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Abstract: Recently, the concept of the difference and sum co-array (DSCa) has attracted much
attention in array signal processing due to its high degree of freedom (DOF). In this paper, the DSCa
of the nested array (NA) is analyzed and then an improved nested configuration known as the
diff-sum nested array (DsNA) is proposed. We find and prove that the sum set for the NA contains
all the elements in the difference set. Thus, there exists the dual characteristic between the two
sets, i.e., for the difference result between any two sensor locations of the NA, one equivalent
non-negative/non-positive sum result of two other sensor locations can always be found. In order to
reduce the redundancy for further DOF enhancement, we develop a new DsNA configuration by
moving nearly half the dense sensors of the NA to the right side of the sparse uniform linear array
(ULA) part. These moved sensors together with the original sparse ULA form an extended sparse
ULA. For analysis, we provide the closed form expressions of the DsNA locations as well as the DOF.
Compared with some novel sparse arrays with large aperture such as the NA, coprime array and
augmented nested array, the DsNA can achieve a higher number of DOF. The effectiveness of the
proposed array is proved by the simulations.

Keywords: array signal processing; sparse array; degree of freedom; virtual array; DOA estimation

1. Introduction

The direction-of-arrival (DOA) estimation is an important topic in many applications such as
radar and sonar [1–10]. Many traditional high-resolution subspace-based estimators [11,12], which
utilize the uniform linear array (ULA) as the array model, have been proposed for direction finding.
As the degree of freedom (DOF) is limited by the array aperture, such estimators can detect no more
than R− 1 sources by using R physical sensors. In order to enhance the detection ability, many novel
methods, such as the spatial smoothing based MUSIC (SS MUSIC) method [13], apply the concept of
the Khatri–Rao (KR) product to sparse arrays for constructing the difference co-array (DCa) [13–18].
The combination of sparse arrays and the DCa concept can improve the DOF capacity and detect as
many as O(R2) sources.

The nested array (NA) [13] and coprime array (CA) [19], both of which consist of two uniform
linear subarrays with different inter-element spacings, are two novel sparse arrays with high DOFs.
In recent years, how to optimize these configurations to further increase the DOF has generated a new
wave of interest. Since the CA has holes in its DCa, the corresponding improvements mainly focus
on filling holes. An extended coprime array (ECA) developed by doubling the sensor number of one
subarray was proposed in [20]. Compared with the CA, the ECA includes a larger consecutive range
in its DCa since the increasement of the period of subarrays can help with filling holes. In [21,22],
a coprime array with multi-period subarrays (CAMpS) was proposed by extending the two subarrays

Sensors 2018, 18, 2988; doi:10.3390/s18092988 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-3846-7573
http://www.mdpi.com/1424-8220/18/9/2988?type=check_update&version=1
http://dx.doi.org/10.3390/s18092988
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 2988 2 of 17

in the CA from one-period to multi-period. As the periodic extension version of the CA, the CAMpS
can not only increase the DOF but also reduce the peak side-lobe. In [23], a generalized coprime array
(GCA) comprised of two operations, which are the compression operation and displacement operation,
was proposed. Since the two operations contribute to filling holes and enlarging the array aperture,
the GCA can achieve a high number of DOF. Different from the CA, the NA has a hole-free DCa and
requires less physical sensors to achieve the same DOF. However, since the NA contains a dense ULA,
theoretically, its DOF can be further increased by redistributing sensors of its dense ULA part. In [24],
an augmented nested array (ANA) concept was proposed. The ANA is constructed by splitting the
dense ULA of the NA into several subarrays, which can be rearranged at the two sides of the sparse
ULA of the NA. Thinning the dense ULA can reduce the redundancy of the DCa so that a higher
number of DOF can be achieved.

All the improved configurations mentioned above are developed based on the DCa concept.
They can also be known as the DCa based sparse arrays. In order to make the relations of some
traditional DCa based sparse arrays, such as the CA, NA and ANA, more clear, we give some examples
of these arrays and their corresponding DCa in Figure 1. Note that ANAII1 and ANAII2 are two kinds
of arrays with the highest DOF among the ANAs. It is obvious that combining sparse arrays and
DCa concept can extend the aperture. Among all the arrays, the ANAs achieve the highest number
of DOF. The NA has a larger aperture than the CA. All these arrays together with their improved
configurations are pursuing a kind of sparser structure which can reduce the redundancy of the DCa.
However, as shown in Figure 1, the DCa has a limitation, i.e., its DOF cannot be more than twice the
physical aperture. Jointly utilizing the DCa and other co-arrays, such as the sum co-array [3,4,25–27],
can break through the restriction and further extend the aperture.

Figure 1. Examples of some DCa based sparse arrays with eight sensors and their corresponding
difference co-arrays: (a) the coprime array; (b) the nested array; (c) the ANAII1; and (d) the ANAII2.

In [3], we proposed a Vectorized Conjugate Augmented MUSIC (VCAM) estimator, which can
construct a novel co-array known as the difference and sum co-array (DSCa). The DSCa consists of
three parts, i.e., the difference, non-negative sum and non-positive sum co-arrays. Compared with the
DCa, the DSCa has higher DOF and larger virtual aperture. Furthermore, the aperture of the DSCa
can be more than twice the physical aperture, which could help to decrease the array size. However,
Ref. [3] just summarizes some properties of the DSCa of the CA. The characteristics of the NA have
not been studied.

In this paper, we first analyze the DSCa characteristics of the NA. From the properties, one can
find that, for the NA, the redundancy of its DSCa is very high because the difference set is a subset
of the sum set. That is to say, a difference virtual element generated by the difference result between
any two physical sensor locations can always be replaced by the sum result of two other sensor
locations. Such a dual characteristic provides a potential optimization strategy of the NA. As long
as the original difference/sum result can be obtained, some physical sensors can be rearranged to
reduce the redundancy of the virtual array and extend the array aperture. Based on this strategy,



Sensors 2018, 18, 2988 3 of 17

a diff-sum nested array (DsNA) is proposed by moving nearly half the dense sensors of the NA to
the right side of the sparse uniform linear subarray. These moved sensors together with the original
sparse ULA form an extended sparse ULA. The DsNA possesses the following advantages: (a) the
DsNA has closed form expressions of the physical sensor locations and DOF; (b) the DSCa of the DsNA
achieves reduced redundancy and larger aperture than that of the NA; (c) DsNA acquires a better
DOA estimation performance and higher DOF than many other novel sparse arrays such as the CA
and ANA. Extensive simulations verify the good performance of our proposed DsNA.

This paper is organized as follows. Section 2 reviews the VCAM algorithm. Section 3 derives the
properties of the DSCa of the NA, introduces the DsNA and then analyzes its DSCa. Simulation results
are provided in Section 4. Section 5 concludes this article.

Notations: In the paper, we utilize lowercase bold letters, such as a, to denote vectors. We utilize
capital bold letters, such as A, to denote matrices. The sets are denoted by the capital outline
letters, such as A. dae rounds a number to the nearest integer and dae ≥ a. (.)∗, (.)T and (.)H

represent the conjugation, transpose and conjugate transpose of a matrix or vector, respectively.
vec(.) represents the vectorization operation. � and ⊗ represent the Khatri–Rao product and the left
Kronecker product, respectively.

2. Review of the VCAM Algorithm

In this paper, we exploit the VCAM estimator to construct the DSCa. It is noted that the VCAM
method is originally developed for detecting pulsed radars whose waveforms are simple pulse [28–30].
This kind of radar is also known as simple pulse radar. The simple pulse radar signal is a sinusoidal
waveform with deterministic amplitude, frequency and phase. Since the baseband signal frequency
is a characteristic parameter of the pulsed radar, the baseband signal frequencies of different pulsed
radars are different. Simple pulse radars are of good application value in many engineering projects.
As a kind of ground-based surveillance radar, simple pulse radars are often used for remote search
which would not demand high resolution. The sinusoidal waveforms of simple pulse radars are much
easier to handle compared with some other kinds of pulsed radars, such as chirp radars. Simple pulse
radars are also often used to assist chirp radars for velocity measurement. Due to the range doppler
coupling effect, chirp radars could fail to measure velocity of target. In contrast, simple pulse radars
would not be affected by the effect. Therefore, simple pulse and chirp pulse are often jointly utilized
to estimate range and velocity in some engineering projects. The VCAM method can be applied to
non-cooperative radar arrays to estimate directions of multiple simple pulse radars located at different
positions. The VCAM algorithm and its data model are summarized below.

According to [3,25], we assume Q deterministic far-field plane wave sources impinging on
the sensor array from directions {θ1, . . . , θQ}. The multipath effect is not considered in our model.
The sensor location set is denoted as D = {d1, . . . , dR} where d1 = 0 due to us selecting the first sensor
as the reference. The qth (1 ≤ q ≤ Q) signal can be represented as sq(t) = Aqejωqt, where Aq is the
deterministic complex amplitude, ωq is the baseband signal frequency and ωq 6= ωp (1 ≤ p ≤ Q, p 6= q).
Due to baseband signal frequencies of different radars being different, the signals are mutually
orthogonal to each other. Then, the received signal can be represented as

x(t) =
Q

∑
q=1

a(θq)sq(t) + n(t) = As(t) + n(t), (1)

where s(t) = [s1(t), s2(t), . . . , sQ(t)]T is the source signal vector, n(t) = [n1(t), n2(t), . . . , nR(t)]T is the
zero-mean uncorrelated white complex Gaussian noise vector with variance σ2

n, A = [a(θ1), a(θ2), . . . , a(θQ)]

denotes the manifold matrix and a(θq) = [1, ej2πd2 sin(θq)/λ, . . . , ej2πdR sin(θq)/λ]T is the steering vector
corresponding to the direction θq. λ represents the signal wavelength. By collecting Nx samples from
the first sensor output x1(t) and the rth (1 ≤ r ≤ R) output xr(t), we can obtain two vectors:
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[x1(1), x1(2), . . . , x1(Nx)] and [xr(1+ τ), xr(2+ τ), . . . , xr(Nx + τ)], where τ 6= 0. Assuming Nx is
sufficiently large, one can obtain the following time average function

Rx∗1 xr (τ) =
1

Nx

Nx

∑
t=1

x∗1(t)xr(t + τ)

=
Q

∑
q1=1

Q

∑
q2=1

{
a∗1(θq1)ar(θq2)Rs∗q1 sq2

(τ)
}
+ Rn∗1 nr (τ),

(2)

where a∗1(θq1) = 1, ar(θq2) = ej2πdr sin(θq2 )/λ, Rs∗q1 sq2
(τ) =

Nx
∑

t=1
s∗q1

(t)sq2(t + τ)
/

Nx =

A∗q1
Aq2 ejωq2 τ

Nx
∑

t=1
ej(ωq2−ωq1 )t/Nx and Rn∗1 nr (τ) =

Nx
∑

t=1
n∗1(t)nr(t + τ)/Nx ≈ σ2

nδ(τ)δ(r− 1) = 0. Due to

Nx
∑

t=1
ej(ωq2−ωq1 )t

/
Nx ≈ 0 for ωq1 6= ωq2 (q1 6= q2), Equation (2) can be simplified as

Rx∗1 xr (τ) =
Q

∑
q=1

ej2πdr sin(θq)/λRs∗q sq(τ), (3)

where Rs∗q sq(τ) =
Nx
∑

t=1
s∗q(t)sq(t + τ)

/
Nx = |Aq|2ejωqτ has the same form as the source signal sq(t) =

Aqejωqt. Thus, Rs∗q sq(τ) amounts to a signal source whose DOA is θq, q = 1, 2, . . . , Q and power is |Aq|4.
Stacking all the vectors Rx∗1 xr (τ), r = 1, . . . , R, we can obtain

vx(τ) =
[

Rx∗1 x1 , Rx∗1 x2 , . . . , Rx∗1 xR

]T
= Avs(τ), (4)

where vs(τ) = [Rs∗1 s1(τ), . . . , Rs∗QsQ(τ)]
T = [|A1|2ejω1τ , . . . ,

∣∣AQ
∣∣2ejωQτ ]

T
. Then, we can further

have [vx(−τ)]∗ = A∗vs(τ). It is obvious that vx(τ) and [vx(−τ)]∗ share the same first
row. Thus, for reducing the computation complexity, we eliminate the first row from
[vx(−τ)]∗ to obtain [v′x(−τ)]∗ = (A′)∗vs(τ), where A′ = [a′(θ1), . . . , a′(θQ)] with a′(θ) =

[ej2πd2 sin(θ)/λ, . . . , ej2πdR sin(θ)/λ]T . Concatenating vx(τ) and [v′x(−τ)]∗ together yields the following
conjugate augmented correlation vector

v(τ) =

[
vx(τ)

[v′x(−τ)]∗

]
= Ãvs(τ), (5)

where Ã =
[
AT , (A′)H

]T
=
[
ã(θ1), . . . , ã(θQ)

]
with ã(θq) = [a(θq)

T , (a′(θq))
H ]

T
. By choosing a set of

different time lags, i.e., τ = τs, 2τs, . . . , Nττs, we can obtain the following pseudo-data matrix

V = [v(τs), v(2τs), . . . , v(Nττs)] = ÃBW, (6)

where Nτ is the number of pseudo snapshots, τs is the pseudo sampling period and is set to satisfy the
sampling theorem, B = diag([|A1|2, · · · , |AQ|2]) and W =

[
wT(1), wT(2), . . . , wT(Q)

]T with the qth

row vector being w(q) =
[
ejωqτs , ejωq2τs , . . . , ejωq Nττs

]
. When Nτ is sufficiently large, w(q1) could be

considered to be orthogonal to w(q2) (q2 6= q1), i.e., w(q1)wT(q2)/Nτ ≈ 0. Therefore, by choosing
a sufficiently large value for Nτ , the covariance matrix of v(τ) can be estimated by

Rvv =
1

Nτ
VVH = ÃRvsvs ÃH , (7)
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where Rvsvs = B(WWH/Nτ )BH = diag(|A1|4, . . . ,
∣∣AQ

∣∣4). Vectorizing Rvv results in

z = vec(Rvv) = (Ã∗ � Ã)p, (8)

where p = [|A1|4, · · · , |AQ|4]T and the qth column vector of Ã∗ � Ã is

ã∗(θq)⊗ ã(θq) =

[
a(θq)

(a′(θq))
∗

]∗
⊗
[

a(θq)

(a′(θq))
∗

]

=


a∗(θq)⊗ a(θq)

a∗(θq)⊗ (a′(θq))
∗

a′(θq)⊗ a(θq)

a′(θq)⊗ (a′(θq))
∗

 .

(9)

Comparing Equations (8) and (1), we can find that z behaves like the equivalent received signal
at a virtual array whose manifold matrix is Ã∗ � Ã. From Equation (9), it is obvious that any virtual
sensor location can be represented as one of the following forms: dr1 − dr2 , dr1 + dr2 and −(dr1 + dr2)

(1 ≤ r1, r2 ≤ R). Thus, the obtained virtual array is a DSCa, which consists of the difference co-array,
the non-negative sum co-array and the non-positive sum co-array. In order to solve the coherent issue
of z, we apply the spatial smoothing algorithm, which requires that the virtual array be a ULA, to deal
with z. Assume that the consecutive range of the DSCa is [−Lcd, Lcd], where d is the unit inter-element
spacing. Then, removing the repeated and discrete location lags in Equation (8), we obtain

ẑ = Âp, (10)

where Â is a (2Lc + 1)×Q manifold matrix corresponding to the virtual sensors located from −Lcd to
Lcd. Now, we divide the virtual ULA into Lc + 1 subarrays, each of which contains Lc + 1 elements.
The elements of the lth (l = 1, . . . , Lc + 1) subarray are located from (−l + 1)d to (−l + 1+ Lc)d. Then,
we extract the rows, which correspond to the lth subarray, from ẑ in Equation (10) to obtain the vector
ẑl , l = 1, . . . , Lc + 1. By applying MUSIC to the following full-rank covariance matrix

Rẑẑ =
1

Lc + 1

Lc+1

∑
l=1

ẑl ẑ
H
l , (11)

we can estimate the DOA of the signals.

Remark 1. Compared with the methods (e.g., SS MUSIC) which utilize the spatial information of the received
signals to construct the DCa, the VCAM method has larger DOF capacity and improved DOA performance.
The multi-frequency form of the signal model is a key for the better performance. It allows one to utilize not only
the spatial information of received deterministic signals but also the temporal information. Thus, more additional
information can be used for DOA estimation. Based on this advantage brought by the multi-frequency model,
the VCAM method jointly utilizes both the temporal information and the spatial information to obtain the
conjugate augmented correlation vector v(τ). This operation extends the array manifold matrix from A to Ã.
Then, the covariance matrix of the conjugate augmented correlation vector has a larger dimension and contains
more information, which allows the VCAM method to construct the DSCa consisting of the DCa and sum
co-array. Therefore, compared with the DCa obtained by using spatial information, the DSCa obtained by jointly
using the spatial and temporal information has higher DOF and larger virtual aperture. It should also be noted
that the size of the temporal window used for observing the orthogonal deterministic signals depends on the
frequency spacings of signals. Small frequency spacings result in a large observation window. For instance,

if one want to let
Nx
∑

t=1
ej(ωq2−ωq1 )t

/
Nx ≈ 0

(
ωq1 6= ωq2

)
, the value of Nx will depend on

∣∣ωq2 −ωq1

∣∣. They are

inversely related. The effect of frequency spacings on observation window size is very noticeable when the
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frequency spacing is small, e.g., less than n× 10−2 Hz (0 < n < 10). However, when the frequency spacing
is no less than n× 10−1 Hz, this kind of effect is no longer so obvious. No matter if the frequency interval is
a few kilohertz or only a few hertz, the minimum observation temporal window size that makes the two signals
approximately orthogonal is almost the same. In real systems, the baseband signal frequency spacing of different
simple pulse radars has been actually large enough to ensure that the observation temporal window for the
VCAM method does not need to be so large. Thus, when the temporal window size takes a relatively large value,
the orthogonal characteristic can be guaranteed.

The VCAM method is originally applied to non-cooperative radar arrays to estimate directions of multiple
simple pulse radars located at different positions. However, based on the discussion of the method, it is obvious
that a cooperative setting is also one kind of suitable scenario for the VCAM method. In the cooperative setting,
we have Q tags that can be instructed by a central control node to actively transmit mutually orthogonal
sinusoidal waveforms with constant amplitude, frequency and phase. The goal is localizing the tags. One can
choose a set of favorable frequencies for these Q sinusoidal signals to help improve the performance of our
algorithm. Therefore, a cooperative setting can make full use of the superior performance and high DOF capacity
of the VCAM algorithm.

3. The Diff-Sum Nested Array Based on the Concept of the Difference and Sum Co-Array

In this section, we will first make the NA as the array model and analyze the properties of its DSCa,
as well as the relationship between the consisting difference and sum co-arrays. Then, based on the
summarized characteristic, we propose an improved nested configuration, i.e., the DsNA. Compared
with the NA, the proposed configuration acquires larger aperture and has less redundancy in its
DSCa so that it can achieve a higher number of DOF. For convenience, we define the following two
operations: ±(A± B) = {±(a± b) |a ∈ A, b ∈ B} and ±(A± c) = {±(a± c) |a ∈ A}, where A and
B are two given sets, and c is a scalar.

3.1. The Properties of the DSCa of the NA

As shown in Figure 2, the NA consists of two ULAs. Subarray 1 is a dense ULA including
N1 sensors with the inter-sensor spacing of one unit. Subarray 2 is a sparse ULA containing N2

sensors with the inter-sensor spacing of N1 + 1 units. The total sensor number of the NA is N1 + N2.
For convenience, we normalize all the locations by the unit inter-element spacing d. Then, the location
set of the NA can be represented as DNA = D1 ∪ D2, where D1 = {n1 |0 ≤ n1 ≤ N1 − 1} and
D2 = {N1 + n2(N1 + 1) |0 ≤ n2 ≤ N2 − 1}.

···

0

···

Subarray 2Subarray 1

d 1( 1)N d+

d 1( 1)N d- 1N d 1(2 1)N d+ 1 2 2( 1)N N N d+ -

Figure 2. The nested array configuration.

According to Equation (9), the DSCa can be represented as

Lds = Ldi f f ∪L+
sum ∪L−sum︸ ︷︷ ︸

Lsum

,
(12)

where Ldi f f = D − D is the difference set, L+
sum = D + D is the non-negative sum set, L−sum =

−(D+D) is the non-positive sum set, and Lsum = L+
sum ∪ L−sum is the sum set. For the NA, Ref. [13]

has concluded that its difference set Ldi f f possesses all of the consecutive elements in the range
[−(N1N2 + N2 − 1), N1N2 + N2 − 1].
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When using the NA in Figure 2 as the array model (i.e., D = DNA, R = N1 + N2), L+
sum can be

expressed as

L+
sum = {D1 +D1} ∪ {D1 +D2} ∪ {D2 +D2} , (13)

where D1 + D1 = {0, 1, . . . , 2 (N1 − 1)}, D2 + D2 = {2N1 + x(N1 + 1) |0 ≤ x ≤ 2(N2 − 1)},
and D1 + D2 = {N1, N1 + 1, . . . , 2N1 − 1} ∪ {2N1 + 1, 2N1 + 2, . . . , 3N1} ∪ · · · ∪
{N1N2 + N2 − 1, N1N2 + N2, . . . , N1N2 + N1 + N2 − 2}. The holes in D1 + D2 form the set H1 =

{2N1 + x(N1 + 1)|0 ≤ x ≤ N2 − 2}. It is obvious that H1 ∪ {N1N2 + N1 + N2 − 1} ⊆ {D2 +D2}.
Thus, we can conclude that the consecutive range of L+

sum is [0, N1N2 + N1 + N2 − 1]. Since L−sum is the
flipped version of L+

sum, we summarize the property of Lsum as the following proposition.

Proposition 1. The consecutive range of the sum set Lsum of the NA is
[−(N1N2 + N1 + N2 − 1), N1N2 + N1 + N2 − 1].

Comparing the properties of Ldi f f and Lsum, it is clear that Ldi f f is a subset of Lsum, which means
that, for any difference virtual element dr1 − dr2(dr1 .dr2 ∈ D, 1 ≤ r1, r2 ≤ R) in Ldi f f , there always
exists one equivalent sum virtual element dr3 + dr4 or −(dr3 + dr4)(dr3 .dr4 ∈ D, 1 ≤ r3, r4 ≤ R) in Lsum,
i.e., dr1 − dr2 = dr3 + dr4 or −(dr3 + dr4). Such a dual characteristic reveals the high redundancy of the
DSCa of the NA, but simultaneously can be used to rearrange the physical sensors for extending the
array aperture and DOF. Thus, in order to derive an optimization strategy of the NA, we need to make
a concrete analysis of the dual characteristic. First, we introduce the concept of the dual pair.

Definition 1. (Dual pair). For an arbitrary hole dh in the NA and two elements d1D1 , d2D1 ∈ D1 ∪ {N1},
if there exist d1D2 , d2D2 ∈ D2 to make dh = d1D2 − d1D1 = d2D2 + d2D1 , the pair

{
d1D1 , d2D1

}
is called the

dual pair.

From Definition 1, one can know that, when retaining all the elements (e.g., d1D2 and d2D2) in
D2, a specific hole dh in the NA can still be filled even if one element in the corresponding dual pair{

d1D1 , d2D1

}
is eliminated. To illustrate this characteristic clearly, we depict in Figure 3 how the holes

in the NA with (N1, N2) = (4, 3) can be filled by the difference or sum results of D1 ∪ {N1} and D2.
Table 1 summarizes all the dual pairs in Figure 3. Take the hole location 6 for example. In the premise
that 9, 4 ∈ D2 are retained in the sparse ULA, if 3 is removed, one can still use 4 + 2 to form 6. Similarly,
if 2 is moved away, 9 − 3 can be used. Therefore, either element in the dual pair {3, 2} can be used
to fill the hole location 6. It is noted that {3, 2} and {2, 3} are the same dual pair—so are {4, 1} and
{1, 4}. Figure 3 and Table 1 also show that the dual pairs used to fill holes between any two adjacent
sensors of Subarray 2 are exactly the same. This property always holds whatever the sensor number
N2 is. Denote the number of dual pairs in NA as Ndual . In the following proposition, we provide the
closed form expression of the dual pairs.

Subarray 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Subarray 1

1-2-3-4- 1-2-3-4-

2+ 3+ 4+1+ 2+ 3+ 4+1+

Figure 3. An example of filling the holes in the NA with (N1, N2) = (4, 3).
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Table 1. A summary of dual pairs of the NA with (N1, N2) = (4, 3).

Hole Location d1D2 − d1D1 d2D2 + d2D1 Dual Pair

5 9− 4 4 + 1 {4, 1}
6 9− 3 4 + 2 {3, 2}
7 9− 2 4 + 3 {2, 3}
8 9− 1 4 + 4 {1, 4}

10 14− 4 9 + 1 {4, 1}
11 14− 3 9 + 2 {3, 2}
12 14− 2 9 + 3 {2, 3}
13 14− 1 9 + 4 {1, 4}

Proposition 2. For the NA with (N1, N2), the dual pairs are characterized by the set
PNA =

{{
d1D1 , d2D1

} ∣∣1 ≤ d1D1 , d2D1 ≤ N1, d1D1 + d2D1 = N1 + 1
}

. When N1 is odd, PNA =

{{1, N1} , {2, N1 − 1} , . . . , {(N1 + 1)/2, (N1 + 1)/2 }}. The dual pair number is Ndual = (N1 + 1)/2.
When N1 is even, the dual pair set becomes PNA = {{1, N1} , {2, N1 − 1} , . . . , {N1/2, (N1 + 2)/2 }}.
In this case, Ndual = N1/2.

Proof. See Appendix A.

According to Proposition 2, one can find that the dual pair number is dN1/2e, which is
approximately half the number of dense sensors in the NA. This proposition together with the previous
analysis of dual pairs provide a potential strategy to improve the NA. Under the premise that all the
elements in D2 are retained, we can choose any Nc (Nc ≤ Ndual) dual pairs, take one element from each
of these chosen pairs and move them to the positions N1 + x (N1 + 1), x = N2, N2 + 1, . . . , N2 + Nc − 1.
Then, the remaining sensors in D1 form a sparse array. The moved sensors together with Subarray 2
form an extended sparse ULA with sensors located at Z = {N1 + n2(N1 + 1) |0 ≤ n2 ≤ N2 + Nc − 1}.
As this extended sparse ULA is a periodic extension version of Subarray 2, the holes in Z can be filled
by the difference or sum results of Z and the retained elements in D1 ∪ {N1}. It is noted that, in PNA,
{1, N1} is the only sensor pair that contains the element N1 in D2. We will always move 1 and retain
N1 when considering moving one element in {1, N1}.

Figure 4 illustrates one moving scheme of the NA with (N1, N2) = (4, 3). 2 from {2, 3} and 1
from {1, 4} are respectively moved to 19 and 24. Comparing Figures 3 and 4, one can find that this
scheme thins the dense sensors and reduces the redundancy between the difference and sum sets.
Furthermore, all the holes in the extended sparse ULA can be filled by the difference and sum results
of the elements in Z = {4, 9, 14, 19, 24} and the remaining dual pair elements 3, 4. Therefore, the newly
formed array could have a larger co-array aperture than the NA. Although the scheme has the above
advantages, it will result in some new holes in the original dense ULA part, e.g., holes 1 and 2 in
Figure 4. Thus, in order to increase the DOF as large as possible, filling these new holes becomes an
important issue that needs to be resolved when considering how to select the dual pair elements to
move.

14 150 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 18 19 20 21 22 23 24

4- 3-4- 3- 4- 3- 4- 3-

4+3+ 4+3+ 4+3+4+3+

Sparse array Extended sparse ULA

Figure 4. An example of rearranging dual pair elements of the NA with (N1, N2) = (4, 3).

3.2. The Proposed Diff-Sum Nested Array

To resolve the hole issue caused by rearranging dual pair elements, a new array configuration
known as DsNA is proposed. It achieves reduced redundancy. Meanwhile, all the holes in its physical
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array can be filled by the difference and sum results of sensors so that the virtual aperture is fully
extended. The definition of the DsNA with N1 + N2 sensors is given by:

Definition 2. (Diff-sum nested array). For two integers N1 and N2 satisfying N1 ≥ 3 and N2 ≥ 2, the diff-sum
nested array is specified by the set DDsNA, which is expressed as

DDsNA =



X1 ∪Y1 ∪Z1, if N1 = 2a− 1, a is odd, a ≥ 3,
X2 ∪Y2 ∪Z1, if N1 = 2a− 1, a is even, a ≥ 4,
X2 ∪Z1, if N1 = 2a− 1, a is even, a < 4,
{0} ∪X3 ∪Z3, if N1 = 2a, a ≥ 4,
{0, 1} ∪X3 ∪Z′3, if N1 = 2a, a ≤ 3,

(14)

where

X1 = {2x |0 ≤ x ≤ (N1 − 1)/4 } ,

Y1 = {2x− 1 |(N1 + 3)/4 ≤ x ≤ (N1 − 1)/2 } ,

Z1 = {N1 + n2(N1 + 1) |0 ≤ n2 ≤ N2 − 1 + (N1 − 1)/2 } ,

X2 = {2x |0 ≤ x ≤ (N1 + 1)/4 } ,

Y2 = {2x− 1 |(N1 + 5)/4 ≤ x ≤ (N1 − 1)/2 } ,

X3 = {2x + 1 |1 ≤ x ≤ (N1 − 2)/2 } ,

Z3 = {N1 + n2(N1 + 1) |0 ≤ n2 ≤ N2 − 1 + N1/2 } ,

Z′3 = {N1 + n2(N1 + 1) |0 ≤ n2 ≤ N2 − 2 + N1/2 } .

Note that Definition 2 is applicable to the conditions that N1 ≥ 3 and N2 ≥ 2, i.e., the sensor
number satisfies R ≥ 5. When N1 = 2a− 1, the total number of dual pairs is Ndual = (N1 + 1)

/
2 and

the moved dual pair sensor number is Nc = (N1 − 1)
/

2. The moved sensors together with the original
sparse ULA form the extended sparse ULA whose location set is Z1. The retained sensors in the dense
ULA locate at X1 ∪Y1, X2 ∪Y2 or X2. When N1 = 2a ≥ 8, we have Nc = Ndual = N1/2. The location
set of the extended sparse ULA is Z3. The retained sensors of the dense ULA form the set {0} ∪X3.
When N1 = 2a < 8, Nc = N1/2− 1 and Ndual = N1/2. The location set of the extended sparse ULA
becomes Z′3, and the location set of the retained sensors of Subarray 1 becomes {0, 1} ∪X3.

Figure 5 illustrates the relationship between the NA and the DsNA with (N1, N2) = (8, 2).
According to Proposition 2, the dual pairs of the NA are {1, 8}, {2, 7}, {3, 6} and {4, 5}. The DsNA
is constructed by moving 1, 2, 4 and 6 in these dual pairs to 26, 35, 44 and 53. Then, the dense ULA
(Subarray 1 in Figure 5a) of the NA becomes a sparse array (Subarray A in Figure 5b) of the DsNA.
The sparse ULA (Subarray 2 in Figure 5a) of the NA together with the moved sensors form an extended
sparse ULA (Subarray B in Figure 5b) of the DsNA. Thus, the DsNA also consists of two subarrays.
Subarray A is a sparse array containing nearly half the sensors in Subarray 1. Subarray B is a sparse
ULA containing about N1/2 more sensors than Subarray 2. Since the dense sensors are thinned,
the redundancy and mutual coupling of the DsNA is much less than the NA.

Now, we will show that all the holes in the DsNA can be filled by the difference and sum results of
sensors. For convenience, the consecutive range of any one virtual array in this paper is represented as
[−Lc, Lc] with Lc being the one-side DOF. The physical aperture is denoted by Lp, and is quantified as
Lp = max {D} −min {D}. Since both the SS MUSIC method for constructing the DCa and the VCAM
method for constructing the DSCa utilize the spatial smoothing method to solve the coherent issue
generated by the Khatri–Rao product operation, the available DOF of the constructed virtual arrays in
these methods would be reduced by half. Thus, the maximum number of detectable signals in these
methods is equal to Lc. The following proposition gives some properties of the DSCa of the DsNA
with (N1, N2).
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1Subarray 1 (  sensors)N 2Subarray 2 (  sensors)N

2Subarray B (  sensors)
c

N N+1Subarray A (  sensors)
c

N N-

Figure 5. The configurations of (a) the nested array; and (b) the diff-sum nested array, where (N1, N2) =

(8, 2).

Proposition 3. For the DsNA with (N1, N2), all the holes in its physical array can be filled by the difference
and sum results of physical sensor locations. The one-side DOF of the DSCa can be expressed as

Lc =


N1 + (N1 + 1) (N2 − 1 + (N1 − 1)/2 ) , if N1 is odd,
N1 + (N1 + 1) (N2 − 1 + N1/2 ) , if N1 is even and N1 ≥ 8,
N1 + 1 + (N1 + 1) (N2 − 2 + N1/2 ) , if N1 is even and N1 < 8.

(15)

Proof. See Appendix B.

Combining Definition 2 and Proposition 3, it is clear that, for case 1 and case 2, there exists the
relationship Lc = Lp. For case 3, the relationship becomes Lc = Lp + 1. Thus, Proposition 3 reveals the
hole-free property of the DSCa of the DsNA in the range

[
−Lp, Lp

]
. This means that the development

of the DsNA can solve the hole issue caused by the dual pair element movement. Figure 6 shows
the DSCa of the two configurations in Figure 5. One can find the DSCa of the DsNA contains all the
consecutive elements in the range [−53, 53], where 53 is the physical aperture. However, the DSCa of
the NA only comprises consecutive elements from −25 to 25.

25- 25

5353-

(a)

(b)

consecutive range

consecutive range

Figure 6. Two virtual configurations (R = 10 and (N1, N2) = (8, 2)): (a) the DSCa of the NA; and (b) the
DSCa of the DsNA.

To find out the optimum configuration in the DsNA set with a fixed sensor number R = N1 + N2,
we provide the following proposition. For convenience, the maximum value of Lc is represented
as Lcmax.

Proposition 4. When the sensor number R is fixed, the maximum one-side DOF of the DSCa has the
following conclusions:

Proof. See Appendix C.

According to Table 2, one can find that if R = 8 or R is odd and R ≥ 11, the optimal parameters are
N1 = R− 3, N2 = 3. In the other cases, the consequences become N1 = R− 2, N2 = 2. For comparison,
in Table 3, for the case of a large sensor number, we provide the approximate Lcmax results of five
virtual arrays, i.e, the DCa of the ANAII1 and ANAII2 [24], and the DSCa of the NA, CA and DsNA.
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For simplicity, we utilize DCa(ANAII1) and DCa(ANAII2) to represent the DCa of the ANAII1 and
ANAII2. DSCa(NA), DSCa(CA) and DSCa(DsNA) represent the DSCa of the NA, CA and DsNA,
respectively. The ANAII1 and ANAII2 are two kinds of arrays with the highest DOF among all the
ANAs. Since [24] has only summarized the properties of the DCa of the ANA, we only consider the
DCa of the these two arrays. From Table 3, we can conclude that DSCa(DsNA) has higher DOF than
the other four virtual arrays. More DOF comparisons will be shown in the Simulation results.

Table 2. Lcmax of the DSCa of the DsNA and the optimal parameters.

R Optimal N1, N2 Lcmax

odd (≥11) N1 = R− 3, N2 = 3 R2/2 + R/2 − 4
odd (<11) N1 = R− 2, N2 = 2 R2/2 − 3/2
even (≥10) N1 = R− 2, N2 = 2 R2/2 + R/2 − 2

8 N1 = 5, N2 = 3 29
6 N1 = 4, N2 = 2 15

Table 3. A summary of approximate Lcmax of five virtual arrays.

Virtual Array Approximate Lcmax

DCa(ANAII1) R2/3
DCa(ANAII2) R2/3

DSCa(NA) R2/4 + R
DSCa(CA) R2/4 + 3R/2

DSCa(DsNA) R2/2 + R/2

Remark 2. In the detecting multiple pulsed radars application scenario, all kinds of sparse arrays can be used
as the received array in the VCAM method for estimating directions of multiple deterministic orthogonal signals.
However, traditional sparse arrays are usually developed based on the DCa concept so that they cannot take full
advantage of aperture extending capacity of the DSCa concept. Therefore, the DSCa of the DsNA can always
have higher DOF than that of sparse arrays developed by the DCa concept. In conclusion, in the detecting
multiple pulsed radars application scenario, the DsNA is a more suitable sparse array.

It is noted that, in radar application, the secondary lobes height is one important beam pattern
characteristic. However, the existing sparse array based beamformers are usually restricted to specific DCa based
structures [13,31]. Only the DCa concept is used. Thus, using these beamformers to evaluate the secondary
lobes height of the DsNA is not appropriate. In our future work, we will improve our VCAM method to obtain
a DSCa based beamformer. In addition, for the DsNA, we will also analyze in the future about the trade-off
strategy between its DOF and the secondary lobes height.

4. Simulation Results

In this section, we evaluate the performances of five array configurations, i.e., the NA, CA,
ANAII1, ANAII2, and DsNA. All the arrays have the same sensor number R. The parameters are
optimal so that the maximum Lc can be achieved.

4.1. DOF Comparison

As illustrated in Figure 7, the first experiment compares the values of Lc. The sensor number R
varies from 6 to 100. It is obvious that the DSCa (DsNA) achieves a higher number of DOF than the
other four virtual arrays. In addition, with the sensor number increasing, the gap between the DSCa
(DsNA) and the other four virtual arrays becomes larger. In order to show the results more clearly,
three examples with R = 10, R = 50 and R = 90 are listed in Table 4. Combining Figure 7 and Table 4,
we can conclude that the superiority of our proposed DSCa (DsNA) will be more obvious when the
sensor number R grows larger.
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Figure 7. The values of Lc of five virtual arrays with the sensor number R varying from 6 to 100.

Table 4. Examples of Lc of the five virtual arrays.

Virtual Array Lc Lc Lc
(R = 10) (R = 50) (R = 90)

DSCa (NA) 34 674 2114
DCa (ANAII1) 36 848 2728
DCa (ANAII2) 32 832 2700

DSCa (CA) 40 700 2160
DSCa (DsNA) 53 1273 4093

4.2. DOA Estimation

As shown in Figure 8, the second experiment demonstrates the DOA estimations. The SS MUSIC
method is applied to the ANAII1 and ANAII2. The VCAM method is applied to the NA, CA and DsNA.
Here, we consider the sensor number of the five configurations as R = 10 and the unit inter-element
spacing as d = λ/2 . The snapshots Nx and the pseudo snapshots Nτ satisfy Nx = Nτ = 800.
We consider the input SNR = 10 dB. Suppose there are 41 sources uniformly distributed between −60◦

and 60◦. The frequencies of these 41 signals are uniformly distributed between 3 MHz and 10 MHz.
Figure 8e shows that the DsNA can detect all the 41 sources since the one-side DOF of its DSCa is 53,
which is shown in Table 4. However, as shown in Figure 8a–d, the other four configurations fail to
detect all the DOAs correctly due to Lc of the DSCa(NA), DCa(ANAII1), DCa(ANAII2), and DSCa(CA)
being 34, 36, 32 and 40. Thus, with the sensor number R fixed, the DsNA with the VCAM used achieves
a better performance than the other four array configurations.

Figure 8. The estimated DOAs (R = 10, Q = 41 and SNR = 10 dB): (a) the NA with the VCAM used;
(b) the ANAII1 with the SS MUSIC used; (c) the ANAII2 with the SS MUSIC used; (d) the CA with the
VCAM used; and (e) the DsNA with the VCAM used.
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4.3. Root Mean Square Error (RMSE)

In the third experiment, we conduct 500 Monte Carlo trials to evaluate the fidelity of the DOA
estimations. The performance metric is the root mean square error (RMSE) of the DOA estimation,
which is defined as

RMSE =

√√√√ 1
500Q

500

∑
i=1

Q

∑
q=1

(
θ̂q(i)− θq

)2
,

where θq is the real DOA of the qth signal source and θ̂q(i) is the estimation for the ith trial, i = 1, . . . , 500.
In this experiment, we consider the number of signal sources as Q = 22. The sources are uniformly
distributed between −60◦ and 60◦, and their frequencies are uniformly distributed between 3 MHz
and 10 MHz. The sensor number is R = 10.

In Figure 9, we suppose that Nx = Nτ = 800 to evaluate the RMSE performance as a function of
the input SNR. It can be seen that the performances of the five configurations improve considerably
when the SNR increases. The DsNA with the VCAM used outperforms the other four arrays since the
DSCa(DsNA) contains more consecutive elements than the other four virtual arrays.

Figure 9. RMSE versus SNR, Q = 22 and Nx = Nτ = 800.

In Figure 10, we set SNR = 10 dB and Nx = Nτ to evaluate the RMSE performance as a function
of the number of snapshots. Similarly, the performances of all the configurations improve with the
number of snapshots increasing. The DsNA with the VCAM used still performs better than the other
four arrays, due to the larger consecutive range of its virtual array. From the two simulations, one can
find that, even when the SNR and the number of snapshots are large, there is an obvious gap between
the DsNA and the other four array configurations.

Figure 10. RMSE versus the number of snapshots, Q = 22 and SNR = 10 dB.
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Remark 3. It is noted that the SS MUSIC method was originally designed for random signals. However, due to
the similarity between the orthogonal characteristic of deterministic signals and the uncorrelated characteristic of
random signals, the SS MUSIC method can also be used for DOA estimation of orthogonal deterministic signals.
In this case, the statistical averaging for random signals in the original method is replaced by the time averaging
for deterministic signals. As mentioned previously, the SS MUSIC method combines the KR product concept
and the spatial information of received signals to construct the DCa. In contrast, the VCAM method jointly
utilizes the KR product concept, spatial information and temporal information to obtain the DSCa with larger
aperture than the DCa. The comparison between them may affect the future design of the sparse sensor array and
improvement of co-array based methods for detecting multiple deterministic orthogonal signals.

5. Conclusions

We have analyzed the properties of the DSCa of the NA and concluded that the DCa of the NA is
a subset of its sum co-array. The redundancy between the two co-arrays would decrease the available
DOF. Thus, by moving nearly half the sensors in the dense ULA of the NA to the right side of the sparse
ULA, we proposed the DsNA whose DSCa has reduced redundancy, larger aperture and extended
consecutive range than that of the NA. Compared with lots of novel sparse arrays such as the NA,
ANA and CA, the DsNA achieves a higher number of DOF. The effectiveness of the proposed array
was numerically studied and evaluated.
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Abbreviations

The following abbreviations are used in this manuscript:

DSCa difference and sum co-array
DOF degree of freedom
NA nested array
DsNA diff-sum nested array
ULA uniform linear array
DOA direction of arrival
DCa difference co-array
CA coprime array
ANA augmented nested array
VCAM Vectorized Conjugate Augmented MUSIC
SS MUSIC spatial smoothing based MUSIC
KR Khatri–Rao
RMSE root mean square error

Appendix A

Proof of Proposition 2. Since the location set of Subarray 2 of the NA is D2 =

{N1 + n2(N1 + 1) |0 ≤ n2 ≤ N2 − 1}, it is obvious that the holes in the NA form the
set Dhole = {N1 + y(N1 + 1) + x |0 ≤ y ≤ N2 − 2, 1 ≤ x ≤ N1 }. According to Definition 1,
one knows that for any dual pair

{
d1D1 , d2D1

}
and any hole element dh ∈ Dhole, one can have

dh = N1 + (y + 1) (N1 + 1)− d1D1 = N1 + y (N1 + 1) + d2D1 , where 0 ≤ y ≤ N2 − 2. Then, one can
further have d1D1 + d2D1 = N1 + 1. Thus, the closed form expression of dual pairs can be given
as PNA =

{{
d1D1 , d2D1

} ∣∣1 ≤ d1D1 , d2D1 ≤ N1, d1D1 + d2D1 = N1 + 1
}

. Based on this expression,
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all the elements in PNA as well as the dual pair number can be easily obtained as summarized in
Proposition 2.

Appendix B

Proof of Proposition 3. We will first prove that all the holes in the DsNA can be filled by the difference
and sum results of sensors, i.e., Lds has no holes in the range

[
−Lp, Lp

]
. It is noted that, since Lds is

symmetrical with the zero point as the center, the holes in the flipped array of the DsNA would also be
filled. According to the dual characteristic of the NA, Proposition 2 and Definition 2, it is obvious that
no matter if N1 is odd or even, all the holes in the sparse ULA (Subarray B) of the DsNA can be filled
by the difference and sum results. Then, we only need to prove that the holes in the range [0, N1 − 1]
of the DsNA can be filled.

If N1 and (N1 + 1)/2 are odd, the location set of Subarray A is DA = X1 ∪ Y1. As Y1 −
X1 = {2x− 1 |1 ≤ x ≤ (N1 − 1)/2 } and X1 +X1 = {2x |0 ≤ x ≤ (N1 − 1)/2 }, it can be seen that
{Y1 −X1} ∪ {X1 +X1} contains all the elements in the range [0, N1 − 1].

If N1 is odd and (N1 + 1)/2 is even: with N1 ≥ 7, DA = X2 ∪ Y2. Due to Y2 − X2 =

{2x− 1 |1 ≤ x ≤ (N1 − 1)/2 } and X2 + X2 = {2x |0 ≤ x ≤ (N1 + 1)/2 }, it can be seen that
{Y2 −X2} ∪ {X2 +X2} contains all the elements in the range [0, N1 − 1]. With N1 < 7, i.e., N1 = 3,
DA = X2 = {0, 2}. It is obvious that {N1 −X2} ∪ {X2 +X2} contains all the elements in the range
[0, N1 − 1].

If N1 is even: With N1 ≥ 8, DA = {0} ∪X3. According to Definition 2, we obtain {X3 −X3} =
{2x |0 ≤ x ≤ (N1 − 4)/2 } and {X3 − 0} = {2x− 1 |2 ≤ x ≤ N1/2 }. Then, {X3 −X3} ∪ {X3 − 0}
contains not only all the consecutive lags in [2, N1 − 3] but also 0 and N1 − 1. One can be obtained
by the difference result of N1 in Z3 and N1 − 1 in X3. N1 − 2 can be obtained by the sum result of
N1/2 and N1/2 − 2 in X3 when N1/2 is odd. When N1/2 is even, N1 − 2 can be obtained by
the sum result of N1/2− 1 and N1/2 − 1 in X3. Thus, Lds contains all the elements in the range
[0, N1 − 1]. When N1 ≤ 6, DA = {0, 1} ∪X3. Here, the reason of retaining 1 is that when N1 = 6, we
have N1/2 − 2 = 1 ,and when N1 = 4, we have N1/2 − 1 = 1. Therefore, N1 − 2 can still be obtained
by the sum result.

In conclusion, Lds has no holes in the range
[
−Lp, Lp

]
. Then, we will calculate the value of Lc.

The physical aperture Lp is the maximum element in the location set so that Lp is always contained in
DDsNA. From the configuration of the DsNA, it is obvious that, if Lds contains Lp + 1 and −(Lp + 1),
these two elements must be obtained by the sum operation of 1 and Lp. According to Definition 2,
we know that if N1 is odd, 1 is not contained in DDsNA. Thus, Lp + 1 and −(Lp + 1) are holes in
Lds and we have Lc = Lp = N1 + (N1 + 1) (N2 − 1 + (N1 − 1)/2 ). Similarly, if N1 is even and no
less than 8, 1 is not contained in DDsNA either so that Lc = Lp = N1 + (N1 + 1) (N2 − 1 + N1/2 ).
If N1 is even and less than 8, 1 is contained in DDsNA but 2 is not contained so that Lc = Lp + 1 =

N1 + 1 + (N1 + 1) (N2 − 2 + N1/2 ).

Appendix C

Proof of Proposition 4. Since R = N1 + N2 is a given sensor number, we can turn Lc in the
three cases in Proposition 3 into three functions: (case 1) If N1 is odd, f1(N1) = N1 +

(N1 + 1) (R− N1 − 1 + (N1 − 1)/2 ). (case 2) If N1 is even and N1 ≥ 8, f2(N1) = N1 +

(N1 + 1) (R− N1 − 1 + N1/2 ). (case 3) If N1 is even and N1 < 8, f3(N1) = N1 + 1 +

(N1 + 1) (R− N1 − 2 + N1/2 ). The derivatives of the three functions are respectively ∂ f1/∂N1 =

R − 1− N1, ∂ f2/∂N1 = R − 1/2 − N1 and ∂ f3/∂N1 = R − 3/2 − N1. Since N1 ≤ R − 2, the
three derivatives are more than 0. Thus, when considering only one of the three cases, the maximum
Lc is achieved with N1 being maximum. Now, we would further compare the maximum Lc of the
three cases.

If R is odd and R < 11, case 1 and case 3 would be compared. With N1 = R− 2 and N2 = 2,
the maximum Lc of case 1 can be achieved, i.e., f1 (R− 2) = R2/2 − 3/2 . When N1 = R− 3 and
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N2 = 3, the maximum Lc of case 3 can be achieved, i.e., f3 (R− 3) = R2/2 − R/2 − 1. As R ≥ 5,
we have f1 (R− 2)− f3 (R− 3) > 0. Thus, in this case, we have Lcmax = R2/2 − 3/2 and the optimal
parameters are N1 = R− 2 and N2 = 2.

If R is odd and R ≥ 11, case 1 and case 2 would be compared. The maximum Lc of case 1 is
still f1 (R− 2) = R2/2 − 3/2 . With N1 = R − 3 and N2 = 3, the maximum Lc of case 2 can be
achieved, i.e., f2 (R− 3) = R2/2 + R/2 − 4. Then, we can have f1 (R− 2)− f2 (R− 3) < 0. Thus,
Lcmax = R2/2 + R/2 − 4 and the optimal parameters are N1 = R− 3 and N2 = 3.

If R is even and R ≥ 10, case 1 and case 2 would be compared. With N1 = R− 3 and N2 = 3,
the maximum Lc of case 1 can be achieved, i.e., f1 (R− 3) = R2/2 − 3 . With N1 = R − 2 and
N2 = 2, the maximum Lc of case 2 can be achieved, i.e., f2 (R− 2) = R2/2 + R/2 − 2. It is obvious
that f2 (R− 2) > f1 (R− 3). Thus, in this case, we have Lcmax = R2/2 + R/2 − 2 and the optimal
parameters are N1 = R− 2 and N2 = 2.

If R is even and R < 10, case 1 and case 3 would be compared. The maximum Lc of case 1 is still
f1 (R− 3) = R2/2 − 3 . With N1 = R− 2 and N2 = 2, the maximum Lc of case 3 can be achieved,
i.e., f3 (R− 2) = R2/2 − R/2 . Then, we have f1 (R− 3)− f3 (R− 2) = R/2 − 3. It is obvious that
when R ≤ 6, f3 (R− 2) ≥ f1 (R− 3). In this case, we have Lcmax = R2/2 − R/2 and the optimal
parameters are N1 = R− 2 and N2 = 2. When R = 8, we have f3 (R− 2) < f1 (R− 3). In this case,
we have Lcmax = R2/2 − 3 and the optimal parameters are N1 = R− 3 and N2 = 3.
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