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Abstract: In this paper, the state estimation for dynamic system with unknown inputs modeled as an
autoregressive AR (1) process is considered. We propose an optimal algorithm in mean square error
sense by using difference method to eliminate the unknown inputs. Moreover, we consider the state
estimation for multisensor dynamic systems with unknown inputs. It is proved that the distributed
fused state estimate is equivalent to the centralized Kalman filtering using all sensor measurement;
therefore, it achieves the best performance. The computation complexity of the traditional augmented
state algorithm increases with the augmented state dimension. While, the new algorithm shows
good performance with much less computations compared to that of the traditional augmented state
algorithms. Moreover, numerical examples show that the performances of the traditional algorithms
greatly depend on the initial value of the unknown inputs, if the estimation of initial value of the
unknown input is largely biased, the performances of the traditional algorithms become quite worse.
However, the new algorithm still works well because it is independent of the initial value of the
unknown input.

Keywords: optimal estimate; unknown inputs; distributed fusion; augmented state Kalman filtering
(ASKF)

1. Introduction

The classic Kalman filtering (KF) [1] requires the model of the dynamic system is accurate.
However, in many realistic situations, the model may contain unknown inputs in process or
measurement equations. The issue concerning estimating the state of a linear time-varying discrete
time system with unknown inputs is widely studied by researchers. One widely adopted approach is
to consider the unknown inputs as part of the system state and then estimate both of them. This leads
to an augmented state Kalman filtering (ASKF). Its computational cost increases due to the augmented
state dimension. It is proposed by Friedland [2] in 1969 a two-stage Kalman filtering (TSKF) to reduce
the computation complexity of the ASKF, which is optimal for the situation of a constant unknown
input. On the basis of the work in [2], it is proposed by Hsieh et al. an optimal two-stage algorithm
(OTSKF) for the dynamic system with random bias and a robust two-stage algorithm for the dynamic
system with unknown inputs in 1999 [3] and 2000 [4] respectively. It is assumed in [3–5] that the
unknown inputs were an autoregressive AR (1) process, with the two-stage algorithms being optimal
in the mean square error (MSE) sense. However, the optimality of the ASKF and OTSKF depends on
the premise that the initial value of the unknown measurement can be estimated correctly. Under the
condition of incorrect initial value of the unknown measurement, the ASKF and OTSKF will have
poor performance (see Examples 1 and 2 in Section 5), especially, when the unknown measurement
is not stationary as regarded in [4,5]. Due to the difficulty of knowing the exact initial value of the
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unknown measurement, improvements should be made on these approaches. Many other researchers
have focused on the problem of unknown inputs [6–8] in recent years.

A large number of sensors are now used in practical applications in numerous advanced systems.
With the processing center receiving all measurements from the local sensors in time, centralized
Kalman filtering (CKF) can be accomplished, and the resulting state estimates are optimal in the MSE.
Nevertheless, because of limited communication bandwidth, and relatively low survivability of the
system in unfavorable conditions, like martial circumstances, Kalman filtering is required to be carried
on every local sensor upon its own observation first for local requirement, and then the processed
data-local state estimate is transmitted to a fusion center. Therefore, the fusion center now needs to
fuse all the local estimates received to produce a globally optimal or suboptimal state estimate. In the
existing research literatures, a large number of researches on distributed Kalman filtering (DKF) have
been done. Under certain common conditions, particularly, the supposition of cross-independent
sensor noises, an optimal DKF fusion was proposed in [9–11] respectively, which was proved to be the
same as the CKF adopting all sensor measurements, illustrating that it is universally optimal. Besides,
a Kalman filtering fusion with feedback was also suggested there. Then, it was presented in [12] a
rigorous performance analysis for Kalman filtering fusion with feedback. The results mentioned above
are effective only for conditions with uncoupled observation noises across sensors. It is demonstrated
by Song et al. [13] that when the sensor noises are cross-correlated, the fused state estimate was
also equal to the CKF under a mild condition. Similarly with [13], Luo et al. [14] posed a distributed
Kalman filtering fusion with random state transition and measurement matrices, i.e., random parameter
matrices Kalman filtering in 2008. Moreover, they proved that under a mild condition the distributed
fusion state estimate is equivalent to the centralized random parameter matrices Kalman filtering using
all sensor measurement, which under the assumption that the expectation of all sensor measurement
matrices are of full row rank. As far as we know, few studies have been done for multisensor
system with unknown inputs by the above mentioned augmented methods. The main reason is that
the augmented methods greatly increase the state dimension and computation complexity for the
multisensor system.

In this paper, an optimal estimation for dynamic system with unknown inputs in the MSE sense
is proposed. Different from the work in [2–5], the approach of eliminating instead of estimating the
unknown inputs is used. The unknown inputs are assumed to be an autoregressive AR (1) process and
are eliminated by measurement difference method. Then the original dynamic system is converted to
a remodeled system with correlated process and measurement noises. The new measurement noise of
the remodeled system in this paper is not only one-step correlated in time but also correlated with the
process noise. We propose a globally optimal recursive state estimate algorithm for this remodeled
system. Compared with the ASKF and OTSKF, the new algorithm is still optimal in the MSE sense but
with less computation stress. Additionally, it is showed that the performance of the new algorithm
does not rely on the initial value of the unknown input. For the multisensor system with unknown
inputs, we show that the centralized filtering can still be expressed by a linear combination of the
local estimates. Therefore, the performance of the distributed filtering fusion is the same as that of the
centralized fusion. The new algorithm is optimal in the MSE sense with low computation complexity.
Numerical examples are given to support our analysis.

The remainder of this paper is organized as follows: the problem formulation is discussed in
Section 2, followed by an optimal estimation algorithm for dynamic system with unknown inputs
being put forward in Section 3. In Section 4, a distributed algorithm for multisensor system with
unknown inputs will be given, demonstrating that the fused state estimate is equal to the centralized
Kalman filtering with all sensor measurements. Several simulation examples are given in Section 5.
Section 6 is the summary of our analysis and possible future work.
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2. Problem Formulation

Consider a discrete time dynamic system:

xk+1 = Fkxk + νk, (1)

yk = Hkxk + Akdk + ωk, (2)

where xk ∈ Rm is the system state, νk ∈ Rm is the measurement vector, the process noise and
measurement noise ωk ∈ Rn are zero-mean white noise sequences with the following covariances:

E(νkνT
j ) = Rνk δk−j, (3)

E(ωkωT
j ) = Rωk δk−j, (4)

E(νkωT
j ) = 0, ∀k, j. (5)

where:

δk−j =

{
1, k = j
0, k 6= j

,

dk ∈ Rp is the unknown input. Matrices Fk, Hk and Ak are of appropriate dimensions by assuming
that Ak ∈ Rn×p is of full column rank, i.e., rank(Ak) = p. Therefore, we have (Ak)

† Ak = I, where the
superscript “†” denotes Moore-Penrose pseudo inverse. It is assumed dk follows an autoregressive
AR (1), i.e.,:

dk+1 = Bkdk + ωdk
, (6)

where Bk is nonsingular and ωdk
is a zero-mean white noise sequences with covariance:

E(ωdk
ωT

dj
) = Rdk

δk−j. (7)

This model is widely considered in [2–5]. For example, in radar systems, the measurement often
contains a fixed unknown deviation or an unknown deviation that gradually increases as the distance
becomes longer. Such deviations can be described by Equation (6).

ASKF and OTSKF are two classic algorithms to handle this problem. The ASKF regards xk and dk
as an augmented state and estimates them together, while the OTSKF estimates xk and dk respectively
at first and then fusions them to achieve the optimal estimation. As a matter of fact, the unknown
inputs can be eliminated easily by difference method. Denote:

zk = B−1
k A†

k+1yk+1 − A†
k yk. (8)

Equations (1) and (2) can be represented as:

xk+1 = Fkxk + νk, (9)

zk = Mkxk + uk, (10)

where:
Mk = B−1

k A†
k+1Hk+1Fk − A†

k Hk, (11)

uk = B−1
k A†

k+1Hk+1νk + B−1
k ωdk

+ B−1
k A†

k+1ωk+1 − A†
k ωk. (12)

From Equation (12), it is not difficult to find out that the new measurement noise uk is one-step
correlated and correlates with the process noise, i.e.,:

E(ukνT
j ) = B−1

k A†
k+1Hk+1Rνk δk−j, (13)
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E(ukuT
k ) = B−1

k A†
k+1Hk+1Rνk HT

k+1(A†
k+1)

T
(B−1

k )
T
+ B−1

k Rdk
(B−1

k )
T

+ B−1
k A†

k+1Rωk+1(A†
k+1)

T
(B−1

k )
T
+ A†

k Rωk (A†
k)

T ,
(14)

E(ukuT
j ) = −A†

k Rωk (A†
k)

T
(B−1

k−1)
T

δk−j+1, k 6= j. (15)

3. Optimal Estimation for the Remodeled System

It is assumed in the classic Kalman filtering that the process noises and measurement noises are
uncorrelated temporally; in the meantime, both noises are mutually uncorrelated except at the same
time instant. The noises in Equations (13)–(15) apparently violate these assumptions. Using the latest
research achievements about Kalman filtering with correlated noises in [15–20], we can give an optimal
estimation for the remodeled system (9) and (10) in the MSE sense. The recursive state estimate of the
new system is presented in the following theorem.

Theorem 1. The globally optimal estimate for the remodeled system (9) and (10) is given by:

xk|k = xk|k−1 + JkL†
k ∆zk,

Pk|k = Pk|k−1 − JkL†
k JT

k ,

where:
xk|k−1 = Fk−1xk−1|k−1 + Rνk−1 HT

k (A†
k)

T
(B−1

k−1)
T

L†
k−1∆zk−1, (16)

Pk|k−1 = E(xk − xk|k−1)(xk − xk|k−1)
T

= Fk−1Pk−1|k−1FT
k−1 − Fk−1 Jk−1L†

k−1B−1
k−1 A†

k HkRνk−1

−Rνk−1 HT
k (A†

k)
T
(B−1

k−1)
T

L†
k−1 JT

k−1FT
k−1 + Rνk−1

−Rνk−1 HT
k (A†

k)
T
(B−1

k−1)
T

L†
k−1B−1

k−1 A†
k HkRνk−1

(17)

∆zk = zk − zk|k−1,

= zk −Mkxk|k−1 + A†
k Rωk (A†

k)
T
(B−1

k−1)
T

L†
k−1∆zk−1,

(18)

Jk = E(xk − xk|k−1)(zk − zk|k−1)
T ,

= Pk|k−1MT
k + (Fk−1 Jk−1L†

k−1 + Rνk−1 HT
k (A†

k)
T
(B−1

k−1)
T

L†
k−1)

·B−1
k−1 A†

k Rωk (A†
k)

T ,

(19)

Lk = E(zk − zk|k−1)(zk − zk|k−1)
T ,

= Mk Jk + A†
k Rωk (A†

k)
T
(B−1

k−1)
T

L†
k−1(JT

k−1FT
k−1 + B−1

k−1 A†
k HkRνk−1)

·MT
k + Ruk − A†

k Rωk (A†
k)

T
(B−1

k−1)
T

L†
k−1B−1

k−1 A†
k Rωk (A†

k)
T .

(20)

Remark 1. From Theorem 1, the new algorithm presented in this section is optimal in the MSE sense. In theory,
the ASKF and OTSKF are also optimal in the MSE sense (see [2,3]). Nevertheless, the optimality of the ASKF
and OTSKF depends on the assumption that the initial condition of the unknown measurement d0|0 = E(d0) ,
which is difficult to meet in real situations. It will be demonstrated by numerical examples in the Section 5 that
if the initial value of the unknown input is wrong, their performances will be greatly influenced. By contrast,
the new algorithm will continue its good performance as it does not rely on the initial value of the unknown input.

Remark 2. A flop is defined as one addition, subtraction and multiplication. To estimate the complexity of an
algorithm, the total number of flops is counted, expressing it as a polynomial of the dimensions of the matrices
and vectors involved, and simplifying the expression by ignoring all terms except the leading terms. Then the
complexities of the ASKF, OTSKF and the new algorithm are equivalent to O(m3 + n3 + p3 + m2n + mn2 +

m2 p + mp2 + n2 p + np2 + mnp). The evaluation complexities of the three algorithms are the same order
polynomials. We will compare their complexities more precisely by numerical examples in Section 5.
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4. Multisensor Fusion

The l-sensor dynamic system is given by:

xk+1 = Fkxk + νk, k = 0, 1, . . .

yi
k = Hi

kxk + Ai
kdi

k + ωi
k, (21)

di
k+1 = Bi

kdi
k + ωi

dk
, i = 1, . . . , l

where xk ∈ Rm is the system state, yi
k ∈ Rni is the measurement vector in the i-th sensor, νk ∈ Rm is

the process noise and ωi
k ∈ Rni is measurement noise, di

k ∈ Rpi is the unknown input in i-th sensor.
Matrices Fk, Hi

k and Ai
k are of appropriate dimensions.

We assume the system has the following statistical properties:

(1) Every single sensor satisfies the assumption in Section 2.

(2) Ai
k ∈ Rni×pi is of full column rank, then (Ai

k)
† Ai

k = I.

(3) {νk, ω
j
k, k = 0, 1, 2, . . .}, i, j = 1, . . . , l is a sequence of independent variables.

Similarly to Equations (9) and (10), Equation (21) could be converted to:

xk+1 = Fkxk + νk, k = 0, 1, . . . (22)

zi
k = Mi

kxk + ui
k, i = 1, . . . , l (23)

where:
Mi

k = Bi−1

k Ai†
k+1Hi

k+1Fk − Ai†
k Hi

k,

ui
k = Bi−1

k Ai†
k+1Hi

k+1νk + Bi−1

k ωi
dk
+ Bi−1

k Ai†
k+1ωi

k+1 − Ai†
k ωi

k.

The stacked measurement equation is written as:

zk = Mkxk + uk

where:
zk = (z1T

k , . . . , zlT

k )
T

, Mk = (M1T

k , . . . , MlT

k )
T

, uk = (u1T

k , . . . , ulT

k )
T

.

According to Theorem 1, the local Kalman filtering at the i-th sensor is:

xi
k|k = xi

k|k−1 + Ji
kLi†

k ∆zi
k, (24)

xi
k|k−1 = Fk−1xi

k−1|k−1 + Rνk−1 HiT

k (Ai†
k )

T
(Bi−1

k−1)
T

Li†
k−1∆zi

k−1, (25)

with covariances of filtering error given by:

Pi
k|k = Pi

k|k−1 − Ji
kLi†

k JiT

k ,

where:
∆zi

k = zi
k −Mi

kxi
k|k−1 + Ai†

k Ri
ωk
(Ai†

k )
T
(Bi−1

k−1)
T

Li†
k−1∆zi

k−1, (26)

Ji
k = E(xi

k − xi
k|k−1)(z

i
k − zi

k|k−1)
T

,

Li
k = E(zi

k − zi
k|k−1)(z

i
k − zi

k|k−1)
T

,

Pi
k|k−1 = E(xi

k − xi
k|k−1)(xi

k − xi
k|k−1)

T
.
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According to Theorem 1, the centralized Kalman filtering with all sensor data is given by:

xk|k = xk|k−1 + JkL†
k ∆zk, (27)

xk|k−1 = Fk−1xk−1|k−1 + Rνk−1 HT
k (A†

k)
T
(B−1

k−1)
T

L†
k−1∆zk−1, (28)

The covariance of filtering error given by:

Pk|k = Pk|k−1 − JkL†
k JT

k ,

where:
Ak = diag(A1

k , . . . , Al
k), Bk = diag(B1

k , . . . , Bl
k),

∆zk = zk −Mkxk|k−1 + A†
k Rωk (A†

k)
T
(B−1

k−1)
T

L†
k−1∆zk−1, (29)

Jk = E(xk − xk|k−1)(zk − zk|k−1)
T ,

Lk = E(zk − zk|k−1)(zk − zk|k−1)
T ,

Pk|k−1 = E(xk − xk|k−1)(xk − xk|k−1)
T .

diag is the diagonalization of a matrix.

Remark 3. There are two key points to express the centralized filtering Equations (27) and (28) in terms of the
local filtering:

(1) Taking into consideration the measurement noise of single sensor in new system Equations (22) and (23),
it can be observed that the sensor noises of the converted system are cross-correlated even if the original
sensor noises are mutually independent.

(2) ∆zk in Equation (27) is not stacked by local ∆zi
k in Equation (26) directly and includes ∆zk−1 in its

expression, which makes our problem more complicated than the previous distributed problem in [9–14,21].

Next, we will solve these two problems to express the centralized filtering Equation (28) in
terms of the local filtering. We assume that HT

k is of full column rank. Thus, we have (HT
k )

† HT
k = I.

Using (28), we can get:

∆zk−1 = Lk−1[(B−1
k−1)

T
]
−1

[(A†
k)

T
]
†
(HT

k )
†
R−1

νk−1
(xk|k−1 − Fk−1xk−1|k−1). (30)

Substituting (29) and (30) into (27), we have:

xk|k = xk|k−1 + JkL†
k ∆zk

= xk|k−1 + JkL†
k(zk −Mkxk|k−1 + A†

k Rωk (A†
k)

T
(B−1

k−1)
T

L†
k−1∆zk−1)

= xk|k−1 + JkL†
k(zk −Mkxk|k−1 + A†

k Rωk (A†
k)

T
(B−1

k−1)
T

L†
k−1Lk−1((B−1

k−1)
T
))
−1

((A†
k)

T
)

†

·(HT
k )

†R−1
νk−1

(xk|k−1 − Fk−1xk−1|k−1))

= xk|k−1 + JkL†
k(zk −Mkxk|k−1 + A†

k Rωk (HT
k )

†R−1
νk−1

(xk|k−1 − Fk−1xk−1|k−1))

= xk|k−1 − JkL†
k Mkxk|k−1 + JkL†

k A†
k Rωk (HT

k )
†R−1

νk−1
(xk|k−1 − Fk−1xk−1|k−1) + JkL†

k zk.

(31)

Using (26), we have:

zi
k = ∆zi

k + Mi
kxi

k|k−1 − Ai†
k Ri

ωk
(Ai†

k )
T
(Bi−1

k−1)
T

Li†
k−1∆zi

k−1. (32)



Sensors 2018, 18, 2976 7 of 14

We assume that Ji
k ∈ Rm×ni is of full column rank, i.e., rankJi

k = ni. Thus, we have (Ji
k)

† Ji
k = I.

Then, using (24), we can get:
∆zi

k = Li
k Ji†

k (xi
k|k − xi

k|k−1). (33)

To express the centralized filtering xk|k in terms of the local filtering, by (25), (32) and (33), we have:

JkL†
k zk = Jk

l
∑

i=1
L†

k(∗i)z
i
k

= Jk
l

∑
i=1

L†
k(∗i)(∆zi

k + Mi
kxi

k|k−1 − Ai†
k Ri

ωk
(Ai†

k )
T
(Bi−1

k−1)
T

Li†
k−1∆zi

k−1)

= Jk
l

∑
i=1

L†
k(∗i)(Li

k Ji†
k (xi

k|k − xi
k|k−1) + Mi

kxi
k|k−1 − Ai†

k Ri
ωk
(Ai†

k )
T
(Bi−1

k−1)
T

Li†
k−1

·Li
k−1((Bi−1

k−1)
T
)
−1

((Ai†
k )

T
)

†
(HiT

k )
†
R−1

νk−1
(xi

k|k−1 − Fk−1xi
k−1|k−1))

= Jk
l

∑
i=1

L†
k(∗i)(Li

k Ji†
k (xi

k|k − xi
k|k−1) + Mi

kxi
k|k−1 − Ai†

k Ri
ωk
(HiT

k )
†
R−1

νk−1

·(xi
k|k−1 − Fk−1xi

k−1|k−1)),

(34)

where L†
k(∗i) is the i-th column block of L†

k .
Thus, substituting (34) into (31) yields:

xk|k = xk|k−1 − JkL†
k Mkxk|k−1 + JkL†

k A†
k Rωk (H†

k )
T R−1

νk−1
(xk|k−1 − Fk−1xk−1|k−1)

+Jk
l

∑
i=1

L†
k(∗i)(Li

k Ji†
k (xi

k|k − xi
k|k−1) + Mi

kxi
k|k−1 − Ai†

k Ri
ωk
(HiT

k )
†
R−1

νk−1

·(xi
k|k−1 − Fk−1xi

k−1|k−1))

= (I − JkL†
k Mk + JkL†

k A†
k Rωk (H†

k )
T R−1

νk−1
)xk|k−1 − JkL†

k A†
k Rωk (H†

k )
T R−1

νk−1
Fk−1xk−1|k−1

+Jk
l

∑
i=1

L†
k(∗i)(Li

k Ji†
k xi

k|k + (Mi − Li
k Ji†

k − Ai†
k Ri

ωk
(HiT

k )
†
R−1

νk−1
)xi

k|k−1

+Ai†
k Ri

ωk
(HiT

k )
†
R−1

νk−1
Fk−1xi

k−1|k−1).

(35)

Similarly to Equation (35), using Equations (24), (26), (29) and (32), we have:

xk|k−1 = Fk−1xk−1|k−1 − Rνk−1 HT
k (A†

k)
T
(B−1

k−1)
T

L†
k−1(Mk−1xk−1|k−2 − A†

k−1Rωk−1

·(HT
k−1)

†R−1
νk−2

(xk−1|k−2 − Fk−2xk−2|k−2)) + Rνk−1 HT
k (A†

k)
T
(B−1

k−1)
T

·
l

∑
i=1

L†
k−1(∗i)(Li

k−1((Bi−1

k−1)
T
)
−1

((Ai†
k )

T
)

†
(HiT

k )
†
R−1

νk−1
(xi

k|k−1 − Fk−1xi
k−1|k−1)

+Mi
k−1xi

k−1|k−2 − Ai†
k−1Ri

ωk−1
(HiT

k−1)
†
R−1

νk−2
(xi

k−1|k−2 − Fk−2xi
k−2|k−2))

= Fk−1xk−1|k−1 − Rνk−1 HT
k (A†

k)
T
(B−1

k−1)
T

L†
k−1(Mk−1 − A†

k−1Rωk−1(HT
k−1)

†R−1
νk−2

)

·xk−1|k−2 − Rνk−1 HT
k (A†

k)
T
(B−1

k−1)
T

L†
k−1 A†

k−1Rωk−1(HT
k−1)

†R−1
νk−2

Fk−2xk−2|k−2

+Rνk−1 HT
k (A†

k)
T
(B−1

k−1)
T l

∑
i=1

L†
k−1(∗i)(Li

k−1((Bi−1

k−1)
T
)
−1

((Ai†
k )

T
)

†
(HiT

k )
†

·R−1
νk−1

xi
k|k−1 − Li

k−1((Bi−1

k−1)
T
)
−1

((Ai†
k )

T
)

†
(HiT

k )
†
R−1

νk−1
Fk−1xi

k−1|k−1

+(Mi
k−1 − Ai†

k−1Ri
ωk−1

(HiT

k−1)
†
R−1

νk−2
)xi

k−1|k−2 + Ai†
k−1Ri

ωk−1

·(HiT

k−1)
†
R−1

νk−2
Fk−2xi

k−2|k−2).

(36)

That means the centralized filtering is expressed in terms of the local filtering. Therefore,
the distributed fused state estimate is equal to the centralized Kalman filtering adopting all sensor
measurements, which means the distributed fused state estimate achieves the best performance.
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Remark 4. From this new algorithm, it is easy to see that local sensors should transmit xi
k|k, xi

k|k−1, Pi
k|k and

Pi
k|k−1 to the fusion center to get global fusion result. The augmented methods greatly increase the state dimension

and computation complexity for the multisensor system. Since the difference method does not increase the state
dimension, the computation complexity is lower than that of the augmented method for the multisensory system.

5. Numerical Examples

In this section, several simulations will be carried out for dynamic system with unknown inputs.
It is assumed that the unknown input dk+1 = Bkdk + ωk in this paper. Actually, the unknown
measurement dk is a stationary time series if the eigenvalue of Bk is less than 1, or else the unknown
measurement dk is a non-stationary time series. The performances of the new algorithm (denoted as
Difference KF) in these two cases are discussed in Example 1 and 2, respectively:

Example 1. A two dimension target tracking problem is considered. The target dynamic models are given as
Equations (1)–(7). The state transition matrices:

Fk =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1


and the measurement matrix is given by:

Hk =

(
1 0 0 0
0 0 1 0

)

Suppose Ak is an identity matrix with appropriate dimensions, Bk = 0.9I. In this case, dk is a stationary
time series. The targets start at x0 = (50, 1, 50, 1)T and the initial value d0 = (5, 5)T . The covariance matrices
of the noises are given by:

Rνk =


1 0 0 0
0 0.1 0 0
0 0 1 0
0 0 0 0.1

,

Rωk =

(
1 0
0 1

)
, Rdk

=

(
1 0
0 1

)
.

In the following, the computer time and performances of the ASKF, OTSKF and Difference KF
will be compared respectively.

• Computer time

The complexities of the three algorithms are analyzed in Remark 2, which shows the complexities
of the three algorithms are the equivalent order polynomials. Now let us compare their computer time
by this example. Table 1 illustrates the computer time of the three algorithms with 1000 Monte-Carlo
runs respectively, through which we can find out that the new algorithm is the fastest algorithm in
this example.
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Table 1. The computer time of the three algorithms.

Algorithm Computer Time (seconds)

ASKF 16.163026
OTSKF 11.684104

Difference KF 9.274128

• Estimation Performances

In [3], Hsieh et al. has proved that the OTSKF is equivalent to the ASKF, so the tracking results
of the two algorithms are the same. In order to make the figure clearer, we will only compare the
performances of the following six algorithms:

Algorithm 1: KF without considering unknown input.
Algorithm 2: ASKF with accurate initial value of unknown input (d0 = (5, 5)T).
Algorithm 3: OTSKF with accurate initial value of unknown input (d0 = (5, 5)T).
Algorithm 4: ASKF with wrong inaccurate initial value of unknown input (d0 = (0, 0)T).
Algorithm 5: ASKF with inaccurate initial value of unknown input (d0 = (20, 20)T).
Algorithm 6: Difference KF without any information about initial value of unknown input.
The initial states of the six algorithms are set at x0|0 = x0, the initial Px0|0 = Rv0 , Pd0|0 = Rd0 . Using

100 Monte-Carlo runs, we can evaluate estimation performance of an algorithm by estimating the
second moment of the tracking error:

E2
k =

1
100

100

∑
j=1
||x(j)

k|k − xk||2, k = 1, 2, · · · , 100.

It must be noticed that Difference KF uses (y1, y2, · · · , yk, yk+1) to estimate xk at step k.
However, the KF, ASKF and OTSKF only use (y1, y2, · · · , yk) to estimate xk at step k. To make
an equal comparison, xk|k−1 in Difference KF with xk|k in the other five algorithms is compared.
As dk+1 = 0.9dk + ωk, dk is almost equal to a random white noise with small covariance after several
steps and the influence of the initial value d0 will be gradually weakened. The tracking errors of the
six methods are compared in Figure 1 and Table 2. It can be noticed that no matter whether the initial
values of the unknown input in ASKF and OTSKF are accurate or wrong, the tracking results of the six
algorithms are almost the same after about 25 steps. However, it should be noticed that the Difference
KF performs better than the ASKF with inaccurate initial value of unknown measurement in the first
stage, which is important for some practical conditions, for instance, in multi-target tracking problems,
due to data association errors and heavy clutters, tracking has to restart very often. Therefore, in order
to derive an entirely good tracking, initial work status at each tracking restarting should be as good
as possible.
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Table 2. The average tracking errors of the six methods.

Algorithm KF ASKF
d0 = (5, 5)T

OTSKF
d0 = (5, 5)T

ASKF
d0 = (0, 0)T

ASKF
d0 = (20, 20)T

Difference
KF

Average
Tracking Error 3.6843 3.3261 3.3261 3.5335 3.9229 3.3540

Example 2. The dynamic equations are the same as Example 1. Assume Bk = I. This model has been considered
in [4,5]. dk is a non-stationary time series here. The non-stationary unknown measurement is common in
practice. For instance, for an air target, the unknown radar bias is frequently increasing with distance changing
between the target and radar.

The targets start at x0 = (50, 1, 50, 1)T and the initial value d0 = (5, 5)T .The performances of the
following six algorithms are compared:

Algorithm 1: KF without considering unknown input.
Algorithm 2: ASKF with accurate initial value of unknown input (d0 = (5, 5)T).
Algorithm 3: OTSKF with accurate initial value of unknown input (d0 = (5, 5)T).
Algorithm 4: ASKF with wrong inaccurate initial value of unknown input (d0 = (0, 0)T).
Algorithm 5: ASKF with inaccurate initial value of unknown input (d0 = (20, 20)T).
Algorithm 6: Difference KF without any information about initial value of unknown input.
Figure 2 and Table 3 compare the tracking errors of the six methods. As the new algorithm,

ASKF and OTSKF with accurate initial value of unknown input are optimal in the MSE sense.
Their performances are almost of no difference. The KF without considering unknown input is worse
because it does not use any information of the unknown input. Numerical examples also demonstrate
that once the initial value of the unknown input is inaccurate, the performance of the ASKF becomes
poorer. We can also see that if the initial value of the unknown input is largely biased, the performance
of ASKF is even poorer than KF ignoring unknown input. This is because dk+1 = dk + ωk in this
example, the influence of the incorrect initial value d0 will always exist. Nevertheless, the new
algorithm is independent of the initial value of the unknown input and yet performs well.



Sensors 2018, 18, 2976 11 of 14
Sensors 2018, 18, x FOR PEER REVIEW  12 of 15 

 

 

Figure 2. Comparison of the six algorithms when kd  is a non-stationary time series. 

Table 3. The average tracking errors of the six methods. 

Algorithm KF 
ASKF

0 (5,5)Td =  

OTSKF

0 (5,5)Td =  

ASKF

0 (0,0)Td =  

ASKF

0 (20, 20)Td =  
Difference 

KF 

Average 
Tracking 

Error 
11.8091 9.5470 9.5470 10.4493 15.8539 9.5787 

From Examples 1 and 2, we can see that the performance of the difference KF is almost the same 
to that of the ASKF and OTSKF with accurate initial value of unknown input. If the initial value of 
the unknown measurement is largely biased, performances of the ASKF and OTSKF will be badly 
influenced. Due to the fact that it is not easy to get the exact initial value of the unknown 
measurement, Difference KF is a better option than the ASKF and OTSKF in practice. 

Example 3. A two-sensor Kalman filtering fusion problem with unknown inputs is considered. The object 
dynamics and measurement equation are modeled as follows: 

1 , 0,1, ,100k k k kx F x kν+ = + = …  

,i i i i i
k k k k k ky H x A d ω= + +  

1 , 1,2.
k

i i i i
k k k dd B d iω+ = + =  

The state transition matrix kF  and the measurement matrices i
kH  are the same as Example 1, 

i
kA and i

kB are identity matrix with appropriate dimensions. The targets start at 0 (50,1,50,1)Tx =  and the 

initial value 0 (5,5)i Td = . 
The covariance matrices of the process noises is given by: 

Figure 2. Comparison of the six algorithms when dk is a non-stationary time series.

Table 3. The average tracking errors of the six methods.

Algorithm KF ASKF
d0 = (5, 5)T

OTSKF
d0 = (5, 5)T

ASKF
d0 = (0, 0)T

ASKF
d0 = (20, 20)T

Difference
KF

Average
Tracking Error 11.8091 9.5470 9.5470 10.4493 15.8539 9.5787

From Examples 1 and 2, we can see that the performance of the difference KF is almost the same
to that of the ASKF and OTSKF with accurate initial value of unknown input. If the initial value of
the unknown measurement is largely biased, performances of the ASKF and OTSKF will be badly
influenced. Due to the fact that it is not easy to get the exact initial value of the unknown measurement,
Difference KF is a better option than the ASKF and OTSKF in practice.

Example 3. A two-sensor Kalman filtering fusion problem with unknown inputs is considered. The object
dynamics and measurement equation are modeled as follows:

xk+1 = Fkxk + νk, k = 0, 1, . . . , 100

yi
k = Hi

kxk + Ai
kdi

k + ωi
k,

di
k+1 = Bi

kdi
k + ωi

dk
, i = 1, 2.

The state transition matrix Fk and the measurement matrices Hi
k are the same as Example 1, Ai

k and Bi
k

are identity matrix with appropriate dimensions. The targets start at x0 = (50, 1, 50, 1)T and the initial value
di

0 = (5, 5)T .
The covariance matrices of the process noises is given by:

Rνk =


5 0 0 0
0 0.1 0 0
0 0 5 0
0 0 0 0.1


The covariance matrices of the measurement noises and the unknown inputs are diagonal given by

Ri
ωk

= 1, Ri
dk

= 1, i = 1, 2.
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The performances of the following three algorithms are compared as follows:
Algorithm 1: Centralized KF without considering unknown input.
Algorithm 2: The centralized fusion of the Difference KF.
Algorithm 3: The distributed fusion of the Difference KF.
The initial states of the three algorithms are set at x0|0 = x0, the initial Pi

x0|0
= I. Using

100 Monte-Carlo runs, we can evaluate estimation performance of an algorithm by estimating the
second moment of the tracking error.

It is illustrated in Figure 3 and Table 4 that the simulation outcome of distributed fusion and
centralized fusion of the new algorithm are exactly the same. Additionally, the new algorithm fusion
gives better performance than the KF. Thus, the distributed algorithm has not only the global optimality,
but also the good survivability in a poor situation.
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Table 4. The average tracking errors of the three methods.

Algorithm CKF Centralized Difference KF Distributed Difference KF

Average Tracking Error 10.3720 9.3582 9.3582

6. Conclusions

In this paper, the state estimation for dynamic system with unknown inputs modeled as an
autoregressive AR (1) process is considered. The main contributions are: (1) A novel optimal algorithm
for dynamic system with unknown inputs in the MSE sense is proposed by differential method.
The computational burden of the new algorithm is lower than that of ASKF. The performance of the
new algorithm is independent of the initial value of the unknown input. (2) A distributed fusion
algorithm is proposed for the multisensor dynamic system with unknown inputs, the result of which
is equal to the centralized difference Kalman filtering adopting all sensor measurements.

However, it should be noticed that the new algorithm uses yk and yk+1 to estimate xk, which
leads the new algorithm to be one-step delayed. The new algorithm can only cope with the unknown
inputs in measurement equation, while the ASKF can handle the unknown inputs in both state and
measurement equation. Besides, it is assumed throughout the paper that the model of the unknown
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inputs dk follows an autoregressive AR (1) process. As for the future research, one interesting direction
is to extend the difference method to dynamic system with more general unknown inputs.
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