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Abstract: The working hypothesis in this project is that gaze interactions play a central role in
structuring the joint control and guidance strategy of the human operator performing spatial tasks.
Perceptual guidance and control is the idea that the visual and motor systems form a unified
perceptuo-motor system where necessary information is naturally extracted by the visual system.
As a consequence, the response of this system is constrained by the visual and motor mechanisms
and these effects should manifest in the behavioral data. Modeling the perceptual processes of the
human operator provides the foundation necessary for a systems-based approach to the design
of control and display systems used by remotely operated vehicles. This paper investigates this
hypothesis using flight tasks conducted with remotely controlled miniature rotorcraft, taking place in
indoor settings that provide rich environments to investigate the key processes supporting spatial
interactions. This work also applies to spatial control tasks in a range of application domains that
include tele-operation, gaming, and virtual reality. The human-in-the-loop system combines the
dynamics of the vehicle, environment, and human perception–action with the response of the overall
system emerging from the interplay of perception and action. The main questions to be answered
in this work are as follows: (i) what is the general control and guidance strategy of the human
operator, and (ii) how is information about the vehicle and environment extracted visually by the
operator. The general approach uses gaze as the primary sensory mechanism by decoding the gaze
patterns of the pilot to provide information for estimation, control, and guidance. This work differs
from existing research by taking what have largely been conceptual ideas on action–perception and
structuring them to be implemented for a real-world problem. The paper proposes a system model
that captures the human pilot’s perception–action loop; the loop that delineates the main components
of the pilot’s perceptuo-motor system, including estimation of the vehicle state and task elements
based on operator gaze patterns, trajectory planning, and tracking control. The identified human
visuo-motor model is then exploited to demonstrate how the perceptual and control functions system
can be augmented to reduce the operator workload.

Keywords: visuo-motor; teleoperation; human–machine interface

1. Introduction

Recent years have seen rapid advances in fields such as robotics and sensor technology that
are fundamentally changing the way in which humans interact with the world. Improved robotics
technology has led to an expanding number of applications that range from self-driving cars [1,2],
to robotic-assisted surgery [3], and further to the wide availability of small-scale unmanned aerial
vehicles [4]. At the same time, sensor capabilities have advanced and can provide inexpensive
measurements of human gaze and body motion. Combining these technologies allows for the
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investigation of human performance while conducting tasks requiring human–machine interaction.
Figure 1 shows a robotic unmanned aerial vehicle (UAV) operating in the Interactive Guidance and
Control (IGCL) lab where operator gaze and motion can be measured. A systematic modeling approach
utilizes the data captured from experimental flight tests to characterize the human pilot’s interaction
with the vehicle and environment. The primary objective of the work that follows is to utilize the
pilot’s gaze to model the human perception–action processes and implement augmentations for a
teleoperation configuration.

Figure 1. Lab facility for investigating human perception–action using a miniature unmanned aerial
vehicle (UAV) with motion and gaze sensing.

The work in this paper builds on the multi-loop model of human control shown in Figure 2.
The different blocks in the diagram represent the system components that comprise a human pilot’s
perception and action. The model is defined as a hierarchical control system that was introduced
in [5]. In Figure 2, the outer navigation loop performs a planning function that identifies the current
subgoal and switches between subgoals when necessary. The navigation block operates at a higher
level of abstraction. It takes as input a task definition and the location of environmental objects relevant
to the task, for example the marker for a goal location, and outputs the currently active subgoal.
The next loop in the hierarchy, the perceptual guidance loop, generates trajectories that will maneuver
the vehicle to the specified subgoal. The perceptual guidance block takes input information about
the goal location and vehicle state to generate a trajectory that will close the gap between the two.
The inner loop performs a tracking and pursuit function that follows the desired trajectory while
rejecting disturbances. The visual tracking block inputs the desired trajectory from the visual guidance
block along with the estimated vehicle state and uses feed-forward control to generate an open loop
vehicle motion. A feedback control loop minimizes the tracking error.

To perform these functions, perceptual processes are required to extract information about
the vehicle state, local subgoal, and environmental affordances. Affordances are features of the
environment that present an opportunity for action that are compatible with the constraints of the
sensory-motor system. The perception of global affordances block in Figure 2 identifies environmental
features relevant to the current task. In this work, the affordances are marks on the ground and
their associated guidance actions that turn these elements into sub goals. The low-level gaze block
decodes the combined eye and head motion into saccades (rapid eye movements) and smooth pursuit
(eye movement tracking a moving object). The internal model estimation block captures the operator’s
ability to estimate key information in their internal reference frame. The block takes the decoded
saccade and smooth pursuit points to update the estimates of the vehicle and goal locations. The block
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outputs the estimated rotorcraft state along with the perceived gap between vehicle and goal (called the
tau gap). These individual blocks and more in-depth definitions of terms are described in subsequent
sections of the paper.
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Figure 2. General human–machine system model for human perception and action.

1.1. Motivation

Dynamic teleoperation in complex environments requires a human to extract task-relevant
information from the optic array and generate an appropriate control response. Successful teleoperation
relies on capabilities including guidance, trajectory following, feedback control, and environmental
perception. Modeling the perceptual and control processes of the human operator provides the
foundation necessary for a systems-based approach to the design of control and user displays used
by remotely operated vehicles. When modeling the human-in-the-loop, the dynamics of the vehicle,
environment, and human perception–action are tightly coupled. The dynamic response of the overall
system emerges from the interplay of perception and action. The primary goal of this work is to
investigate the structure of the human pilot’s perceptual and control processes and identify suitable
models. The model structure builds on existing dynamic models of eye/head motion and requirements
for control response during goal interception [6]. The specific control requirements are derived from
the functionalities needed to support the gap closure, in particular the vehicle state and goal state that
determine gap information, where the measurement update is provided by the visual gaze saccades.
The parameters for the resulting model are identified using system identification. Once identified,
models of the human-in-the-loop can be used to design more natural and intuitive control interfaces
that tap into the innate mechanisms and therefore reduce the operator workload and allow the human
and automated systems to each act in their areas of strength.

1.1.1. Teleoperation Example Application

Teleoperation applications cover a broad range of domains such as exploration, surgery, inspection,
search and rescue, and surveillance. Remote teleoperation applications require the operator to perform
tasks based on limited information using perceptual processes that are usually structured to conform to
the hardware constraints rather than natural human capabilities. Typical hardware constraints include
inadequate video resolution, limited field of view, and poor depth information. Successful completion
of remote tasks requires overcoming these limitations while maintaining situational awareness.
This work investigates automating remote camera movement based on models of head–eye coordinated
motion and augmenting the control system to assist the operator. The goal is to improve situation
awareness and reduce the operator workload by augmenting the basic teleoperation configuration
with aids that emulate the natural visuo-motor system.

The most common teleoperation configuration utilizes a live video feed to provide information
about the remote environment as shown in Figure 3. Two key considerations that need to be addressed
for the teleoperation configuration are situational awareness and pilot workload. To allow for adequate
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situational awareness, the camera must either have a large field of view or be controlled by the operator.
During highly dynamic and interactive tasks, like operating a miniature rotorcraft or performing
surgery, it is not feasible for the operator to manually adjust the camera while simultaneously
performing the task. If a fixed camera with a wide field of view is used, problems can arise due
to inadequate resolution in the area of interest or the need to operate outside the set field of view.
The pilot workload while performing flight tasks can be high due to fast acting dynamics and the
unstable nature of the vehicle. Determining the appropriate level of automation can be critical for
reducing workload without impacting performance.
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Figure 3. Teleoperation block diagram and physical representation. (a) The teleoperation configuration
showing the information filters on the sensing and control capabilities of the operator. (b) Teleoperation
camera, gimbal, vehicle, and task element.

In teleoperation applications, the information flow is limited in both directions. Figure 3a
shows the components of a teleoperation system. The information filters GHead, GSense, and GControl
represent the fact that the operator’s sensing and control capabilities are modified by the teleoperation
infrastructure. On the remote side of the system, the control interceptor (like a joystick) is often the
only input information available. With advances in eye tracking technology, inexpensive systems
are becoming available. Eye tracking measurements can be a rich source of information that can be
exploited to improve the perceptual processes as well as providing knowledge on the dynamics of the
remote vehicle. For the teleoperated system shown in Figure 3b, the gaze is reproduced by a camera on
a gimbal system which creates the superposition of the human head and the eye orientation. The system
is driven by the gaze measurements while observing a display rather than directly observing the
environment. Therefore, the gaze vector for the teleoperation system is the combination of the gimbal
orientation and the tracked eye position on the teleoperation display and captures the vector going
from the gimbal location to the operator’s focus of attention. Gaze provides a measurement of the
human perceptual state and can be exploited to estimate the state of the controlled vehicle as well as
the key environmental features of the remote system [7].

To improve teleoperation performance, models of the pilot’s perceptual and control capabilities
are identified and used to automate parts of the teleoperation task. Section 6 provides details on the
systems implemented along with discussion of the performance improvements.

1.1.2. Human-in-the-Loop Systems

For many operating scenarios, fragile automation systems are unable to provide adequate
performance. In contrast, human-in-the-loop systems demonstrate an ability to adapt to changing and
complex environments: they find stability in control response; they achieve high-level goal selection
and planning; and they possess the ability to perceive and process large amounts of information.
During teleoperation tasks, the human operator and the automated systems provide complementary
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capabilities with the human able to excel at high-level reasoning, task determination, spatial mapping,
and guidance, while the automated systems excel at dynamic regulation, trajectory optimization,
and path following. Fitts [8] described the trade-offs of human-in-the-loop systems and characterized
the complementary capabilities of humans and machines. Table 1 lists the relevant strengths of each.

Table 1. Human-in-the-loop trade-offs [8].

Humans Are Better at Machines Are Better at

Stability in control response Fast control response
Adaptation to changing environments Repetitive and precise tasks
Pattern recognition and processing large amounts of data Processing information
Inductive reasoning Deductive reasoning
Performing when overloaded Multi-tasking
High-level goal selection and planning

1.2. Research Objectives

The central research question investigated in this paper is the following: how does the human
operator structure their control and guidance response? The general approach is based on modeling
the human–vehicle–environment interactions based on dynamic systems and controls followed by
the application of system identification. Secondary questions to be answered include (i) what is the
representation of the information that is visually extracted by the human; and (ii) how is the operator
gaze participating in the estimation of the vehicle state and relevant task elements.

Figure 2 illustrates the general system model proposed to capture the human perception–action
interrelation for teleoperated guidance and control tasks. The control theoretical view of human pilot
modeling formalizes the pilot, the vehicle, and the environment as a system that observes the current
state, compares this state with a desired state, and then takes action to move the current state towards
the desired one. This knowledge is also relevant for the development of interactive robotic systems.
In particular, the concepts relating to perception and adaptability apply to any system where the
dynamics of human interaction are critical. The work in this paper focuses on modeling the system
components highlighted in Figure 2. The non-highlighted blocks for the higher, navigation-based level
are being investigated in separate research efforts [9–11]. Once models are identified, the components
are implemented as part of a teleoperation system in order to alleviate the operator workload and
provide a natural interaction that mimics human head motion.

This paper proposes a model structure that integrates human perception, internal state estimation,
trajectory generation, and control. The objectives of this work differ from existing research by taking
what have largely been conceptual ideas on action–perception and structuring them to be implemented
for a real-world problem. The key contributions are (1) the novel approach for utilizing gaze as the
primary sensory mechanism for measuring vehicle state and task elements; (2) the representation of
the human pilot’s internal model of the vehicle state and task elements (Internal Model Representation
block in Figure 2) that uses a body centric spherical reference frame corresponding to human
visual perception; and (3) models of the pilot’s perceptual guidance and visual tracking processes.
The proposed model was implemented to provide natural augmentations for teleoperation that simplify
perception and control for the human pilot. Example applications demonstrate the benefits.

1.3. Paper Organization

The paper is organized as follows. Section 2 reviews related work and background. Section 3
provides a brief overview of the experimental setup. Section 4 details the human control response
model with Section 5 discussing the role and contribution of the operator’s gaze motion. Section 6
presents example applications that automate the positioning of a remote camera based on the operator
gaze behavior and augment the flight control system to simplify the task for the pilot. Finally, Section 7
provides conclusions.
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2. Related Work

This paper models the perceptual and control processes of a human pilot operating in a
third-person perspective. Work investigating a first-person perspective can be found in [12,13].
To begin, general approaches for modeling a human’s behavior and perception are discussed.
The following sections focus on specific aspects of the larger problem such as guidance behavior,
perceptual guidance, human control models, and human gaze.

2.1. High-Level Human Models

In the literature, cognitive models have been developed by researchers from a variety of disciplines
including psychology, computer science, robotics, human–computer interaction, cognitive science,
neuroscience, and human factors engineering. These models are high-level, conceptual constructions
intended to cover a broad range of human behavior. These models propose high-level structures
for human processing but lack many of the necessary details to implement for real-world scenarios.
This section describes the key work done in relevant research areas.

2.1.1. General Cognitive Models

Action regulation for complex systems was discussed by Dörner [14]. The work breaks down the
process into phases including goal elaboration, hypothesis formation, prognoses, planning, monitoring,
and self-reflection. Errors corresponding to each phase are described along with potential reasons for
the mistakes. Albus [15] proposed a multi-scale planning model that used a hierarchical structure to
model human response. In this approach, the abstraction of the representation increases with higher
levels while the resolution decreases. Both Dörner and Albus provide concepts that are inherent to the
model structure in Figure 2. A final relevant model was proposed in [16]. In the model, the levels in a
nested hierarchy have increasing bandwidth when moving from outer to inner loops.

Pew [17] discussed the structure of human perceptual-motor performance and identified three
levels of organization. The lowest level acts as a simple servomechanism that generates motor
outputs to correct differences between the perceived and desired state. The next level captures the
human capacity to identify and implement patterns of motion based on the predictability of task and
environment. The final level considers the goal and environment to call from memory integrated
patterns of movement. The structure defined by Pew is similar to the approach utilized in this
work. However, this work takes the conceptual ideas and seeks to identify detailed perceptual and
control models.

2.1.2. Human Perception–Action

Gibson’s school of ecological psychology was the first to emphasize the agent–environment
coupling [18]. The ecological approach to perception described a dependence between the operator’s
control response and perception. The control response is driven by the perceived state of the vehicle
and environment, while perception is largely defined by the movement resulting from control actions.
Consequently, attempting to study the perception and action problem by focusing on either perception
or action alone only captures part of the problem.

Gibson also coined the term “affordance” to represent features of the environment that present
an opportunity for action [19]. Investigation into the perceptual aspects of affordances include work
on the accuracy of affordance perception [20], relation to body dimensions [21], and affordances that
account for movement capability [22]. Using affordances as part of a control strategy to guide action
was discussed in [23].

Based on the ecological psychology movement, research interest in a more formal dynamics- and
control-based theory of perception and action has grown. Warren proposed a simple model of behavior
dynamics that describes the agent and environment using dynamical systems theory [24,25]. Warren’s
approach integrates four main ideas: (i) the agent is embedded in the environment; (ii) control is based
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on information about the agent–environment state; (iii) control actions are specific to the current task;
and (iv) behaviors result from agent–environment interactions.

Applications of this model have emphasized the role of dynamics in coordination, however,
results are mostly limited to simple tasks such as balancing an object [26], bouncing a ball on a
racket [27,28], intercepting a moving target [29], or walking [30–32]. A well-known example is the
catching of a fly ball by a baseball outfielder [33].

2.2. Human Guidance Behavior

Guidance includes a range of dynamical interactions, starting with the vehicle or body
itself, and then extending into the dynamics that encompass the entire human–machine or
agent–environment [34]. When humans operate in natural environments, such as piloting in complex
terrains or performing surgery, they have to learn the patterns of interaction between the environment
and motion, as well as learn to extract useful visual cues. In [9], a mapping technique was introduced
to study the spatial characteristics of ensembles of trajectories collected from precision interception
experiments. Interaction Patterns (IPs), which are structural features emerging from the dynamical
interactions in the agent–environment system, have been proposed as a way to formalize these
concepts [9]. The IPs let a human organize their behavior in ways that mitigate the various sources
of complexity. Invariants in this larger system are expected to play a central role in shaping the
architecture responsible for integrating controls, perception and planning processes. These results
were integrated under a hierarchic model in [5].

The concepts presented in [5] were applied for studying learning and perceptual control
mechanisms. In [35], the role of constraints associated with the biological mechanisms and task
structure in shaping human behavior are discussed. This perspective is used to study the formation
and evolution of interaction patterns over successive trials, and shows that interaction patterns can be
used as basic elements of the task environment representation. This model enables the evaluation of
the learning process and assessment of the operator performance (see [11] for details). The paper also
describes how interaction patterns can be considered as functional units. Segmenting and aggregating
behavioral data according to the structural features found in the interactions enables detailed modeling
of the underlying control mechanisms, in particular the perceptual guidance (see [13] for details).
This structural perspective is applied in the present paper to the details of the gaze dynamics.

2.3. Perceptual Guidance

Models to explain perceptual guidance have been investigated for both animal and human
guidance behavior. The most widely accepted approach, called tau theory, originates from Gibson’s
ecological psychology and was proposed by Lee [36]. The central idea is that the visual and motor
systems form a unified perceptuo-motor system. The system utilizes a biological variable τ that
represents the time-to-contact at the current closure rate. In the simplest form τ = y/ẏ, where y
is the motion gap and ẏ the rate of closure of the gap. One of the main benefits of the theory is
that the τs are naturally extracted by the visual system. Another strength of this mechanism is its
simplicity, which enables real-time implementation. The theory was extended to include the concept
of an intrinsic action gap generated internally and how that is coupled to the physical action gap [37].

Tau theory has been verified for numerous simple control tasks in humans and animals.
Examples include bird landing [38], hummingbirds docking on a feeder [39], foot landing during
long jumping [40], and drivers braking [36]. More challenging examples involving the coordination
between motion in multiple dimensions, as well as the incorporation of tau guides, are discussed
in [37]. Recent work has utilized the theory for investigating helicopter pilot behavior [41–43].
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2.4. Human Control Models

Since the middle of the last century, researchers have worked to model human control actions,
especially in the case of piloting an aircraft. This section details work on characterizing the human
pilot and discusses how the response can be modeled as a multi-loop system.

2.4.1. Control Theoretic Models of Human Performance

Research efforts towards modeling the human as a controller first began in the 1940–1950s to
study human motor performance with the first significant publication coming from Tustin in 1947 [44].
The research investigated the manual control response of an operator targeting a gun turret. The main
contribution of the work was to demonstrate that a linear control law with remnant could describe the
operator response. Elkind performed experiments using a wide variety of inputs constructed from a
number of sine waves of different amplitude and frequency [45]. From the data, transfer functions
were identified that covered a wide range of system characteristics.

One of the primary results in the field of operator performance modeling was the work of McRuer
on the crossover-model [46]. It was shown that for human-in-the-loop feedback control systems,
the combination of the human operator and the system dynamics can be approximated by a simple
integrator with a delay system near the crossover frequency ωc [47].

McRuer continued work in the area developing the quasi-linear control model [46]. Based on the
cross-over model and linear control models, McRuer identified the transfer function of the human
operator for a number of system dynamics types [48,49]. The work showed that the same general loop
transfer function L(s) = ωc/s was valid for a number of situations with the human operator adapting
performance to compensate for the system dynamics. These models focus on tracking and pursuit
tasks in which subjects track a given visual stimuli.

2.4.2. Multi-Loop Control Analysis

In the 1960s, Krendel introduced the Successive Organization of Perception (SOP) framework [50].
The framework described a progression of human control skill that starts out as compensatory, moves
to a pursuit type organization, and finishes as an open-loop response. SOP describes the human
internal processes that develop as skills improve. The idea can also be seen as identifying the structural
blocks necessary to capture the control response of a human pilot, namely the compensatory, tracking,
and open-loop components.

The multi-loop pilot model is essentially a form of embedded agent–environment model.
It describes the human control behavior in terms of a nested series of control loops of increasing
bandwidth and was proposed to describe pilots’ manual control [51–53]. The loops are organized
hierarchically as shown in Figure 4 starting with the low-level attitude stabilization. Next, a guidance
element generates trajectories to achieve the desired objective. Finally, the navigation block performs
goal identification and directs high-level maneuvring.

Stabilization RotorcraftGuidanceNavigation

Figure 4. Multi-loop pilot model structure.

Analysis of pilot performance based on an integrated pilot–vehicle multi-loop model for helicopter
maneuvers was proposed by Heffley [54]. The pilot modeling work was extended into the Adaptive
Pilot Model (APM) by Padfield [55]. The APM is based on the concept that the pilot converts the
complex coupled pilot–vehicle system to a simple relationship between command and control output.
The model utilizes a multi-loop architecture to capture the pilot response.
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2.5. Biological Motor Control Theories

Several general theories of human motor control have been proposed. For example, Todorov
in [56] investigated why redundant human motions are successful while at the same time exhibiting
wide variability in trajectories. An optimal feedback control approach was proposed where variability
was allowed in task-irrelevant dimensions. The present paper models the interactions of the operator’s
gaze and control behavior, following the hypothesis that human remote control is conditioned by gaze
dynamics and other functional constraints in particular perceptual guidance mechanisms. Another
important distinction of this work relative to optimal control applications in human behavior is that it
focuses on the interaction with the environment and the sensory-motor system. Optimal control has
primarily focused on biomechanics, such as gait, posture, or athletic maneuvers (e.g., jumping).

2.6. Gaze Modeling and Classification

Human vision provides the primary source of information for humans’ everyday activities,
from ordinary behaviors like reading, walking and driving [57,58], to highly specialized tasks like
surgery, tele-operation and sports. Visual perception is achieved via the deployment of a foveated
visual system [59]. The fovea spans a small optical angle in the visual field where high resolution
information is acquired. Humans extract knowledge about the environment by actively orienting the
fovea with the coordination of eye movement and head movement. This coordinated eye–head motion
is called gaze. This section looks at work on modeling the eye–head motion as well as identifying the
different gaze modes of operation.

2.6.1. Gaze Models Based on Eye–Head Coordination

Gaze movement is the transition of visual focus in space, which involves both eye movement
relative to head, and head movement relative to space [60]. That is, gaze control encompasses the
entire eye–head coordination, which is attenuated by the vestibulo-ocular reflex (VOR). The eye–head
coordination has been frequently investigated. Bizzi [61] proposed that the eye movement is
programmed based on the planned head movement. In contrast, Guitton and Volle [60] suggested
that the gaze control system can utilize all available components synergistically. More specifically,
Wijayasinghe, et al. [62] pointed out that the VOR would rotate the eye backward to compensate for
the forward movement of the head, minimizing the cost.

Head–eye coordination during gaze shifts has been mainly investigated in the psychophysics
field. Models explaining gaze orienting to targets have been determined for both ‘within’ and ‘outside’
the occulomotor range [60,63,64]. The model describes the combined head–eye dynamics during gaze
shifts. Two aspects of the model that are noteworthy are the independent control of the head and motor
systems, i.e., head motion can be controlled as a separate system, and that initiation of eye and head
movement is controlled by different gating mechanisms.

In addition to gaze shifts, the smooth pursuit eye tracking mode is also relevant for teleoperation
systems. Smooth pursuit occurs when the operator is visually tracking a moving stimulus.
During smooth pursuit, the eye remains focused on the moving object with the head–eye motor
system coordinating the gaze motion. Lisberger proposed a closed-loop structure that generates the
smooth pursuit response [65].

2.6.2. Gaze Classification

Recent advancements in eye tracking systems technology have enabled the study of the
mechanism of active gaze movements during diverse tasks and conditions. Three gaze patterns
(fixations, saccades, and smooth pursuit) have become widely accepted and provide essential insights
into gaze movement. It is only during fixations and smooth pursuits that high quality visual
information is acquired. Smooth pursuits are used to update the dynamical state information needed
for regulation [7]. Fixations are tightly linked in time to the evolution of the task [58]. High velocity
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and short duration of saccades render the visual system essentially blind, but they also reflect the
economy of human attention organization [66].

Gaze classification has been realized based on the distinction in the kinematics of the three
gaze patterns, i.e., by setting respective thresholds of velocity and duration range. Salvucci and
Goldberg [67] focused on fixation identification and proposed a taxonomy of classification algorithms
with respect to spatial and temporal characteristics, including Velocity-Threshold Identification (I-VT)
and Hidden Markov Model Identification (I-HMM).

3. Experimental Setup

This section briefly describes an integrated research environment specifically developed to
exercise and investigate guidance and control capabilities under human control, autonomous control,
and augmented control modalities. The lab facility is designed to implement tasks that emphasize
agent–environment interactions. The overall goal is to characterize these interactions and to apply
the gained knowledge to determine models of the underlying perceptual and control processes.
The approach is to combine data-driven methods with theoretical investigation through the application
of formal modeling and analysis techniques from dynamics and controls. The facility uses miniature
rotorcraft as test vehicles with a Vicon motion tracking system and SensoMotoric gaze tracking system.

3.1. Experimental Infrastructure

The research agenda requires being able to run experiments with actual hardware components that
combine the effects of vehicle dynamics, environmental sensing, and measuring a human’s perception
and action. The lab facility was set up to use small-scale rotorcraft UAVs due to their maneuverability
and compact sizes. Figure 5a shows an overview of the lab infrastructure where the pilot operates in a
“third-person” perspective, i.e., the operator views both the vehicle and task from outside. A camera
mounted on an actuated gimbal provides a teleoperation setup with a “third-person” perspective as
seen in Figure 5b.
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Figure 5. Overview pictures showing the lab setup for flight experiments with the pilot (a) directly
observing the rotorcraft (b) operating in a teleoperation configuration.

For experiments with human subjects, measurement of the operator control inputs, head pose,
visual gaze, and field of view video are collected along the vehicle motion to provide data for the
investigation of the control and perceptual functions. The experimental procedure and methods rely
on the collection of ensembles of trajectories. Ensembles include data from multiple experimental trials
that cover the task space of interest. Using ensembles allows sampling of the human behavior over
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larger domains and thus provides a means to extract information about the larger strategies used for
planning. For more details on the lab hardware and software systems, see [68]. The gaze registration
and classification approach is discussed in [69].

3.2. Experimental Tasks

This section describes the experimental tasks investigated in this work. The tasks each emphasize
different aspects of a human’s interaction with the test vehicle and an environment.

3.2.1. Hovering

The experiment in Figure 6 involves the human pilot maintaining a stationary hover over a target
marked on the ground. For a given length of time, the pilot will minimize the longitudinal and lateral
position error to achieve a stable hover. The experiment lasted 60 s for each trial.

Target Area

30 cm

Figure 6. Proposed experiment for hovering.

This task formulation isolates the perceptual mechanism used by the pilot during simple
regulation. The hypothesis is that the human pilot focuses attention on the helicopter and uses
rapid eye motions (saccades) between the vehicle and the target to maintain a stable hover.

3.2.2. Target Interception

The experiment in Figure 7 involves the human pilot flying directly to a target. This task exercises
the human’s low-level tracking control and the perceptual process for extracting the feedback control
signal. The pilot was instructed to start from a stationary hover over the starting area and then
maneuver the vehicle to the target area at one of three speeds: slow, medium, and fast. The experiment
was conducted 10 times at each of the different speeds. For each speed, the operator is instructed to
keep the velocity as consistent as possible between the 10 runs.

Starting Area

2 m

Target Area

Figure 7. Proposed experiment for intercepting a designated goal location.

The purpose of the task is to isolate the basic building blocks for modeling human
perception–action. These blocks include the structure of the single-loop feedback control action,
the representation of the feedback error signal, and how the reference trajectory is generated (tau guide).
The significance of the task is that it isolates the basic blocks that are necessary for understanding more
complex behaviors.

The first hypothesis is that tau theory, developed by Lee [36], provides a method for reference
generation that is applied through a feed-forward element to generate an open-loop response that
maneuvers the vehicle from the start to the target. In Tau theory, a human utilizes a biological variable
τ that represents the time-to-contact at the current closure rate, for example the time-to-impact when
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breaking a car. The basic form is τ = y/ẏ, where y is the motion gap and ẏ is the rate of closure of
the gap. The human manipulates the control (break pedal) to maintain a τ̇ that ensures stopping
before collision. A τ̇ > −0.5 will cause the vehicle to stop short of the obstacle, while τ̇ < −0.5 will
result in the vehicle colliding with the obstacle (a τ̇ = −0.5 will stop right at the obstacle). The second
hypothesis is that existing research on human pilot modeling, based on linear control, can provide
a reasonable algorithm for the model of the human feedback control action. Works by McRuer [48]
and Hess [70] have shown that a linear model structure can capture the human control characteristics.
The third hypothesis is that the gaze provides information on the reference trajectory.

3.3. Characterization Methods

When evaluating different control, sensing, and display systems, it is necessary to be able to
measure changes in the performance and operator workload for a defined set of tasks. This section
describes the metrics utilized. The metrics can be broken into three categories: speed, accuracy,
and operator workload. The definition of these metrics is given below.

3.3.1. Speed

For the target interception experiments, the speed is calculated based on the time T to
maneuver from the starting position to the target. Since the distance is constant, the velocity is
v = 2/T m/s. Speed measurement is not relevant for the hover task since the objective is to keep the
helicopter stationary.

3.3.2. Accuracy

Performance can be evaluated based on the speed–accuracy trade-off. In 1954, Fitts published
research on the relationship between speed, movement distance, and accuracy. The approach utilized a
“Fitts Task” where an object was moved along a linear path between two locations [71]. The relationship
is given by

Movement Time = a + blog2

(
2A
W

)
(1)

where A is the distance between locations, W is the target width, and the linear relationship (constants
a and b) is empirically identified. A revised relationship was proposed by Schmidt [72]. Schmidt found
that for tasks requiring a single-aimed movement, a linear relationship existed between the movement
speed and the effective target width. The revised relationship is

We = a + b(A
/

Movement Time) (2)

where We is the effective target width. To calculate We, the within-trial error was measured to find the
standard deviation or “spread” around the target locations. The effective width, We, was defined as
the width necessary to capture 96% of the identified distribution.

3.3.3. Workload

An important measure for assessing a helicopter system for a task is how much workload
is required by the operator to successfully perform the task. The challenge in objectively and
quantitatively addressing this question is that both task and human control include measurable
quantities, such as control signal variation as well as subjective measures of the task difficulty [73].

The workload metric is a measure defined by the attention functional in [74]. Brockett defined
an attention metric based on the control signal u, state x, and time t. The original metric had two

terms
(∥∥∥ ∂ui

∂t

∥∥∥)2
and

(∥∥∥ ∂ui
∂xi

∥∥∥)2
. In this work, we focus on the first term which looks at how the control

signal changes versus time. The functional is discretized with samples i and the resulting metric is
defined by:
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η =

∑
i

(∥∥∥ ∂ui
∂t

∥∥∥)2

T
. (3)

The discrete approximation of the attention functional is intended to be a measure of how much
effort the operator needs to supply in order to complete a task. In general, the amount of effort is
roughly proportional to the magnitude and frequency of the control adjustments that the operator
needs to make. When executing a task where the control inputs are held relatively constant (such as a
stable hover), the attention functional would be small. A task that requires significant control (such as
navigating a slalom course) would have a much larger attention measurement.

3.4. Test Pilots

Six undergraduate students from the University of Minnesota performed the flight experiments
in Section 3.2. All subjects gave their informed consent for inclusion before they participated in the
study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of the University of Minnesota.

The pilots were recruited from the aerospace department and had past experience operating
RC helicopters. The test pilots demonstrated a range of skill levels. Two pilots possessed significant
experience and were able to complete tasks quickly and accurately. Another two pilots had some
experience operating miniature rotorcraft but performed with less accuracy than the highly skilled
operators. The last two pilots in general displayed the least accuracy. The modeling work in subsequent
sections was based on the test data from the highly skilled pilots.

Flight tests were conducted in one-hour sessions that occurred weekly. At the start of each session,
a calibration procedure was required for the eye tracking system. The pilots were then allowed to
practice the task until they felt comfortable. To maintain consistency between experiments, the pilots
were seated at the same location for all test flights.

4. Model of Pilot Control

Human control requires a number of processes and mechanisms acting in concert to achieve the
level of performance seen in skilled individuals. Pew identified three levels of control organization [17].
The most basic level of control generated by a human pilot is that of a simple servomechanism where
motor outputs act to correct the error between the perceived and desired states. This basic control
element can be represented by concepts from the theory of feedback control and provides a basis for
all higher levels of control organization. The next level of control incorporates the coherence and
predictability of the task and environment. The human pilot generates a desired trajectory based on
patterns of behavior learned from past experience. The last level of human control draws cues from
the environment that identify a goal, which then recalls from memory an integrated motion model that
can achieve the desired result. This section models the two lower levels of the human pilot’s control
organization for simple flight tasks.

4.1. Visual Tracking: Linear Control

To operate a vehicle along straight trajectories, the visual tracking component can be modeled
using dynamic linear elements. Figure 8 gives a detailed breakdown of how the visual tracking
component can be implemented. The visual tracking operates in the dimension of the task motion with
the single output mapped onto the lateral and longitudinal control outputs. In the figure, the perceptual
guidance block generates a reference velocity, which passes through a feed-forward element to generate
a control signal δ f b that drives the vehicle velocity to match Vre f . In parallel, the reference velocity is
integrated and compared with the actual position to generate a positional error xerr. The positional
error provides the input for the feedback part of the visual tracking system. The feedback element
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generates an error correcting control signal δ f b. The control signals δ f b and δ f f are added to obtain the
output of the visual tracking block δ.

Perceptual

Guidance

Feedback

Control Rotorcraft

guideτ
∫

Feedforward

Control

refv refx errx fbδ δ x

ffδ
FFG

FBG

Figure 8. Structure of the visual tracking loop.

4.1.1. Feed-Forward Control

The feed-forward control element takes a velocity reference and outputs a control signal that
produces the desired velocity in the helicopter. A dynamic model of the miniature rotorcraft used in
the flight experiments was identified using system identification techniques. A simplified version
of the model from the longitudinal control signal δlon to the vehicle’s forward velocity u is given in
Equation (4).

Gδlonu =
2.802

s + 2.029
(4)

Inverting the simplified model of Gδlonu gives the feed-forward dynamics that map a velocity
reference Vre f to control signal δ f f that will drive the vehicle to the desired velocity. Equation (5) gives
the dynamic model for the feed-forward block GFF.

GFF = 0.724 + 0.357s (5)

It should be noted that GFF is outside the feedback loop and potentially sensitive to high-frequency
noise. The functionality of the feed-forward path should mitigate high-frequency issues as the velocity
reference entering GFF represents a learned operator response that is generated for a specific task.
The response operates in open-loop and at lower frequencies (if necessary, a low-pass filter could be
added to limit high-frequency noise).

4.1.2. Feedback Control

Based on the Adaptive Pilot Model described in [53], the pilot control model takes the form of
Equation (6). Estimation of the pilot control parameters for the feedback element can be accomplished
using frequency domain estimation methods [75].

YP = KP + KDs (6)

To estimate the control parameters KP and KD, a forcing function is applied as a disturbance
to the control signal as shown in Figure 9. The forcing function applied is the sum of multiple sine
waves that provide a rich excitation for the system [76,77]. The multisine equation fd is defined by
Equation (7) with the parameters for ωd, Ad, and φd covering the operational range.

fd(t) =
10

∑
i=1

Ad(i) sin(ωd(i)t + φd(i) (7)

Data was collected for the hover task from Section 3.2.1. While the pilot performs the hover task,
the forcing function is injected into the control input causing continuous displacement of the vehicle.
This requires the pilot to provide control actions to return the vehicle to the desired hover position.
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For the hover task, the reference angle from Figure 9 is constant, resulting in the error angle being
directly related to the visual angle. In this case, measurements are available for the input (errangle)
and output (δ) of the feedback control block YP. The NAVFIT function of CIFER was used to identify
the parameters of the feedback control block [78]. Figure 10 shows the transfer function fit for YP along
with the nonparametric frequency response extracted from the experimental data.
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Figure 9. For the hover task, a known disturbance is injected into the control signal. The control
parameters for YP are then identified.
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Figure 10. The control parameters are then identified using system identification techniques.

The transfer function fit in Figure 10 has a high coherence in the frequency range of interest (below
10 rad/s) and provides a reasonable match to the experimental data. The parameters identified for YP
can be found in Equation (8) with Equation (9) showing GFB.

KP = −1.19, KD = −0.94 (8)

GFB = −1.19− 0.94s (9)

In [55], it was shown that if the pilot–vehicle short-term attitude dynamics (stabilizing attitude)
are assumed to follow the crossover model [46], the dynamics of the free response to a displacement
for the complete pilot–vehicle system can be reduced to a second-order form with natural frequency
ωn =

√
gKP and damping ratio ζ = gKD

/
2ωn. Factoring in the gain from the control signal δ to the
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attitude angle at the approximate crossover frequency (ωc = 1.0 rad/s) gives a natural frequency and
damping ratio of 1.39 and 0.55 respectively.

4.2. Perceptual Guidance

Research on sensory guidance has demonstrated that guidance performance can be described
using relatively basic principles. The main approach, called tau theory [36], utilizes a simple variable
tau. Tau is defined as the time-to-closure of a gap at the current gap closure rate. Gaps can also be
closed using intrinsic guides, called tau guides, that are internally generated mental models of the
desired motion [37]. When utilizing these tau guides, the externally perceived gap is coupled with the
internal guide. The form of the tau guide depends on the type of motion with examples being constant
acceleration, constant deceleration, or acceleration–deceleration maneuvers. Perceptual guidance can
be implemented to provide the reference trajectory for a given task based on the appropriate form of a
tau guide. For the step task, an acceleration–deceleration tau guide is required. The form of the tau
guide τg is given in Equation (10).

τg = 0.5(t− T2

t
) (10)

The tau guide is converted into a reference velocity (vre f ) by Equations (11) and (12) which are
based on the tau coupling principle and the definition of the tau variable.

τx = kτg (11)

vre f =
x
τx

(12)

Experimental results for the step task at slow, medium, and fast speeds show that the human
control response can be approximated using a tau guide. Figure 11 shows the correspondence between
control signals generated using a tau guide and the actual controls from the human pilot. The value of
k was 0.3 and the T values (time to complete the task) for the slow, medium, and fast speeds were 8.5 s,
5.5 s, and 2.5 s respectively. The control signal for the fast speed plateaus due to joystick limits on the
maximum control action.
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Figure 11. Augmented flight control provides a feed-forward control signal to partially automate
the step task. A tau guide creates a reference velocity that is converted to a helicopter control signal.
The subfigures show the comparison of the generated signal against a set of control human controls.
(a) Control for Step Task at Slow Speed; (b) Control for Step Task at Medium Speed; (c) Control for Step
Task at Fast Speed.

5. Gaze for Guidance and Control

The goal of the work presented in this section is to determine and model the pilot’s visual
perception during precision remote-control (RC) operation of a miniature rotorcraft. For a given task,
the control problem involves processing visual input and transforming the result into commands to
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the relevant musculature. Some of the key questions include the following: What type of information
is required for the different control modalities? And how is this information extracted and used as part
of the perceptual control mechanisms? To answer these questions, an approach based on the analysis
of the closed-loop, operator–agent–environment interactions within a control theoretic framework is
used. Figure 5a provides an overview of the experimental setup. The experiments in this work were
conducted using a “third person” modality. Based on helicopter dynamics, gaze patterns, and control
inputs provided by the facility, the specific goal is to identify how the gaze is integrated with human
control actions.

5.1. Gaze Processing

The eye tracking system generates a gaze vector in terms of the operator’s head orientation.
To fully utilize the information, the gaze vector needs to be registered in a common reference
frame and the gaze classified into its constituent modes. This section describes the registration
and classification procedures.

5.1.1. Registration of Gaze and Motion Tracking Measurements

Understanding the human perceptual processes supporting guidance and control capabilities
requires linking visual gaze with the vehicle, task and environment elements. The eye tracking
glasses shown in Figure 12a provide a gaze vector relative to the pose of the pilot’s head. Therefore,
a registration procedure is required to put the pilot’s head, helicopter, and environmental features in a
common reference frame.

The determination of a reference frame for gaze is crucial for gaze classification. For instance, a 3D
inertial Vicon frame is able to provide information about where human pilots are focusing, but the
transition of the gaze point in this frame cannot reflect the magnitude of gaze movement. For instance,
two stars are far in space but close to each other from visual perspective.

The gaze should be transformed into a reference frame appropriate for use by human decision
making and motor control systems. A spherical head centric coordinate frame is proposed in [79] to
describe the visual receptive field of flies and can be extended to humans. It is used in this paper and
represents gaze as azimuth (θ) and elevation (φ) angles, as shown in Figure 12b. More in-depth details
on the methods used for gaze registration can be found in [69].
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Figure 12. Reference Frames for Generating 3D Gaze Location. (a) Eye Tracking Glasses Reference
Frame. (b) Spherical Reference Frame.

5.1.2. Gaze Classification

Gaze is the coordinated motion of eye and body, in which this related action is predominantly
performed by the head. Fixating a stationary object while turning the head can have similar eye
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movement as pursuing a moving object while holding the head still. Therefore, the measurement of
both head and eye motion is required to classify gaze.

Basic eye movement is comprised of three components: saccades, fixations and smooth pursuits,
each having distinct kinematic characteristics. Saccades are the fast eye movements of small durations
used to redirect the eye to a new location [80]. Fixations take place when the gaze is stabilized on
typically stationary points [81]; their duration spans longer time intervals. Smooth pursuits are eye
movements when the gaze follows moving visual stimuli [82].

These three basic eye movements can be classified according to their kinematic characteristics,
more specifically, by setting the respective thresholds of velocity and time duration. For instance,
the lower saccade speed limit for amplitudes of 5◦, 10◦, 20◦, and 30◦ were determined to be 145◦, 196◦,
213◦, and 227◦ per second. These characteristics were obtained by analyzing factors such as abduction,
centering, eccentric, and across-the-center refixations [83].

5.2. Experiments

Experiments were conducted to investigate the pilots’ control capabilities. For stabilization,
a hover task was used, and for goal interception, a step task. Descriptions of the hover task can be
found in Section 3.2.1. Figure 13 shows an illustration of the step task used that is a variation of the
one given in Section 3.2.2. Each test flight, the pilot was sitting about 2 m behind the center of the task
space and was required to remain stationary during the task. Each task was performed by 4 student
test pilots with skill levels varying from moderate to highly skilled. Before each session, the pilot was
allowed to practice briefly before beginning a trial. The analysis in the following sections shows results
for one pilot.

Starting Area

2 m

Target Areas

3 m

#1

#2

#3

#4

Figure 13. Experimental step task used to investigate the low-level control and guidance functions.

5.2.1. Stabilization—Hover Task

In the hover task (Figure 6), the subjects were instructed to maintain the helicopter within a square
marked on the floor for 60 s. In addition, the objective was to achieve the most steady hover, i.e.,
to minimize the velocity fluctuations. Furthermore, they were asked to keep the helicopter facing away
from their body.

Figure 14 shows the gaze decomposed into a density plot of the smooth pursuit points and step
changes for saccades for a small hover area (0.25 m in diameter). The gaze consisted of primarily
smooth pursuit points with a small number of saccades to the center of the constraint area (marked on
the ground).
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Figure 14. Gaze decomposition for the hover task within a small boundary area. The gaze is shown in
the task space with smooth pursuit points shown as a density plot and saccades as gaze steps.

5.2.2. Interception—Step Task

The step task (Figure 13) allows isolating the processes of the perception–action loop along
a single dimension. The pilots were instructed to start from a stable hover over the starting area and
then perform an acceleration/deceleration maneuver ending in a stable hover over one of four target
areas. The latter was specified randomly at the initiation of each trial. Random goal specification was
implemented to reduce the effects of accommodation.

Multiple experimental trials were conducted. Figure 15b shows the gaze and helicopter velocities
for one trial. During most of the experimental flight time, the pilot’s gaze operated in pursuit mode
and tracked the helicopter closely. The gaze velocity during pursuit follows the velocity profile of the
helicopter trajectory and suggests that the gaze can provide the measurement of the velocity used for
feedback control.

In addition, saccades take place systematically as the helicopter approaches the goal. Figure 15a
shows the saccades from multiple step trials. The data has been transformed into a reference frame with
the goal at the origin and the starting locations along the negative θ (azimuth) axis. In the transformed
frame, the rotorcraft trajectory moves from left to right during a trial. The saccades provide a measure
of the distance remaining to the goal location. This is consistent with what is expected from tau theory.
Specifically, the saccades are measuring the gap that is being closed for the task.
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Figure 15. Step task results: (a) Saccades during step experiments (multiple trials), and (b) gaze pursuit
mode and rotorcraft velocities in the head frame.
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5.3. Models

The experimental results provide evidence that during remote operation, the gaze, helicopter
dynamics, and control are tightly coupled. The next step is to determine models that describe the gaze
dynamics’ role as part of the helicopter control mechanisms.

5.3.1. Gaze Modalities Summary

The decomposition of the gaze trajectory into smooth pursuits and saccades reveals two primary
patterns. First, for stabilization and tracking, the pilot needs information about the helicopter pose and
velocity. Smooth pursuit gaze trajectories follow the helicopter trajectories. The gaze velocities during
smooth pursuit match closely with the helicopter velocities (see Figure 15b). This information can be
used for closing the velocity loop in Figure 2. Second, guidance control is clearly mediated through
saccades. Figure 14 shows that the saccades move between the gaze pursuit trajectory and the target
location. The saccades measure the gap (from tau theory) that needs to be closed or maintained for the
task, thus providing feedback at the guidance control level.

In general tasks, the information necessary to close the guidance and control loops would be
available from the scene’s visual content, the peripheral vision and the information used for the
active control of gaze. During typical operation, the lower-level control modes require precise,
high-bandwidth information; therefore, the assumption is that the peripheral vision plays a secondary
role. This is supported by the high correlation between helicopter control behavior and the gaze
pattern. For guidance tasks in unstructured environments, we would expect that peripheral vision
plays a more significant role since more global information about the environment and task elements
must be acquired. This aspect is beyond the scope of this section.

5.3.2. Pursuit Model

The low-velocity, smooth pursuit mode is primarily operating from visible visual cues within the
high-resolution region. To analyze the interaction between gaze and control during smooth pursuit,
the transfer function between the gaze and helicopter velocity was identified from frequency responses
extracted from input and output data. The input x, which is the stimulus for pursuit is the helicopter
velocity, and the output y is the gaze velocity. Frequency response and coherence estimates are
computed from

Txy( f ) =
Pyx

Pxx
; γxy =

|P2
yx|

|PxxPyy|

where Pyx is the cross- and Pxx the auto-power spectral densities. At low frequencies (<1 Hz), the gain
is one and the phase is close to zero, indicating that gaze provides a near perfect velocity measurement.
The associated coherence γxy remains large and confirms a linear input–output relationship.

5.3.3. Saccade Model

High-velocity saccade motion measures distances to features in the visual environment beyond
the currently visible area. Saccades, therefore, provide measurements that are needed to guide motion
including the tau gaps. The motion gap can then be used to generate a velocity reference.

The saccade mode generates information about the tau gap. The key variables for generating
the tau gap information are shown in Figure 16a. The figure shows the three-stage sequence starting
with smooth pursuit followed by the saccade to a fixation point (t1) near the desired goal location
and concluding with another saccade returning to the helicopter (t2). This sequence may be initiated
multiple times. For a trained pilot moving to a previously visited target, saccades may not be utilized.
Figure 16b shows the position distributions during the step task in Figure 15a based on mean and
standard deviation for the three times t0 − t2. It is interesting to note that the saccades stop short of the
goal by about 10 deg, which is enough to bring the goal within range of the central eye field.
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Figure 16. Description of the saccade dynamics during the step task. The ellipsoids are based on mean
values for the position variables along with the 1σ error bounds for the step task. (a) Key variables
involved in saccades to a target; (b) Statistics extracted from the step task.

Two factors are critical for determining when a saccade is triggered. The first is the size of
the visual angle between the current gaze focus of attention and a task element. When the high
visual acuity area of the gaze is close to a task element, visual information is captured about the
element’s position. As the gaze focus moves farther away, information about the task element becomes
uncertain and eventually triggers a saccade. The question to be answered is how close does the gaze
focus need to be to capture information on the task element. Based on the anatomy of the human
eye, the fovea has by far the highest visual acuity and accounts for 5 degrees of the visual field,
the parafovea around 8 degrees, and the perifovea 18 degrees. Figure 17a shows a distribution of the
saccades generated during a hover task with different visual angles between the vehicle and target
on the ground. The visual angles are achieved by hovering at different heights. The figure shows
that for 10 degrees (the fovea and parafovea regions) or less, few saccades are generated, indicating
that sufficient information on the target is available and saccades are infrequent. For gaze angles
from 10–20 degrees (the perifovea region), the frequency of saccades increases. Beyond 20 degrees,
the human pilot is continually generating saccades to measure the target position relative to the vehicle.

The second factor in triggering a saccade is the time since a task element was last observed.
According to work done by Brown [84] and numerous others since, working memory decays after
around 15 s. The retention interval decreases as more items of information need to be remembered [85].
To test how long a pilot can keep track of a distant target location, a step experiment was conducted
with the pilot hovering over the starting location for differing lengths of time before initiating the
maneuver. As the hovering time increases, the chance for a saccade to be triggered increases. Figure 17b
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shows the saccade frequency for increasing time durations since the target was last observed. In the
figure, the number of saccades per trial is small (less than 0.2 per trial) when there is little delay,
increases to 0.7–1.0 for a 20–30 s delay, and is over 1.0 for higher delays. This indicates that for larger
delays enough uncertainty has accumulated since the pilot last observed the target that a saccade
is triggered.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Visual Angle Between Helicopter and Target (deg)

S
ac

ca
de

s 
P

er
 M

in
ut

e

(a)

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Hover time between steps (s)
S

ac
ca

de
s 

P
er

 T
ria

l

(b)

Figure 17. Saccade trigger factors. (a) The saccade frequency during hover experiments for different
heights (visual angle between the helicopter and target on the ground). (b) The saccade frequency
during step experiments for different lengths of hover time over the starting position (gives increasing
lengths of time since the target location was last observed as part of the task execution).

5.4. Integrated Gaze and Control Model

The block diagram in Figure 18 describes a notional model of the primary gaze and control
functions and their integration based on the teleoperation experiments. To visually track an object
such as a helicopter, coordinated eye and head movements must be generated (‘Head Eye System’).
In smooth pursuit, the gaze keeps the visual stimuli guiding the pursuit near the center of the eye
field where the eye’s resolution is highest. For goal interception, the saccades provide anticipatory
information about the goal location. In Figure 18, the input to the eye block is the visual scene with
the output the 2-dimensional pixel location of the eye focus in the observed image that is captured
by the eye tracking system. The head/eye motor control block transforms the pixel location into the
head reference frame and combines with head motion to generate a gaze vector represented by the
azimuth and elevation. The saccades and smooth pursuit blocks decode the gaze vector to determine
the gaze mode of operation. The goal estimate and rotorcraft estimate blocks take the saccade location
and current smooth pursuit location to estimate the azimuth and elevation locations of the goal and
vehicle in the spherical coordinate system (see Section 5.5 for details). Finally, the goal and vehicle
location estimates are utilized by the motor control section to generate the lateral and longitudinal
control signals sent to the rotorcraft (see Section 4.1).

During visual tracking and guidance, pose and velocity measurements needed to control the
helicopter are derived from the motor control signal driving the head/eye system. This information
is first integrated within an ‘Internal Model’ that simultaneously estimates the goal and rotorcraft
state (position and velocity). This information is then used to generate a control action (via the ‘Motor
Control’ system) utilizing both open-loop and closed-loop strategies. The control output can be
mapped into the helicopter frame using different strategies to overcome the lack of depth information,
for example assuming a constant height. For the goal interception, the tau gap extracted from the
saccade information provides anticipatory information. Under conditions, entire segments of the
trajectory can be generated and implemented in open-loop. Finally, as highlighted in the block diagram,
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the different components operate within different reference systems. In some cases, such as in the
‘Internal Model’ and ‘Motor Control’, two coordinate systems are most likely used in parallel.

Saccades
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Internal Model

(head/world) (head/world)

Goal 
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Rotorcraft
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Eye
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Control 
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Control -
+

Physical Environment

Control 

mapping
Rotorcraft

Motor Control

Figure 18. Block diagram of a notional model of the gaze control and helicopter control integration.

5.5. Estimation of Vehicle and Goal States

The ‘Internal Model’ in Figure 18 can be described using standard state estimation techniques.
The key information that needs to be estimated is the vehicle state and the position of the current
task elements. A simple approach for estimating these values is achieved using a constant velocity
Kalman filter designed to estimate the vehicle position and velocity. Additional states are added to
the estimator to track the position of the target locations. Measurement updates are generated by the
visual system. During smooth pursuit, the gaze location provides adequate information for tracking
the vehicle as seen in Figure 19a. To estimate the goal position, the visual system identifies the θ

and φ angles of the target location in the head reference frame. The distance of the visual features
from the center of the fovea determines the measurement covariance. This results in high accuracy
measurements when the gaze is focused on an object and low accuracy at approximately 15 deg away
from the center of vision. The estimation errors along with 3σ bounds are shown in Figure 19b,c for the
vehicle position and one of the goal locations. As discussed earlier, information about environmental
features grows more uncertain the longer the time since the feature has been observed. To capture this
characteristic, a forgetting factor λ is incorporated into the estimator and causes the error bounds for
the goal position to gradually increase during the transition between locations unless a saccade to the
goal occurs. Once the vehicle is near the goal position, the error bounds decrease since the goal is close
enough to the high acuity visual area to provide update information.
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Figure 19. Results for the vehicle and goal position estimation using the gaze data as measurement.

The EKF time update equations, for a task of flying between two positions marked on the floor,
are of the form given in (13). The states x are the azimuth (θ) and elevation (φ) angles for the helicopter
and goal. The Jacobian calculations for the state transition matrix and the matrix characterizing model
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uncertainty are given by Φ and Q. The update equations for the state and covariance estimate P are
denoted by the last two equations.

x = [θheli, θ̇heli, φheli, φ̇heli, θgoal , φgoal ]

Φ =

 1 dt 0 0 0 0
0 1 0 0 0 0
0 0 1 dt 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



Q =


dt3/3 dt2/2 0 0 0 0
dt2/2 dt 0 0 0 0

0 0 dt3/3 dt2/2 0 0
0 0 dt2/2 dt2/2 0 0
0 0 0 0 0.01 0
0 0 0 0 0 0.01


x̂k+1|k = Φx̂k|k

Pk+1|k = λΦPk|kΦT + Q

(13)

The EKF measurement update equations are given in (14). The observation vector ẑ, observation
covariance matrix H, measurement covariance matrix R, Kalman gain K, and updates for the state
vector and state covariance matrix are given by:

ẑ = Hx̂k+1|k
H =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
Rk =

[
σ2

meas(k) 0
0 σ2

meas(k)

]
K = Pk+1|k HT(HPk+1|k HT + Rk)

−1

x̂k+1|k+1 = x̂k+1|k + K(zm − ẑ)

Pk+1|k+1 = (I − KH)Pk+1|k(I − KH)T + KRkKT .

(14)

Other factors such the number of tracked objects near the center of the fovea as well as the size of
the objects could also affect the accuracy of the measurement, but are not considered in this paper.

6. Application Demonstration

A significant aspect of the human visual experience is due to head–eye coordination. At the
same time, gaze control mechanisms are closely involved in the guidance and control of movement.
The video display in current teleoperation setups does not account for the natural head–eye interactions
and therefore can adversely impact performance. This section investigates automating remote camera
positioning based on the operator gaze behavior. The camera is mounted on an actuated gimbal that
uses real-time gaze measurements to mimic human head movement. A second application example
implements control augmentations to demonstrate how the gaze can be used as part of the vehicle
control architecture. Figure 20 shows the components relevant to each of the two application examples.
Implementation details for the highlighted components are provided in the following sections.
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Figure 20. The components implemented for each example application are highlighted. The blue boxes
are the components for the actuated camera and the blocks inside the gray boundary are implemented
in the augmented control example.

6.1. Background and Overview

Teleoperation systems and the issues related to their successful implementation have been studied
extensively. Autonomous or semi-autonomous operations have made important progress, but for the
foreseeable future human teleoperation will remain a critical modality, in particular for interactive
tasks such as surgery or vehicle operation in complex environments.

6.1.1. Application Overview

The present work focuses on teleoperation systems for remote-control tasks. Experiments are
conducted using a miniature rotorcraft as shown in Figure 3b. The teleoperation camera can be rotated
to change the view of the environment or track the miniature helicopter during flight. The system uses a
GoPro camera mounted on a tripod with a 3-axis motorized gimbal that provides controlled rotation of
the camera to mimic head movements. A live video feed from the camera is shown on the teleoperation
display. The pilot sits in front of the teleoperation display (facing away from the lab environment),
and operates the rotorcraft using only the visual information from the display. The pilot’s gaze location
on the display is captured using a gaze tracking device and is used in conjunction with models of
the head–eye system to automate control of the camera orientation. The general approach could be
used in other applications where visual guided motion is important, such as robotics, video games,
or telesurgery.

6.1.2. Related Work

Approaches for teleoperation have been proposed to help overcome problems resulting from a
limited field of view (FOV). Voshell [86] developed a multi-camera system that provided the operator
a wrap around effect in order to increase the FOV. In [87], FOV issues were investigated with the
conclusion that performance could be optimized when the display and camera have the same FOV.
Zhu [88] actuated a camera based on gaze using a simple “move to the center” method that actuates
the camera to keep the gaze in the middle of the image. An approach using gaze as a control input
overlaid boxes on the display that allowed the user to select actions by focusing the gaze on different
areas [89]. Also relevant are applications of human head–eye models for control of a robotic head [90].

6.1.3. Approach Overview

To date, limited research has been devoted to the investigation of the use of gaze as an integral
part of the control strategy in teleoperation [7]. In [7], the coupling between gaze modes and
human control actions was investigated. Experiments were conducted using a miniature helicopter
while data about the vehicle state, control actions, and operator gaze were recorded. The relevant
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control information was extracted by decomposing the gaze into saccades and smooth pursuit and
examining the gaze patterns. In the following, the understanding about the gaze interaction is used to
optimize the teleoperation system. First, to optimize the live video display and second to optimize
the control modality. The goal is to provide natural experience and exploit the head–eye control
mechanisms. The effectiveness of the approach is evaluated comparing the operator workload for
different teleoperation configurations.

6.2. Gaze-Mediated Camera Control

To mimic head movements, the approach shown in Figure 21 was utilized. As seen in the figure,
the systems for gaze classification and gimbal control need to be defined. In addition, the gimbal
control model needs to account for the different modes of gaze operation, i.e., saccades and smooth
pursuit. This section describes experimental results and modeling of the components highlighted in
blue in Figure 20.

Display
Vehicle and

Environment
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Tracking
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Classification Camera

Gimbal

Control

Augmented

Helicopter

Control

Camera

,

pixel pixel
x y

mode
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gimbalu helicopteru
image

eye focus

V

video stream

Figure 21. Components of the gimbal control architecture.

6.2.1. System Overview

The block diagram of the gimbal control architecture is shown in Figure 21. The key components
are the eye tracking device, the gaze classification algorithm, and the gimbal control system. The eye
tracking device extracts the location of the operator’s focus of attention on the teleoperation display
with the gaze classification algorithm from Section 5.1.2, determining whether the gaze is currently in
a fixation, saccade, or smooth pursuit mode. The gimbal control system takes the gaze location and
mode to generate control signals that manipulate the camera orientation to conform to natural head
movements. In addition, the gimbal control system also generates information for the control of the
rotorcraft in the form of the rotorcraft velocity (V, the estimated value of the human operator efference
copy of helicopter velocity) and the gap to close (τgap) with respect to the current subgoal for the task.

6.2.2. Gimbal Control

Gimbal control that mimics the human head–eye system requires different control approaches
for the low-speed visual tracking of smooth pursuit and the high-speed gaze motion of a saccade.
The appropriate gimbal control model is activated based on the current gaze mode (saccade or smooth
pursuit). This section describes the gimbal control architectures implemented for generating saccades
and performing smooth pursuit that emulates the human head.

Control for Saccades and Fixation

To model the human head–eye system response to gaze shifts of varying size, an experiment was
conducted using a laser pointing system. The laser point on the ground was controlled to produce
steps of varying size that the human subject was instructed to follow with their eyes. An example of
the resulting eye, head, and gaze patterns is given in Figure 22a. As seen in the figure, the eye has an
initial fast response to a gaze shift while the head responds slower. The combined head–eye motion
generates a clean and repeatable gaze shift.
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Figure 22. Experiments for saccades and smooth pursuit gaze tracking. (a) Head–eye-gaze time history
for the saccade experiment using eye tracking glasses to follow a moving laser point (in the body
frame). (b) Head–eye-gaze time history for the smooth pursuit experiment using eye tracking glasses
to follow a moving laser point.

The model used to control the gimbal during gaze shifts is shown in Figure 23. The model is based
on [64] and generates a fast head velocity that is determined by the size of the gaze shift. In addition,
the controller captures the slow phase response necessary to correct the head position at the end of
the gaze shift. The control of each dimension (azimuth and elevation) is treated independently with
Figure 23 showing one dimension.

Saccade
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Generate Head
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Generate Slow

Phase Head
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Find Offset

Error

ref
Hɺ

Generate

Gimbal Control
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E

sacHɺ

slowHɺ

Figure 23. Block diagram showing the configuration of the saccade and fixation gimbal controller.

The size of the gaze shift (S) is identified from the amplitude of the initial eye saccade. In [64],
it was shown that the amplitude of the eye saccade and the size of the gaze shift are linearly related.
Based on experimental data, a linear model was identified to convert the eye amplitude to a gaze step
size (G) as follows

G = 1.8S− 1.17. (15)

The linear fit had an R2 value of 0.81 and is used to convert the eye amplitude to a gaze step size.
To generate the head velocity reference, the gaze step size is multiplied by a constant Ḣsac = 1.25G.
The slow phase head velocity reference uses a constant gain to convert the distance of the eye from
the center of the display into a corrective head velocity. The slow-phase head velocity reference is
attenuated for large eye offsets to disable the correction during large gaze shifts.

Control for Smooth Pursuit

Experimental evaluation of the head–eye system operation in the smooth pursuit mode was
conducted using the laser pointing system. In the experiment, a chirp signal was applied to move the
laser point at increasing velocity along a trajectory that caused yaw movement of the head. An example
of the resulting eye, head, and gaze patterns is given in Figure 22b. The figure shows that the eye and
head coordinate to track the moving point with the head providing the majority of the motion.
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The smooth pursuit mode of head–eye coordination follows the model shown in [65]. The head
control and dynamics for this type of system are shown in Figure 24a. In the system, the gaze error
(Gerr) is used in closed-loop control to drive the head along a trajectory that tracks the desired target.
The combined head–eye motion provides the gaze.

Head PID
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Dynamics
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err
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E
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PID

Control

Gimbal

Dynamics

gimbal
u
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target
E =

err
E
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Figure 24. Block diagrams for smooth pursuit control. (a) Block diagram showing the structure of the
head–eye control during smooth pursuit. (b) Block diagram showing the configuration of the smooth
pursuit gimbal controller.

From the experimental data collected during the experiment shown in Figure 22b, the frequency
response was calculated for the open-loop from Gerr to H using the FRESPID tool in CIFER [78].
A transfer function was fit to the frequency response using the NAVFIT tool. The transfer function
assumes a PID form (Kp + Kds + Kis−1) for the control and second-order dynamics for the head.
The objective for the gimbal control system is to match the dynamic response of the human head–eye
system in order to provide a response that feels natural to the operator.

To implement gimbal control for the smooth pursuit mode, the block diagram from Figure 24a
is modified to the form in Figure 24b. The assumptions used to make the changes are that the eye
error (Eerr) is equivalent to the gaze error (Gerr), which holds true while the target is in the field of view
and that the head control system functions to keep the eye centered on the display. A PID controller
was implemented rather than a more advanced control strategy in order to match the existing model
of human smooth pursuit found in [65]. Each dimension, azimuth and elevation, is treated as a
separate loop.

6.2.3. Experimental Results

This section presents the results from experiments conducted using the gaze-mediated
teleoperation system.

Environment Sensing with Saccades

When a saccade is detected, a fast gimbal motion is executed to reposition the camera to point at
the area of interest. An experiment was conducted with a single starting location and multiple possible
goal locations (for details see [7]). While hovering over the start position, the operator was instructed
to fly to one of four possible goal locations. Due to the operator’s uncertainty about the goal locations,
saccades were generated to quickly verify the positioning of the goal before beginning the maneuver.
Figure 25 shows an example of the head–eye-gaze during the experiment. The figure shows three trials
of the pilot flying the vehicle from a start location to one of the possible targets and then returning to
the original position. At the start of each trial, a saccade is generated when the pilot is informed of the
next target.
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Figure 25. Saccades generated by the eye tracking/gimbal system.

Performance Evaluation

This section compares the proposed teleoperation system with alternative configurations. The first
configuration used a camera with a fixed field of view while the second option had an additional
operator manually controlling the camera motion. The experimental task had the helicopter operator
hover the vehicle over a location marked on the floor. Once a stable hover was achieved the operator
maneuvered the vehicle to hover over a second marked location (see Figure 7). The task of moving
between the two locations was conducted 20 times. The experiment was executed at slow, medium,
and fast speeds for each of the teleoperation configurations.

The accuracy metric defined in Section 3.3.3 was used to analyze performance. The experiment
defined the movement velocity and the teleoperation configuration as the independent variables with
We as the dependent variable. The expectation was that plotting the movement velocity against We for
the different configurations would generate approximately linear results with the more challenging
teleoperation configurations having higher We values. Figure 26 shows the results for the three
configurations and three movement speeds. Based on the analysis, the proposed approach was the
easiest for the operator while the manually operated camera proved the most difficult. The hypothesis
for the narrower range of speed for the manually controlled camera is that the pilot had more difficulty
perceiving the helicopter motion than for the other two configurations. The pilot reduced the speed for
the medium and fast cases to compensate for impaired perceptual abilities.
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Figure 26. Comparison of task difficulty for different teleoperation configurations. (a) Error versus
speed comparison. (b) Effective width versus speed comparison.
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6.3. Augmented Flight Control

A second application example builds on the automated camera gimbal from the previous section.
In addition to controlling the camera, processes are implemented to estimate the state of the vehicle
and task elements using gaze, generate perceptual guidance trajectories, and perform visual tracking.
Experiments using a step task demonstrate the system capabilities. Figure 20 shows the components
implemented inside the gray box.

6.3.1. Implementation of Augmented Control

The procedure for automating the camera gimbal was presented in Section 6.2.
The implementation of the remaining components from Figure 20 follows directly from the results
of Sections 4 and 5. The internal model for estimation of the local subgoal and vehicle state was
described in Section 5.5. The approach for generating a reference velocity based on the concept of a
tau guide was defined in Section 4.2. Finally, the visual tracking component identified in Section 4.1
provided the feedback and feed-forward functions. The only change to the control models was a slight
reduction in the feedback gains due to the 120 ms delay in the video feed of the teleoperation system.
The individual elements were implemented as real-time processes that were integrated into the ROS
software environment.

6.3.2. Experimental Results

A set of flight experiments was conducted using the teleoperation system with augmented control.
The pilots were asked to perform the step task from Section 3.2.2. At the beginning of the task, the pilot
was instructed to achieve a stable hover over the initial location and then signal the start of the motion
by toggling a switch on the joystick. The augmented control system would then generate a control
signal to move the vehicle to the target location with the pilot having the capability to correct errors
in the trajectory using the joystick lateral and longitudinal control inputs. In general, the majority
of the motion was successfully handled by the control augmentation with the pilot only providing
minimal corrective action around the target. It should be noted that the experimental results are
meant to demonstrate the potential benefits of the model’s functional and structural characteristics.
More experiments would be required to make precise claims about the performance characteristics.

Figure 27 shows a comparison between a system configuration that only automated the camera
motion and a system with the full control augmentation. The workload metric was defined in
Section 3.3.3 with the accuracy given by effective width We. As seen in Figure 27a, the augmented
control configuration had a significantly lower workload than the automated camera configuration.
This indicates that the control augmentation is able to successfully take over a large portion of the
control action, thus reducing the workload on the pilot. Figure 27b demonstrates that the augmented
control system also does well when comparing accuracy. The augmented control configuration has
slightly worse accuracy at low speed when compared to the automated camera configuration, but as
the speed increases the augmented control clearly performs better.

In Section 3.3, a set of metrics for evaluating performance was defined based on “the big three”
of speed, accuracy, and workload. Figure 28 shows the metrics on a single plot to make comparison
between configurations easier. The configurations tested were a fixed camera, a manually controlled
camera (by a second operator), the automated camera of Section 6.2, and the augmented control
approach. Figure 28a,b show results for the step task when performed at medium and fast speeds.
In the figures, the dimensions are scaled such that lower values (accuracy, velocity, and workload) are
considered better performance. At medium speed, the augmented control configuration had the best
accuracy and velocity and second best workload (behind the manually controlled camera). For fast
speed, the augmented control provided the best performance for all three metrics.
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Figure 27. Comparison of the operator workload for different teleoperation configurations. (a) Workload
versus speed comparison; (b) Effective width versus speed comparison.
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Figure 28. Comparison of speed, accuracy, and workload trade off for different teleoperation
configurations. (a) Medium Speed; (b) Fast Speed.

7. Conclusions

In this paper, we presented a general approach to modeling a human operator’s control and
guidance response in a task where the sensing and control is mediated by the human visuo-motor
system. The proposed system model captures the human–vehicle–environment interactions focusing
on the role of gaze dynamics. A multi-loop architecture organizes the control response into three
levels. The lowest level acts as a simple control element to perform visual tracking. The next level,
perceptual guidance, employs learned visuo-motor patterns to close gaps between the perceived
state and the desired state. The final level considers the task and environment to determine the
current subgoal. This paper characterized the first two levels of the multi-loop control architecture and
identified specific models for the perceptual guidance and visual tracking components. With respect
to perception, the visual information extracted by the human operator is registered in a body centric
spherical reference frame that corresponds to human visual perception. Decomposition of gaze
measurements into smooth pursuit and saccades provided the information necessary to estimate the
state of the vehicle and task elements.

Models were identified for the perceptual and control components of the multi-loop architecture.
The pilot’s control response was characterized by identifying models for the perceptual guidance and
visual tracking blocks. Tau theory provided the basis for modeling perceptual guidance. The concept
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of a tau guide was utilized to generate reference trajectories by matching the tau guide-generated
control with the experimental control response. At the visual tracking level, we identified models
for feed-forward and feedback control elements. The feed-forward element was found by inverting
a simplified version of the helicopter dynamics. System identification techniques fit the control
parameters for the feedback component. Gaze was utilized as the primary sensory mechanism
for measuring vehicle state and task elements. We demonstrated how the gaze patterns can be
decomposed into smooth pursuit and saccades. These visual cues were analyzed to determine the
primary visuo-motor control mechanisms in the multi-loop human control system. We showed that the
smooth pursuit gaze behavior provides a measure of the rotorcraft state necessary for stabilization and
regulation. The saccades, on the other hand, measure the gap to the goal location, which is consistent
with tau theory. Using the information extracted from gaze, we designed an estimation model that
tracked the vehicle state and task elements.

Finally, we applied the models for human perception and control to a real-world problem. The first
example application utilized gaze to automate positioning control of a remote camera based on models
of the human head–eye system. The architecture implements control of the remote camera that
mimics human head movement and consequently is more natural for the operator. We evaluated the
application using a version of Fitts’ Law that showed that the system exhibited improved performance
in comparison to a fixed or manually operated camera. A second example application augmented
the control system to aid the pilot while still allowing pilot input. The augmented control example
demonstrated better performance for the accuracy, speed, and workload metrics when compared to
the other teleoperation configurations (a fixed camera, a manually controlled camera, and a camera
with automated motion).
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