However,
crowdsourced samples may be annotated with erroneous locations, which raises a serious question
about whether they are reliable for database construction. In this paper, we propose a cross-domain
cluster intersection algorithm to weight each sample reliability. We then select those samples with
higher weight to construct radio propagation surfaces by fitting polynomial functions. Furthermore,
we employ an entropy-like measure to weight constructed surfaces for quantifying their different
subarea consistencies and location discriminations in online positioning. Field measurements and
experiments show that the proposed scheme can achieve high localization accuracy by well dealing
with the sample annotation error and nonuniform density challenges.

Keywords: fingerprinting localization; sample crowdsourcing; sample weighting; surface fitting

1. Introduction

Fingerprinting has been extensively researched for indoor localization systems in the last
decade [1–4]. The basic idea is based on the assumption that each indoor location can be identified
by a unique signal feature, called fingerprint. The widely used fingerprint is a vector of the received
signal strengths (RSS) from the access points (AP) of wireless local access networks. The location of
a test fingerprint can be estimated to a known location with minimal signal difference. One of the key
challenges to support such fingerprinting localization is to construct an indoor radio map in the offline
training phase [5–8]. Normally, the indoor environment is divided into non-overlapping grid cells.
Site survey is often used to collect RSS samples at each grid center by surveyors for training one grid
fingerprint for each grid. However, this scheme suffers from the time-consuming and labor-intensive
site survey for radio map construction.

Recently, fingerprint crowdsourcing has been promoted to relieve or even eliminate the
burdensome site survey by exploiting casually collected RSS samples [6–9]. Although not collected
at specified locations, crowdsourced RSS samples still need to be annotated with some location
information for fingerprint database construction. To this end, a common approach is to extract
RSS samples from pedestrian movement trajectory [10–12]. As long as a trajectory can be correctly
matched to one physical route, each step position can be obtained from the floor plan to annotate the
corresponding step RSS sample.
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Although fingerprint crowdsourcing seems a promising approach, care must be taken to deal
with the samples with erroneously annotated locations. Compared with the site survey, such erroneous
location annotation of crowdsourced samples could lead to an inaccurate radio map and degrade the
performance of fingerprinting-based localization. Besides annotation errors, another challenge lies in
that crowdsourced samples may not be uniformly distributed in the whole environment.

In this paper, we study the indoor localization through constructing radio propagation surfaces
from crowdsourced samples. For each AP, its surface takes a location as input and outputs an estimated
RSS of this location. To deal with annotation errors, we propose a cross-domain cluster intersection
algorithm to assign each sample a reliability weight, which exploits the sample clustering results from
both the physical and signal space. We next select a subset of weighted samples to fit each AP a surface
from polynomial primary functions and construct subarea fingerprints by sampling AP surfaces.
Furthermore, we compute two weights for each AP surface for describing its subarea consistency
and location discrimination capability in online positioning. A two-step positioning algorithm is
proposed to first determine the belonging subarea for a test sample, and then a weighted surface
search is exploited to estimate its location within the subarea. We conducted field measurements and
experiments. Compared with the peer schemes, results validate the effectiveness and robustness of
the proposed scheme in terms of its lower localization error when facing sample annotation error and
nonuniform density challenges.

The rest of the paper is organized as follows. Section 2 briefly reviews the most related work as
well as the proposed system. The proposed offline surface fitting algorithm is presented in Section 3.
Section 4 presents our online localization algorithm. Field measures are used for experiments and the
results are provided in Section 5. Finally, Section 6 concludes the paper.

2. Related Work and System Overview

2.1. Related Work

Several fingerprinting systems based on sample crowdsourcing have been proposed for indoor
localization in previous studies [13–18]. For example, Chen and Wang [13] proposed using
a density-based clustering technique to group crowdsourced samples to generate a cluster fingerprint
and using a matching algorithm to assign each cluster fingerprint to one subarea for room-level
localization. Liu et al. [14] also applied crowdsourced samples for room-level localization yet with
an improved energy-efficient sampling approach. Chang et al. [15] applied a local Gaussian process to
construct grid fingerprints from crowdsourced samples. Jung et al. [16] adopted a hybrid global-local
optimization scheme to determine the location of fingerprint sequences based on the constraint of the
indoor structure, rather than using labeled fingerprints. They also proposed an unsupervised learning
method to calibrate the localization model.

In the literature, many have proposed to extract crowdsourced samples from pedestrian
trajectories. The core idea is to match a trajectory to one physical route such that each sample on
a trajectory can be labeled with one location in the route [19–25]. For example, Kim et al. [19] combined
the lightweight site survey and fingerprint crowdsourcing for radio map construction. They first
constructed an initial radio map according to the lightweight site survey and use the pedestrian dead
reckoning (PDR) to match the the war-walking paths into the radio map. Huang et al. [20] exploited
layout landmarks such as the cross points of corridors for matching pedestrian trajectories to physical
routes. Zhou et al. [23] proposed to transform the indoor layout into a semantic graph to map with
activity sequences contained within the trajectories. Zhou et al. [25] applied a density-based spatial
clustering algorithm to determine hotspots which are then mapped to physical subareas.

For crowdsourced samples, the conventional approach is to construct a radio map for grid
fingerprints. In Ref. [26], Wang et al. proposed using polynomial functionals to fit a propagation
surface for each AP based on a few reference fingerprints with correct location annotations. Ye and
Wang [27] applied the surfacing method to deal with the problem of non-uniformly distributed
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crowdsourced samples, with the objective of composing grid fingerprints for radio map construction.
Unlike these approaches, this paper proposes to exploit crowdsourced samples for fitting radio
propagation surfaces. As crowdsourced samples normally have inaccurate location labels, how to
construct a reliable surface is rather challenging. In this paper, we propose a sample weighting
algorithm and apply weighted samples to fitting surfaces.

2.2. System Overview

We divided an indoor environment into several distinct subareas, such as rooms, corridors, etc.,
according to their functional layout by inherent obstructions and partitions such as concrete walls.
We assumed that each crowdsourced sample has been annotated with some location, though possibly
with annotation errors. We attributed each sample to one subarea according to its annotated location.
The proposed system also consists of the offline and online phases.

The offline phase consists of four steps: Weighting crowdsourced samples assigns each crowdsourced
sample a reliability weight based on our proposed cross-domain cluster intersection algorithm. Fitting radio
surfaces constructs a radio propagation surface for each AP based on the weighted samples. Weighting
fitted surfaces further assigns each fitted surface with two weights for discriminating their contributions
for online localization. Constructing subarea fingerprints creates an RSS fingerprint for each subarea
from its fitted and weighted surfaces.

The online localization consists of two steps: Subarea determination first locates an online test
fingerprint into one subarea according to our proposed weighted signal distance. Location search
searches the coordinate for the test fingerprint based on the gradient search on the constructed surfaces.
Figure 1 presents the main flowchart of the proposed system, and Table 1 lists the symbols used in this
paper as well as their notations.

Figure 1. The flowchart of the proposed system: In the offline phase, crowdsourced samples are
each weighted according to our algorithm. For each access point and for one subarea, its radio
propagation surface is firstly fitted and also weighted from those selected and weighted samples.
Subarea fingerprints are then composed from fitted surfaces. In the online phase, a test sample is first
compared with subarea fingerprints to determine its belonging subarea, and then a gradient search is
used to estimate its exact location.
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Table 1. Table of symbols.

Symbol Definition

S A set of crowdsourced samples in one subarea.
M The number of crowdsourced samples in S , M = |S|.
si The ith crowdsourced sample in S .
~li The annotated location of the ith crowdsourced sample.
~ri The RSS vector of the ith crowdsourced sample.
N The maximum number of hearable AP in S .
K The number of clusters.
C p The set of clusters in the physical space.
Cs The set of clusters in the signal space.
γi The cross-domain cluster coefficient of the ith sample.
ωi The reliability weight of the ith sample.

φ(x, y) The RSS surface function.
pth The percentile threshold in sample selection method.
ωth The weight threshold in sample selection method.
~ω The increasing order of sample reliability weight.
ωk The reliability weight at the pth percentile in ~ω.
S ′ The set of select samples.
A The set of hearable Aps by samples in S ′.
αij The surface coefficient of the RSS surface function.
R The set of RSS values from an AP in S ′.
r̄i The normalized elements inR.
η The entropy-like quantity for each AP in A.

ρsub
n The surface weight of nth AP in A for subarea determination.

ρloc
n The surface weight of nth AP in A for location search.
~f Subarea fingerprint.
G The set of grid cells in one subarea.
G The number of grids in G, G = |G|.
~ft The RSS vector of a test sample.
~fs The sth subarea fingerprint.
Aint The set of hearable APs by both ~ft and ~fs.
Ds The weighted signal distance between the test sample and a subarea.
Mg The number of grid cells.
σ The standard deviation of location offset.
Ssite The set of samples from site survey.
Swalk The set of samples from pedestrian trajectories.

3. The Offline Weighted Surfacing Algorithm

3.1. Weighting Crowdsourced Samples

In one subarea, e.g., a room, let S = {si, ..., sM} denote its set of M crowdsourced samples.
A sample si = (~li,~ri) consists of two parts:~li = (xi, yi) is its annotated location; and~ri = (ri1, ri2, ...riN)

the received RSS vector where N is the maximum number of hearable APs in one subarea. For one
sample si, it is possible that not all the N APs could be heard, that is, some rij (j < N) might not be
available in si. In this case, to allow the clustering and surfacing algorithm to run normally, we simply
set it to a very small RSS value, rmin = −90 dBm, which is the lower bound of the collected signal
strength, during the following sample clustering and weighting process.

A crowdsourced sample si may not be reliable in that its annotated location~li, RSS measurement
~ri, or both might have some errors. However, among a large number of such samples, we conjecture
that some statistical relations could be extracted from the similarities between the physical and signal
space. Consider the following example of two samples si and sj. Let dp

ij , ‖~li −~lj‖ and ds
ij , ‖~ri −~rj‖

denote the distance between the two samples in the physical space and signal space, respectively.
Suppose that dp

ij is small, indicating that si and sj are close to each other according to their annotated
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locations. For a small ds
ij, we could conjecture that both samples are reliable or both samples are

unreliable. Although we could not determine which is the real case for only two samples, we might be
able to infer the statistic relations from a large number of samples to discriminate unreliable samples.
Motivated from such considerations, we next present a cross-domain cluster intersection (CCI) algorithm
to assign each sample a reliability weight.

In both the physical and signal space, we group all samples si ∈ S into K clusters by the classic
K-means clustering algorithm. Let C p = {Cp

1 , ..., Cp
K} and Cs = {Cs

1, ..., Cs
K} denote the set of clusters in

the physical and signal space, respectively. Notice that a sample si is within one of the clusters in C p

and Cs simultaneously. We define a cross-domain cluster coefficient for such a sample si based on the
cluster intersection between Cp

a and Cs
b as follows:

γi =
|Cp

a
⋂

Cs
b|

2

|Cp
a | × |Cs

b|
. (1)

If Cp
a = Cs

b, i.e., the two clusters contain the same set of samples, then all such samples have the
same coefficient and γi = 1. According to the K-means clustering, all samples in Cp

a are closer to this
cluster center than to other cluster centers. This is also the case for samples in Cs

b in the signal space in
terms of their RSS vector similarities. Therefore, |Cp

a
⋂

Cs
b| describes how many samples are close to

each other in both the physical and signal space. A small value of γi indicates that si is not similar to
the majority of the two clusters, which might suggest its unreliability. As the surface fitting is done
in the signal space, we further normalize γi to assign the sample weight based on the signal space
clusters. For each sample si ∈ Cs

b, we compute its reliability weight by

ωi =
γi

max{γj|sj ∈ Cs
b}

, (2)

where the denominator is the maximum cross-domain cluster coefficient of the samples in the cluster.
Figure 2 illustrates the CCI algorithm and computes reliability weights for some samples.

Figure 2. Illustration of the cross-domain cluster intersection algorithm: In the physical space, samples
are clustered according to their annotated coordinates. In the signal space, samples are clustered
according to the RSS distances. The weight of a sample is determined by the common samples between
its belonged physical cluster and signal cluster.

3.2. Fitting Radio Surfaces

In one subarea, we construct a radio propagation surface for each hearable AP based on the
weighted samples (si, wi). A surface function φ(x, y) takes a location as its input and outputs
an estimated RSS at this location. Notice that the number of crowdsourced samples could be large and
keep increasing. To reduce computational complexity and alleviate surface overfitting, we propose
a percentile weight partition (PWP) method to select only a subset of weighted samples.
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Define pth and ωth as the percentile and weight threshold, respectively, and pth, ωth ∈ [0, 1].
The objective is to ensure that more than pth samples have weights larger than ωth. We first sort
samples according to their weights in an increasing order, denoted by ~ω. Let ωk denote the kth sample
whose weight is at the pth percentile of ~ω. If ωk ≥ ωth, then no samples will be removed. Otherwise,
we remove the first dM−kωth

1−ωth
e samples from ~w. After the sample selection, let S ′ denote the set of select

samples and let A denote the set of hearable APs by samples in S ′.
In this paper, we adopt a polynomial function to fit a radio propagation surface for each AP in A

as follows:

φn(x, y) =
p

∑
i=1

q

∑
j=1

aijxi−1yj−1, for all n ∈ A, (3)

where aijs are fitting coefficients. The objective of weighted surface fitting is to

minimize H ≡
|S ′ |

∑
i=1

ω2
i (φn (xi, yi)− rin)

2 (4)

To compute one fitting coefficient aer, we equate its partial derivative to zero to minimize H.

∂H
∂aer

=
∂

∂aer

n

∑
i=1

ω2
i [φn (xi, yi)− rin]

2

=
n

∑
i=1

{
2ω2

i [φn (xi, yi)− rin]
∂

∂aer
[φ (xi, yi)]

}
=

n

∑
i=1

{
2ω2

i [φn (xi, yi)− rin] xe−1
i yr−1

i

}
= 0 (5)

From the equation above, we can derive

n

∑
i=1

2ω2
i xe−1

i yr−1
i φn (xi, yi) =

n

∑
i=1

2ω2
i xe−1

i yr−1
i rin (6)

n

∑
i=1

2ω2
i xe−1

i yr−1
i

p

∑
c=1

q

∑
d=1

acdxc−1
i yd−1

i =
n

∑
i=1

2ω2
i xe−1

i yr−1
i rin (7)

We define

ucd (e, r) =
n

∑
i=1

(
2ω2

i xc−1
i yd−1

i xe−1
i yr−1

i

)
(8)

v (e, r) =
n

∑
i=1

2ω2
i xe−1

i yr−1
i rin (9)

Thus, we can rewrite the equation as:

p

∑
c=1

q

∑
d=1

acducd (e, r) = v (e, r), e = 1, · · · , p, r = 1, · · · , q (10)

The matrix form of equation above is:u11 (1, 1) · · · upq (1, 1)
...

. . .
...

u11 (p, q) · · · upq (p, q)


 a11

...
apq

 =

 v (1, 1)
...

v (p, q)

 (11)
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Then, by A = U−1V, the surface coefficient can be calculated.

3.3. Weighting Fitted Surfaces

Each AP surface is constructed based on its weighted samples. Different AP surfaces could
contribute differently for describing the whole signal space. We next assign two weights to each AP
surface via an entropy-like quantity computed from its samples: one is used for subarea determination
and the other for location search in our online positioning.

For each AP in A, let R = {r1, ..., rR} denote its set of RSS values extracted from the weighted
samples in S ′. As the samples are assumed to be crowdsourced randomly from different locations,
the setR is also expected to contain the RSS values from different locations. If all elements inR have
similar values, then this AP might not be very helpful for discriminating different locations in one
subarea. On the other hand, such an AP may be seen as a good indication of this subarea for its RSS
consistency. Motivated by such considerations, we propose to weight AP surfaces for their different
subarea consistencies and location discriminations from an entropy-like viewpoint.

We first normalize the elements inR by

r̄i =
ri −min(R)

max(R)−min(R) , for all ri ∈ R. (12)

We next compute an entropy-like quantity η for each AP in A to describe its RSS distribution
property by

η = −∑R
i=1 pi ln(pi)

ln(R)
, where pi =

r̄i

∑R
j=1 r̄j

. (13)

For our two-step online positioning, we compute two surface weights for each AP:

ρsub
n =

ηn

∑
|A|
j=1 ηj

, ρloc
n =

1− ηn

∑
|A|
j=1(1− ηj)

. (14)

ρsub
n is used in the subarea determination, while ρloc

n is used in the location search in one subarea.

3.4. Constructing Subarea Fingerprints

For each subarea, we construct a subarea fingerprint ~f based on its weighted surfaces φn

(n ∈ A). We adopt a grid lattice approach to sample each surface φn uniformly in the physical
space. Let G denote such a grid structure. For the gth grid, let fgn = φn(gx, gy) denote a sampled grid
RSS value from the nth surface, where (gx, gy) is the coordinate of the grid center. Then, ~f consists of
subarea-averaged RSS values for all hearable APs

~f =

(
1
|G| ∑

g∈G
fgn, ...,

1
|G| ∑

g∈G
fgN′

)
, (15)

where N′ = |A| is the number of hearable APs in A.

4. The Online Positioning Algorithm

The online positioning consists of two phases: subarea determination and location search.
Subarea Determination: Let ~ft denote the RSS vector of a test sample, and ~fs the sth subarea

fingerprint. Let Aint denote the set of hearable APs by both ~ft and ~fs. We compute the weighted signal
distance between ~ft and ~fs as:

Ds =
1
|Aint|

√
∑

n∈|Aint |
(ρsub

n × ( fsn − ftn))2, (16)
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where fsn and ftn are the RSS values from the nth hearable AP in ~fs and ~ft, respectively. The test
sample is then localized into a subarea with the minimum Ds.

Location Search: Assume that the sth subarea is selected in the first phase. We next search a space
point (x̂, ŷ) in this subarea to minimize the weighted signal difference between ~ft and subarea surfaces:

(x̂, ŷ) = arg min
(x,y)

∑
n∈Aint

[ρloc
n (φn(x, y)− ftn)]

2 (17)

In this paper, we use the gradient descent search method. Instead of randomly choosing a start
point, we use the localization result of a simple nearest neighbor (NN) algorithm as the initial searching
point, where the grid fingerprints are spatially sampled from the fitted surfaces. We then calculate
weighted signal difference as the cost function and its partial derivation to determine the search
direction. The cost function is defined as

J (lt) = ∑
n∈Aint

[
ρloc

n (φn (x, y)− ftn)
]2

(18)

The search iteration is defined by

lt+1 = lt + αddt, where dt = −∇J (lt) (19)

∇J (lt) =
[

∂J (lt)
∂x

,
∂J (lt)

∂y

]T
, (20)

where αd is the search step. We substitute Equation (3) into Equation (18):

J (lt) = ∑
n∈Aint

[
ρloc

n

(
p

∑
i=1

q

∑
j=1

aijxi−1yj−1 − ftn

)]2

(21)

Next, we compute the partial derivation of this cost function to gain the gradient and update the
search iteration.

∂J(lt)
∂x = ∑n∈Aint

2(ρloc
n )2 [φn (x, y)− f 0

tn
]

∑
p
i=1 ∑

q
j=1 aij (i− 1)

xj−2yj−1
(22)

∂J(lt)
∂y = ∑n∈Aint

2(ρloc
n )2 [φn (x, y)− f 0

tn
]

∑
p
i=1 ∑

q
j=1 aijxi−1

(j− 1) yj−2
(23)

The gradient search will stop when the dt is too small to update the search position for the
next iteration.

5. Field Measurements and Experiments

5.1. Experiment Settings

Figure 3 plots the indoor layout of our field measurements in a typical lecture building with
total area of 482 m2. In our work, we did not place our own APs. Instead, we employed the existing
Wi-Fi infrastructure with APs deployed by different parties, such as individual laboratories, telecom
operators and campus authorities. Indeed, the total number of hearable AP in our experimental
environment was more than 400, while, for each sample, normally >70 APs could be heard. We note
that emplying the existing Wi-Fi infrastructure makes our proposed scheme ready to be implemented
in many practical scenarios.
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Figure 3. The layout of the indoor environment. A grid lattice has been used to collect samples, with in
total 1368 grid cells each with size 0.6× 0.6 m2. Besides, pedestrian trajectories have also been used to
collect samples for the corridor and walkable pathways in each room.

A Huawei Honor 3C smartphone was used to collect RSS samples. We conducted two batches
of sample collection: The first batch Ssite was based on the site survey approach, containing in
total 13,670 samples each collected at one grid center. The second batch Swalk, containing in total
13,370 samples, was extracted from movement trajectories restricted to only those walkable routes,
as illustrated by the colored area in one room in Figure 3. Note that the samples in both Ssite and Swalk
are firstly annotated true location information at collection. To emulate annotation errors, we again
annotate each sample into a new location with a location offset randomly drawn from a Gaussian
distribution with zero mean and σ standard deviation. The test set Stest contains 5600 samples
uniformly distributed in the whole environment.

Experiment Schemes: According to their annotated locations, crowdsourced samples can be
assigned into different grids to construct grid fingerprints. Similarly, they can also be grouped into
different clusters in the signal space to obtain cluster fingerprints. We tested the following peer
localization schemes to examine these typical approaches.

• FGrid emulates the traditional site-survey fingerprinting based on grid fingerprints, which divides
the subarea into several non-overlapping grid cell to contain samples, and assigns each new
sample into its nearest grid cell. For each grid cell, a grid fingerprint is composed by averaging all
samples located within the grid cell, and the location of the grid fingerprint is annotated as the
grid center. In the online phase, we used the nearest neighbor algorithm.

• SGrid is similar to the FGrid to obtain grid fingerprints. We then constructed surfaces based on
these fingerprints in the offline phase. In the online phase, we used the same surface search
method as the one in our proposed SWSample.

• SRaw retains the original position of every crowdsourced sample and fits propagation surfaces
based on them. In the online phase, we used the same surface search method as the one in our
proposed SWSample.

• SCluster clusters the samples in signal domain only. For each cluster, we obtained a cluster
fingerprint, which is the average of its cluster members’ RSS vectors. The location of a cluster
fingerprint is the geometric center of the cluster members. We fitted the propagation surfaces
for every AP based on these cluster fingerprints. In the online phase, we used the surface search
method the same as the one in our proposed SWSample.

• SWSample is the proposed scheme.

In all the above schemes, we set the cluster number equal to the number of grids used in FGrid for
a fair comparison. We also adopted the proposed two-step online positioning algorithm. We noticed
that, from our experiments, the subarea hitting rate of all these schemes is not smaller than 99.58%,
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i.e., almost all test samples can be correctly determined to its belonging subarea. Thus, we do not
report this result again in the following.

5.2. Surface Fitting Examples

Figures 4–7 plot the fitted surfaces for the four surfacing-based schemes. We chose one AP for
Room A and fit its surface from 1800 samples randomly drawn from Ssite

⋃ Swalk. For the SWSample
fitted surface in Figure 7, we also color the sample weight as shown by the weight color spectrum
alongside the graph. It can be seen that the proposed scheme could produce a smoother surface,
compared with other schemes. If we assume that this AP is located at the coordinate around the
highest RSS value, then we could observe that the surface in Figure 7 is more like an attenuated sphere
centered at the AP. The Keenan–Motley path loss model has been widely adopted to characterize the
radio propagation in mobile cellular networks. If such a model could still be applicable in a small and
open space such as a room, then our fitted surface resembles the most to this model, which might also
help to explain the effectiveness of our weighted surface fitting.

Figure 4. Illustration of fitted surface by SGrid. We choose one AP for Room A and fit its surface from
1800 samples randomly drawn from Ssite

⋃ Swalk. Crowdsourced samples are assigned to grid cells.
A grid fingerprint is composed by averaging all samples in the grid cell, and its location is the grid
center. The fitted surface is based on the grid fingerprints.

Figure 5. Illustration of fitted surface by SRaw. We choose one AP for Room A and fit its surface
from 1800 samples randomly drawn from Ssite

⋃ Swalk. All crowdsourced samples are used for surface
fitting, without sample weighting and selection.
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Figure 6. Illustration of fitted surface by SCluster. We choose one AP for Room A and fit its surface
from 1800 samples randomly drawn from Ssite

⋃ Swalk. All crowdsourced samples are first clustered in
the signal space. For each cluster, a cluster fingerprint is composed by averaging the RSS vectors of its
cluster members, and its location is the geometric center of the cluster members. The fitted surface is
based on the cluster fingerprints.

Figure 7. Illustration of fitted surface by our proposed SWSample. We choose one AP for Room A
and fit its surface from 1800 samples randomly drawn from Ssite

⋃ Swalk. Crowdsourced samples
are weighted and selected for surface construction. The sample weight is illustrated by the dot color
in the figure.

5.3. Experiment Results

Uniformly distributed samples: We first considered the scenario that all crowdsourced samples
are uniformly distributed in the experiment environment, that is, we used crowdsourced samples from
Ssite

⋃ Swalk. Figure 8 plots the average localization error (ALE) against the number of crowdsourced
samples randomly drawn from Ssite

⋃ Swalk. It was first observed that all the surfacing schemes
outperform the grid fingerprinting FGrid, which validates the effectiveness of using fitted radio
propagation surfaces for localization. When the number of samples increases, from about 0.33Mg to
20Mg with Mg the number of total grid cells, the ALE of the surfacing schemes first decreases and
then increases. At first, the number of samples is not large enough to well fit actual surfaces. In this
case, our scheme SWSample has a slightly higher ALE than other surfacing schemes (see the first two
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points in Figure 8) due to its sample selection. On the other hand, if the noisy samples are too many,
the surfaces may be overfitted for unreliable samples. However, ours presents a decent degradation
and the ALE of using all 27,040 samples is 1.54 m, slightly higher than the best case of 1.45 m of using
3605 samples. The positioning accuracy improvement of our scheme are 36.71% over FGrid and 9.41%
over SRaw, respectively. Compared with the SRaw scheme, the improvement can be attributed to our
sample weighting and selection algorithm, which only chooses those reliable samples for weighted
surface fitting, leading to a more accurate radio map and better positioning results.

Figure 8. Comparison of localization performance. The average localization error (ALE) vs. the number
of crowdsourced samples Mall , when using crowdsourced samples from Ssite

⋃ Swalk. The standard
deviation of location offset σ = 1.2 m.

Figure 9 presents the ALE against the standard deviation σ of location offset. Notice that σ = 0
indicating no annotation errors. It is not unexpected to see that all schemes suffer from the increasing
of σ, i.e., the annotated locations farther away from true locations. However, our scheme SWSample
still performs the best. Figure 10 plots the cumulative distribution function (CDF) of localization error.
It is worth noting that, besides a low median localization error of 1.51 m, our SWSample has a low 90%
percentile error of only 2.64 m. To provide the exact numbers, Table 2 summarizes the localization
error results for three situations, namely, σ = 0.6 m, σ = 0.9 m, and σ = 1.2 m, respectively.

Figure 9. Comparison of localization performance. The average localization error (ALE) vs. the
standard deviation σ of location offset, where Mall = 27, 040.
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Figure 10. Comparison of cumulative distribution function (CDF) localization error,
where Mall = 27,040 and σ = 1.2 m.

Table 2. Comparison of mean, 50% and 90% localization error.

Error (m)
σ = 0 m σ = 0.6 m σ = 1.2 m

Mean 50% 90% Mean 50% 90% Mean 50% 90%

Uni.

FGrid 2.479 2.448 3.672 2.284 2.086 3.744 2.421 2.217 3.868
SGrid 1.571 1.353 2.595 1.726 1.630 2.884 1.898 1.757 3.048
SRaw 1.575 1.370 2.645 1.618 1.524 2.694 1.711 1.688 2.873

SCluster 1.552 1.364 2.550 1.708 1.657 2.875 1.916 1.879 3.111
SWSample 1.373 1.124 2.413 1.374 1.243 2.470 1.513 1.366 2.640

Non-uni.

FGrid 2.897 2.776 3.672 2.982 2.813 4.477 3.059 2.932 4.502
SGrid 2.164 1.691 3.522 2.086 1.679 3.402 2.169 1.795 3.499
SRaw 2.155 1.713 3.459 2.221 1.732 3.594 2.322 1.898 3.647

SCluster 2.063 1.602 3.497 2.009 1.584 3.287 2.144 1.752 3.477
SWSample 1.854 1.497 3.172 1.951 1.472 3.217 2.043 1.625 3.242

Non-uniformly distributed samples: It is also often the case that crowdsourced samples are not
uniformly distributed in the whole environment. To examine this nonuniform density issue, we only
use the samples from Swalk to fit surfaces. That is, the subregion of chairs and desks in each room
do not contain crowdsourced samples. However, as we intentionally include location annotation
errors, some samples may still be annotated to locations within such a vacant subregion. As shown
in Figures 11 and 12, it is not unexpected to observe that all schemes suffer from such a nonuniform
density situation, comparing with the results in Figure 8. However, our SWSample scheme can still
outperform other schemes in most of cases. The positioning accuracy improvements are 36.85% over
FGrid and 18.79% over SRaw, respectively. Furthermore, the median and 90% localization errors in
Figure 13 are 2.04 m and 3.24 m, respectively, which are comparable to the uniform density case.
Table 2 summarizes the localization error results from three situations for non-uniformly distributed
samples. It can be observed that our proposed scheme has great potential to obtain a better result
in this non-uniformly distributed case, which illustrates its robustness for tackling the nonuniform
density challenge.
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Figure 11. Comparison of localization performance, when using crowdourced samples only from Swalk.
The average localization error (ALE) vs. the number of crowdsourced samples Mall , where σ = 1.2 m.

Figure 12. Comparison of localization performance, when using crowdsourced samples only from Swalk.
The average localization error (ALE) vs. the standard deviation σ of location offset, where Mall = 4456.

Figure 13. Comparison of cumulative distribution function (CDF) localization error with Mall = 4456
and σ = 1.2 m, when using crowdourced samples only from Swalk.
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6. Concluding Remarks

This paper has studied the problem of constructing radio propagation surfaces from unreliable
crowdsourced samples with annotation errors. We have proposed a cross-domain cluster intersection
to weight each sample reliability and an entropy-like approach to further weight the constructed
surfaces. Field experiments have validated its effectiveness and robustness for dealing with the
nonuniform density challenge. Our proposed method contributes to indoor localization society in its
high accuracy and easy implementation.

We close this paper with some discussions about future work. This paper has applied polynomial
functions for fitting radio propagation surfaces in the offline phase. Indeed, the propagation surfaces
may take different forms and there could exist many other primary functions or stochastic kernels for
surface fitting. How to intelligently choose the most suitable primary functions or stochastic kernels
and automatically adjust their fitting parameters are worthy of further research. In this paper, we have
applied the commonly used deterministic positioning algorithm in the online phase. Using some
probabilistic positioning algorithms, especially when the radio propagation surfaces are modelled as
stochastic processes, is also worthy of further investigation.
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