
sensors

Article

An Automatic User Activity Analysis Method for
Discovering Latent Requirements: Usability Issue
Detection on Mobile Applications

Soojin Park 1,* ID , Sungyong Park 2 and Kyeongwook Ma 2

1 Graduate School of Management of Technology, Sogang University, 35 Baekbeom-ro, Mapo-gu,
Seoul 04107, Korea

2 Department of Computer Science and Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu,
Seoul 04107, Korea; parksy@sogang.ac.kr (S.P.); kyeongwook.ma@gmail.com (K.M.)

* Correspondence: psjdream@sogang.ac.kr; Tel.: +82-10-2272-0323

Received: 4 August 2018; Accepted: 3 September 2018; Published: 5 September 2018
����������
�������

Abstract: Starting with the Internet of Things (IoT), new forms of system operation concepts
have emerged to provide creative services through collaborations among autonomic devices.
Following these paradigmatic changes, the ability of each participating system to automatically
diagnose the degree of quality it is providing is inevitable. This paper proposed a method to
automatically detect symptoms that hinder certain quality attributes. The method consisted of
three steps: (1) extracting information from real usage logs and automatically generating an activity
model from the captured information; (2) merging multiple user activity models into a single,
representative model; and (3) detecting differences between the representative user activity model,
and an expected activity model. The proposed method was implemented in a domain-independent
framework, workable on the Android platform. Unlike other related works, we used quantitative
evaluation results to show the benefits of applying the proposed method to five Android-based,
open-source mobile applications. The evaluation results showed that the average precision rate for
the automatic detection of symptoms was 70%, and the success rate for user implementation of usage
scenarios demonstrated an improvement of around 21%, when the automatically detected symptoms
were resolved.

Keywords: internet of things; activity modeling; context-awareness; self-adaptive systems; usability;
mobile application

1. Introduction

Mobile Edge Computing (MEC), Cyber-Physical Systems (CPS), and other applications recently
developed based on the Internet of Things (IoT), are perceived as promising next-generation
paradigms [1–3]. One of the elements that typically characterizes such new software system paradigms
is autonomy. Individual systems participating in IoT-based collaborations, have the autonomy to
detect and respond appropriately to environmental changes that occur during service execution [4].
Change requests explicitly made by users can be controlled by the change management procedure,
even in the traditional software engineering process. Unexpected environmental changes in IoT-based
collaborations sometimes cause “latent requirements”, meaning unmet needs the user finds difficult
to express explicitly. Although an initially provided system may meet all requirements, diverse
environmental changes can produce greater numbers of latent requirements as system runtime
increases. In the worst-case scenario, system users may feel uncomfortable and leave the system, rather
than issuing an explicit change request.

Sensors 2018, 18, 2963; doi:10.3390/s18092963 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5935-9523
http://www.mdpi.com/1424-8220/18/9/2963?type=check_update&version=1
http://dx.doi.org/10.3390/s18092963
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 2963 2 of 19

To solve this problem, this paper proposes an automatic user activity analysis method for
discovering latent requirements. Latent requirements occur when there exists a difference between
an expected usage model and the user’s actual application usage. For this, an action log template is
used to capture valuable information from interactions between a user and a system; an activity model
that can be extracted from captured action logs to represent a user’s behavior; and an instantiated
rule, set for detecting bad symptoms. The automatic user activity analysis method proposed in this
paper involves three steps, from capturing action logs to discovering bad symptoms, leading to latent
requirements. First, interactions between a user and a system are captured, and valuable information
is saved according to the action log template. The accumulated action logs are periodically converted
into a user activity model. In the same way, an expected activity model is automatically generated
from the developer’s usage of the application. Second, multiple activity models from diverse users
are merged into a single activity model to represent aggregate user behavior. Third, a comparison
is made between the merged user activity model and the expected activity model. The differences
between the two activity models are analyzed by predefined rules for detecting bad symptoms that
hinder a specific quality attribute.

In addition to our previous work [5], which proposed only a stand-alone tool for the automatic
detection of usability issues on mobile applications, this paper extended the bad symptom detection
mechanism of the tool to a self-adaptive framework, applicable to all applications running on the
Android platform. In general, the self-adaptive framework not only detects environmental changes
and latent requirements on running mobile applications, but also supports a complete self-adaptation
cycle, from establishing and implementing a configuration change plan, to resolving the detected
latent requirements. However, the self-adaptive framework used in this paper, refers only to the local
adaptation part of the reference framework supporting the IT ecosystem [6]. The feasibility of the
proposed framework was shown via a prototype that automatically resolved a latent requirement on
the GUI design of a shopping mall application running on the Android platform. Usability was selected
as the quality issue subject for automatic detection, because users are more sensitive to usability than
to other quality attributes of mobile applications [7].

To evaluate the accuracy and benefits of the proposed usability issue detection method, five
Android-based open-source mobile applications were used to find latent requirements. Accuracy
was measured by comparing the issues reported to the actual open-source community, with the
automatically detected bad symptoms. In the five mobile applications, on average, 70% of the
automatically detected bad symptoms were consistent with the usability issues reported in the
open-source community. To demonstrate another benefit in this study, we measured average goal
achievement rates by usage scenario and average elapsed time to achieve a goal before and after
resolving the automatically detected bad symptoms. As a result, the average goal achievement rate
increased by 21%, while the average elapsed time to achieve a goal decreased by 1082.4 ms. Considering
that most evaluations on the usability of mobile applications are limited to applications and scenarios
developed in-laboratory, our quantitative evaluations yielded encouraging results.

The composition of the paper is as follows. Section 2 reviews related works, while Section 3
introduces the overall framework supporting the proposed automatic user activity analysis. Section 4
presents an overview of the working mechanism of the automatic user activity analysis method
introduced in Section 3, whilst Section 5 describes the activities of the proposed method step by step.
Section 6 discusses the application results of the proposed method for several open-source mobile
applications, to determine the effectiveness of the proposed framework and method. Lastly, Section 7
presents the conclusions of the study and future study plans.

Sensors 2018, 18, 2963 3 of 19

2. Related Work

2.1. Usability Testing Method for Mobile Applications

Existing studies on the usability of applications, particularly the usability of GUIs, have largely
relied on heuristic methods. The proposals in References [8,9] were based on questionnaire surveys,
which directly asked users questions related to usability, to measure and improve the usability of
systems. In line with efforts to ensure the objectivity of application usability evaluations based on
questionnaire surveys, Reference [10] presents the results of experiments in which goal-question
metrics were defined to measure both the time taken for a user to implement a certain scenario and the
degree of a user’s context awareness during application usage. However, utilizing user questionnaires
as the primary method to gather basic usability data may yield inconsistent results, depending on the
organization of questionnaire items, the characteristics of respondents, and other variables. On the
other hand, the A/B test for usability evaluation presented in [11] provides users with the same
page/content, whilst modifying the concrete format or design of messages to gauge individual users’
responses. Although this method ensures some objectivity by providing uniform content to users, it is
constrained by the potential for rapid increases in the time and resources required for usability testing.
Specifically, because individual users’ responses to diverse GUI alternatives should be evaluated,
the method requires the fabrication of a prototype for each of these alternatives.

In addition to questionnaires on the usability of mobile application GUIs, some studies have
focused on aesthetics [12]. Such studies have argued that the degree to which users feel comfortable
using a certain application can be measured by, for example, the degree of alignment of mobile
application screen views or the width and height of widgets. However, given that mobile applications
operate in heterogeneous device environments, even for the same mobile application, GUI evaluation
results may differ due to varying device resolution settings. Proposing an approach to evaluate
early usability based on model-driven architecture (MDA), Reference [13] defined a usability model
framework that included the platform-independent model (PIM) and the platform-specific model
(PSM). The proposed framework was used to evaluate and improve the usability of a system at the
PIM level, even without a final version of the user interface, and the results of applying the proposed
framework to an MDA tool were discussed.

The study in [14] deviates from the usability evaluation method, centered on the analysis of
questionnaire results, adopting a method of objectively monitoring a mobile application. It proposed
a separate model to evaluate the usability of smartphone applications and an infrastructure
that supported implementation of the proposed evaluation model. Unlike previous studies,
it presents workable models to automatically monitor an Android-based mobile application and
discusses the results of applying several usability-related metrics to field experiments, instead of
laboratory-controlled experiments. However, as with previous studies, it involved users directly
answering questions related to the sense of usability felt whilst using the application.

The latest studies in [15–18] have proposed automatic usability testing methods, based on event
logging. They mainly use the automated data collection method and analyze experimental results
from laboratory and/or from remote users. The target software of the usability evaluation in [15,16]
was not mobile application, but web-based application. The usability testing result shown in [17] was
also focused on the mobile websites, rather than the mobile applications. From a research perspective,
the method proposed in [18] was similar to our proposed method in that they automatically collect
user interface events on Android-based mobile applications, and compare state-machine based models
derived from users’ and experts’ event logs. However, the differentiation point of our work is on
the contents of the automatically produced usability evaluation result. The usability testing results
from [18] were quite fragmentary information. Thus, in order to answer what the usability issues
of the present system are, additional analysis of the expert on the automatically generated usability
testing result is required. Since our automatic latent requirements detection method was developed in
line with the self-adaptive framework development, it was designed with the goal of self-adaptation

Sensors 2018, 18, 2963 4 of 19

of the software itself to resolve a large part of the automatically detected usability issues. Therefore,
the automatically detected usability issues by our proposed method are directly explaining what
problems are latent in a mobile application, without any further interpretation.

2.2. Self-Adaptive Software Framework

Some noticeable studies of frameworks that support self-adaptive software systems, include
Rainbow [19], MUSIC [20], and DiVA [21]. All of these frameworks have been proposed to realize
the MAPE-K loop. The frameworks make the software itself collect and analyze environmental
changes detected at running time, from inside and outside of the software system. They also make the
self-adaptive software system appropriately responds to the detected environmental change, if it has
a meaningful context.

The Rainbow framework secures its own originality as the first framework that systematically
suggests a reusable infrastructure, which separates adaptation logics from application logics. Since
Rainbow has been introduced, many studies have proposed various types of adaptive software with
reference to the Rainbow framework. Since Rainbow defines a reusable infrastructure, it has the
advantage of being able to achieve self-adaptation with relatively little expense and effort. On the
other hand, there are limitations that only behavior rules specified in advance are operable. MUSIC
offers a solution that combines a component-based development approach with a service-oriented
architecture (SOA), to address the dynamic changes in mobile environments. It classifies all the required
components into categories, such as business logic, context awareness, and concern of adaptation.
Subsequently, it solves adaptation issues by combining the most appropriate components for a given
situation. In some cases, however, the adaptation plan must be manually updated or replaced, since
the adaptation goal model is not presented. DiVA focuses on providing a framework for developing
a self-adaptive system and managing the variability of a self-adaptive system, rather than suggesting
an infrastructure framework. The architecture of DiVA is based on aspect-oriented programming
(AOP), and it supports self-adaptation in a way that dynamically adds the necessary aspects in the
form of plug-ins.

Although the mentioned research results have their own advantages and disadvantages,
the targeted systems are limited in a single system and their studies are focusing on local adaptation
mechanisms occurring within a single system. To support IoT-based collaborations of autonomous
devices, the targeted application domain should be extended to the self-adaptation of multiple systems.
Case studies covering various service domains in the fields of system of systems (SoS) and CPSs are
being published. However, until now, conceptual prototyping cases have been mainly presented on,
and research results applicable to our daily life are few. The self-adaptive framework proposed in this
paper supports the self-adaptation from automatic detection to solving the usability issues of mobile
applications. We can get the benefits from this study in our daily life, though its application field is
not extensive. Furthermore, the benefits are quantitatively evaluated by the experiments on mobile
applications in the field, and not on in-laboratory applications.

3. A Self-Adaptive Framework for Automatic User Activity Analysis

In this section, a self-adaptive framework that supports automatic user activity analysis, for the
detection of latent requirements is introduced. Then, the automatic user activity analysis method itself
is presented. In our previous study [6], we proposed a framework for orchestrating context-aware
IT ecosystems, highlighting a mechanism for selecting an optimal collaboration configuration
among multiple autonomous devices. The previously proposed framework also supports a local
adaptation mechanism, which detects environmental changes perceived in a single device and supports
appropriate adaptative responses to these changes. To develop a workable architecture to realize the
proposed automatic user activity analysis method on the Android platform, we referenced part of the
framework in Reference [6] for local adaptation mechanisms.

Sensors 2018, 18, 2963 5 of 19

To construct a new framework for the proposed method, we instantiated the framework in
Reference [6] by defining several new problem-specific components. Figure 1 shows the instantiated
framework, with the following running mechanism: When an application running on a mobile
phone equipped with an Android platform is run, AdaptationBundleActivator, which belongs to the
Felix layer, looks up Bundle Registry to dynamically bind bundles that fit three of the four bundles
(excluding the Adaptation Executor) located in the MAPE Core Bundle Layer supported by OSGi [22].
The ActivityMonitor, ActivityAnalyzer, AdaptationPlanner, and AdaptationExecutor bundles defined in
the MAPE Core Bundle Layer, combine to become a self-adaptive framework to drive a series of
MAPE (Monitor-Analysis-Plan-Execute) [4] cycles to monitor and analyze user activities, as well
as to establish and execute appropriate adaptation plans when problems are found. These four
components defined in the MAPE Core Bundle Layer define generic roles, for running a general MAPE
cycle. Therefore, to implement a MAPE cycle for achieving a certain goal, three components belonging
to the Service Layer, defined according to each adaptation’s purpose, are dynamically bound to each
of the three components in the MAPE Core Bundle Layer when the mobile application is initiated.
AdaptationExecutor is an instantiated component that already implements an execution mechanism
for dynamic reconfiguration, whilst the other three components of the MAPE Core Bundle Layer are
stubs that do not involve actual implementations. Dynamic reconfiguration plans vary depending
on the application domain, but the mechanism for executing a given dynamic reconfiguration plan is
identical, regardless of the domain. For this reason, only the three components belonging to the Service
Layer are dynamically bound to the components in the MAPE Core Bundle Layer.

Figure 1. A self-adaptive framework for automatic user activity analysis.

Among the various quality dimensions of user activity analysis, usability was chosen for this study.
UAMMonitor, BadSymptomDetector, and AdaptiveGUIPlanner, defined in the Service Layer, are OSGi
bundles that generate user activity models in real time, use the models to detect “bad” symptoms that

Sensors 2018, 18, 2963 6 of 19

hinder usability, and establish adaptation plans to address these symptoms. The initiation phase is
completed when each of the Service Layer bundles has been bound to its respective MAPE Core Bundle
Layer bundle. If a user touches certain coordinates of a mobile phone, Probe, ported onto the Android
platform, intercepts the event-related information and stores it in Local Environment storage as a log.
This log includes the user’s touch coordinates, time stamps, gesture types, and so forth, collected
using the Android macro, Monkeyrunner [23]. Information about screen configuration, including
identification (ID) values of individual GUI screens, is extracted using the Android Hierarchical
Viewer [24], and stored in the form of XML in Local Environment storage.

The UAMMonitor periodically activates the get_LocalEnv() function to fetch information regarding
user actions and transform it into an activity model in the form of a state diagram in unified
modeling language (UML). The generated activity model is handed over to the BadSymptomDetector,
and compared with a predefined rule set to identify whether bad symptoms exist in terms of usability.
When a bad symptom is detected, the AdaptiveGUIPlanner creates an adaptation plan, including
changes to the GUI configuration, to resolve it. The newly created adaptation plan is saved in Local
Configuration storage by the ConfigurationManager, while the Effector (which has been ported onto the
application) requests a new configuration from the ConfigurationManager, and then changes the actual
GUI configuration after receiving it.

Figure 2 depicts the difference between running a real shopping mall (in Korea) app on a regular
Android phone and running it on an Android phone with the self-adaptive framework, introduced
in Figure 1. In this example, as described in Figure 2a, a user swipes down on the screen to view
detailed information on a product. If the user wants to purchase the product, he or she must swipe up
again and click the purchase button. In this process, the BadSymptomDetector can capture the following
activity pattern: the BuyButton.click() event follows several repeated BuyButton.slideDown() and Buy
Button.SlideUp() events from activity models collected from multiple users. This kind of bad symptom
is classified as a REPEATED_GESTURE symptom by the BadSymptomDetector. After bad symptom
analysis, AdaptiveGUIPlanner selects a strategy from among the pre-defined self-adaptation rules or
infers a new strategy from them. In this case, the selected plan is to change the buy button to a floating
control on the view for users to directly access, without repeated swiping up and down. Figure 2b
shows the automatically changed GUI design, completed by the proposed self-adaptive framework.

Figure 2. Comparison of the same mobile app (a) on a normal Android platform; and (b) on the
proposed self-adaptation framework.

As shown in Figure 2, we have already developed several prototypes for self-adaptable GUIs.
However, we have yet to determine the complete rules or inference methods to make a proper
adaptation plan, and to develop a general mechanism for executing a self-adaptive reconfiguration

Sensors 2018, 18, 2963 7 of 19

plan. Thus, we limited the scope of this paper to the automatic detection of latent requirements through
user activity analysis. As highlighted by the box with red dotted lines in Figure 1, the remainder of this
paper focuses mainly on the latent requirements detection method, implemented by the UAMMonitor
and the BadSymptomDetector.

4. An Overview of the Automatic User Activity Analysis Method

This study defines the root causes of latent requirements as any “gap” between the system
behavior as currently implemented, and the system behavior that users desire. The gap can be detected
by analyzing the actions that users perform on the system. A simple illustrative example from daily
life demonstrates this process: When a bottle lid is manufactured to open in a clockwise direction,
the user may show that the bottle lid is perceived as abnormal by repeatedly taking the action of
turning the lid counterclockwise. In such a case, we can analyze the user’s repeated effort to turn
the lid counterclockwise without achieving the purpose of opening the lid, in order to detect that the
bottle lid was not implemented to satisfy the user’s desire. From this analysis, the producer of the
bottle lid can understand that the currently implemented design has a problem and fix it in the next
production cycle.

In this section, an overview of the proposed automatic user activity analysis method is presented
in Figure 3, and then discussed. At first, system designers elicit and analyze initial requirements
collected from users. The results of this analysis are then reflected in the system design. When the
designed system has been completed through implementation and testing, system designers run
an error-free version of the software system according to their design intention for each usage scenario,
as defined in the requirements phase. In this step, the designer’s actions within the system are detected
by sensors mounted on a mobile phone and categorized and logged according to type. The information
extracted from the stored action logs is converted into a state diagram. Reflecting the designer’s
intentions, the model created through this process is called the “expected activity model,” and is
shown in Figure 3. The appropriate time to generate the expected activity model is just before the
delivery of a mobile application.

Figure 3. Overview of automatic user activity analysis method.

Sensors 2018, 18, 2963 8 of 19

The other activity model is called the “real user activity model,” as shown in Figure 3, and is
generated from the action logs detected from actual end users, after the delivery of the mobile
application. Although the generation method is the same as that for the expected activity model
described above, real user activity models require an additional step: The activity models for multiple
users are merged into a representative model of overall user perceptions. However, this step may be
omitted if the proposed technique is applied to personalization, i.e., individualized characteristics of
mobile application usage. Among the different components of the architecture already introduced in
the previous section, the UAMMonitor generates activity models from the collected action logs, and
merges multiple activity models into a representative model when needed.

By analyzing differences between the expected activity model, which reflects and implements
behavioral assumptions in the current system, and the (real) user activity model, which reflects users’
actual experiences with the system, gaps between the currently provided system and the system
desired by real users can be identified. These gaps lead to the identification of latent requirements.
The BadSymptomDetector compares and analyzes the expected activity model and the user activity
model. The rule set for analyzing the gap between an expected activity model and a user activity
model can be defined differently, depending on which quality attribute is prioritized. In this paper,
the usability of the software as determined by the end user, was selected as the first attribute to be
analyzed. Thus, the BadSymptomDetector used a predefined rule set to automatically detect four types
of bad symptoms (unexpected action sequence, unexpected gesture, repeated gesture, and exceeded
elapsed time) related to usability, from differences between the expected activity model and the user
activity model.

5. An Automatic User Activity Analysis Process with a Case Study for Usability Issue Detection
in a Mobile Application

In this section, details of the activities that constitute the user activity analysis method introduced
in the previous section are described step by step, together with tangible examples.

5.1. Generate Activity Model Using Automated Finite-State Machine

Not all mobile phone user activities are subject to logging. Considering the resources required
to store and manage log data in Local Environment storage, only elements that affect the usability of
an application should be logged. To designate the GUI controls, for which the action logs should be
generated, we first used Android Hierarchy Viewers to convert the structure of a given application’s
GUI view into a tree form. The GUI controls, for which the user action logs were generated, were then
specified by designating IDs for those controls judged to possibly generate usability issues.

When an event occurs in a monitored GUI element, the Probe ported onto the Android platform
“sniffs” the event and generates an action log, as schematized in Figure 4, storing it in Local Environment
storage. An action log contains information such as Time Stamp, Event Name, Control ID, Class
Type, and View Name. Although the information about which event occurred when at specific (x, y)
coordinates on the screen in an actual Android phone can be obtained through Probe event sniffing,
the information on the control ID that targets the event, cannot be grasped through the Probe. To do so,
we used Monkeyrunner, which is an Android macro. Since Monkeyrunner can determine when and
which events occurred on an Android phone, we completed an action log, as shown in the table at the
bottom of Figure 4, by combining the information with log records obtained through the Probe ported
onto the Android platform.

Sensors 2018, 18, 2963 9 of 19

Figure 4. Generation of action logs.

Action logs are saved in Local Environment storage, in the form of XML files. The UAMMonitor,
bound to the ActivityMonitor as specified in Figure 1, periodically reads the action logs stored in Local
Environment storage to generate an activity model. The activity model is expressed as a state diagram,
one of UML notations to represent finite state machine (FSM). The state of the screen when a user
operates a mobile application is represented by a state, and a transition between states represents
an event corresponding to the action taken by a user. The name of each state is composed of the view
name on which the event occurred and sequence number. On the transition arrow, the name of the
control where the event occurs is denoted as a guard condition with the event name. A sequence
diagram allows for designers to extend semantics of a model, by adding new tagged values on the
existing symbols. We use the tagged value as a tool to represent the time stamp information, which
shows when the event occurred. Information about the ID and control location in the log is not
reflected in the activity model, because the information is only used to figure out which control the
event occurred on. Figure 5 schematizes a fragment of an activity model generated by the UAMMonitor
from an action log, indicating that an event called slideDown() occurred in ListView control in a view
called ProductActivity, at the location with coordinates (25, 136), at a time 5252 ms. The UAMMonitor
reads the action logs stored during the execution of the mobile application in units of one scenario, and
then repeats the mapping as shown in Figure 5, to compose activity models in the form of the entire
state diagram.

Figure 5. Transition from action log to activity model.

Sensors 2018, 18, 2963 10 of 19

The process for creating a user activity model is the same, irrespective of the kind of user activity
model. The only difference is who generates the action logs, and when the action logs are captured.
If the action logs are extracted from actual users during the usual running time of a mobile application,
the generated activity model will be a user activity model. On the other hand, if an activity model is
generated from the action logs of developers before the deployment of a mobile application, it will be
an expected activity model.

5.2. Merge Multiple User Activity Models into a Representative Real User Activity Model

User activity models are not uniform, because unique characteristics of each individual’s mobile
application manipulation are reflected in each model. Accordingly, some parts of individual users’
activity models will be common, and others will vary. The merging process enables the creation of
a representative activity model, which includes both common and different user behaviors. In this
merging process, it is possible to judge whether slightly different forms of individual models represent
the same behavior. Furthermore, minimizing the number of model comparisons to just one comparison,
between the merged representative user activity model and the expected activity model, improves the
detection of usability-hindering elements.

The Gk-tail algorithm [25] grasps the equivalent parts among FSMs and merges them into a single
model. According to Zhang’s et al. work [26], its weakness is that the predicates automatically
generated from the second step are not quite correct. However, this study uses the Gk-tail algorithm to
make the user activity model include more user behaviors as possible. Moreover, the bad symptom
instances which have lower occurrence rate than a predefined threshold value, will be filtered out in
the next step. For this, we analyzed that the issue regarding generation of wrong predicates of the
Gk-algorithm is not quite severe in our domain. Hence, we adopted the Gk-algorithm in merging
diverse user activity models, into a single representative user activity model. The Gk-tail algorithm
compares two different FSM models to equivalent state transitions, and sequentially adds the last
state transition of a merged model, indicated by a k value, to the FSM to complete the merged model.
Figure 6 shows the general steps of the Gk-tail algorithm, described in pseudo-codes.

Figure 6. Pseudo-code for Gk-tail algorithm.

To more easily understand how we use the Gk-tail algorithm, we will consider the example of
merging two different state models (FSMs), as schematized in Figure 7. First, while comparing the
state transitions of the two state models, equivalent transitions (which generate the same event on the
same GUI object) should be sought. For example, if the GOjb1.slideDown() event and the GObj2.touch()
event transitions in Figure 7, are found to be equivalent transitions in the two state models, the k value

Sensors 2018, 18, 2963 11 of 19

of the first state of the merged state model should be set to 1. It can be seen that the k values of state
View1_2 of user activity model 1 and state View1_4 of user activity model 2 in Figure 7, have been set to
1. In cases where the events that caused transitions from the two states are identical, of which the k
values have been set to 1, to states View1_3 and View1_5, respectively, and the GUI controls where
the events occurred are also identical, the k value should be increased by 1 each time, until different
transitions are found to traverse the state model. In the example shown in Figure 7, we can see that
this state model traversed to k = 3. This means that the three transitions with k values 1 to 3 were
equivalent. In this case, states View1_2, View1_3, and View3_1 of user activity model 1, and states View1_4,
View1_5, and View3_2 of user activity model 2, which can be reached through equivalent transitions, are
identified as equivalent states, and therefore merged into states View1_2, View1_3, and View3_1 of in the
merged user activity model. However, state View4_1 of user activity model 1 and state View2_5 of user
activity model 2, cannot be merged into the same state, because they are reached through non-equivalent
transitions in the two models after k = 3. Therefore, two different states that can be reached from state
View3_1 of the merged model are added. Depending on events occurring after state View3_1 has been
reached, state transitions can occur to states View4_1 and View2_5. In the transitions to states View4_1
and View2_5, the probability that each transition actually occurs, i.e., the occurrence rate corresponding
to the number of activity models with the transition compared to the total number of activity models,
is augmented. The timestamp value of the merged user activity model, is denoted as the average of
the values recorded in individual states of multiple user activity models. As such, by applying the
Gk-tail algorithm repeatedly, a representative user activity model can be obtained that encompasses
multiple activity models extracted from all involved users.

Figure 7. Applying Gk-tail algorithm to merge user activity models.

5.3. Analyze Differences between Expected Activity Model and Merged Real User Activity Model

When all users’ activity models have been integrated into a representative activity model,
this model is compared to an expected activity model constructed from developers’ behavioral
assumptions at the time of design. Differences between the two models are analyzed to identify
potential bad symptoms, which may hinder the usability of the mobile application. Not all the
differences between the two models are necessarily interpreted as bad symptoms. Bad symptoms
indicate that the occurrence rates of differences in a representative user activity model are higher than

Sensors 2018, 18, 2963 12 of 19

a certain threshold value—that is, cases where a significant majority of users take actions different from
expected behaviors. There is no standardized threshold value for judging whether the occurrence rates
of differences, between a representative activity model and an expected activity model, are significant.
In the literature [2], it was proposed that a GUI that meets 60% of user requirements in a GUI usability
test is considered acceptable. Therefore, in this study, a detected difference between a representative
user activity model and an expected activity model is subject to bad symptom analysis, if the occurrence
rate of the difference is greater than 40%.

To define the types of automatically detectable bad symptoms, we analyzed and grouped
characteristics of the GUI issues already raised in open-source mobile application developer
communities. As a result, the automatically detectable symptoms were classified into four types:

• Symptom type 1: Unexpected action sequence.
• Symptom type 2: Unexpected gesture.
• Symptom type 3: Repeated gesture.
• Symptom type 4: Exceeded elapsed time.

For a more tangible understanding of the symptom types identified, a fragmentary example using
MyRemocon, an application provided via Google Play, is presented according to each type. Before
presenting the examples, Figure 8 shows an expected activity model, which is a sequence through
which the slideDown() action is executed on the object ProductList, followed by the touch() action on the
object EditButton. Although the selected transitions depicted in Figure 8 are very simple, there can exist
actual user activity models which contain all four defined symptom types. The details for detecting
each bad symptom are described below.

Figure 8. An expected activity model of MyRemocon.

Symptom Type 1: Unexpected Action Sequence. The expected activity model in Figure 8,
contains only a singular state transition sequence, Main_1 → Main_2 → SS_Remocon. However,
two unexpected action sequences, Main_1 → Main_3 → SS_Remocon and Main_1 → Main_4 →
SS_Remocon, appear in the merged user activity model in Figure 9. The occurrence rate of the transition
Main_1→Main_3 was 22%, which means that 22% (occurRate = 22) of the users followed the sequence.
Thus, the sequence Main_1→ Main_3→ SS_Remocon was neglected as a minor difference because
the occurrence rate was less than the threshold (40%), judged to be a meaningful symptom in terms
of usability. On the other hand, the action sequence Main_1→ Main_4→ SS_Remocon, which was
not defined in the expected activity model, but was detected in the actual user activity model, was
analyzed as an unexpected action sequence corresponding to symptom type 1 because the occurrence
rate of the first transition Main_1→Main_4 was 47%, 7% greater than the threshold. The unexpected

Sensors 2018, 18, 2963 13 of 19

action sequence Main_1→Main_4→ SS_Remocon should therefore be registered as a candidate for
latent requirements and should be reviewed for potential implementation in the next system revision.

The algorithms used to detect the bad symptom type 1, are shown in pseudo-codes in Figure 9.
An expected activity model (eam) and a merged representative user activity model (uam), were used
as input parameters to identify differences (diff) existing between the two models.

Figure 9. An instance of a user activity model, including bad symptom type 1.

Symptom Type 2: Unexpected Gesture. As described by the expected activity model in Figure 8,
two events were predicted by designers, namely the slideDown() action that occurs in the object
ProductList and the touch() action that occurs in the object EditButton. However, the merged
user activity model in Figure 10 detected that users undertook gestures, such as AddBtton.touch(),
ProductList.slideUp(), and Zoom.touch(), which were not defined in the expected activity model. Thus,
although the application seemed to lead users to use the gesture, the action corresponding to that
gesture had not been implemented in the application. However, according to the 40% threshold for bad
symptom detection, the slideUp() gesture detected in the ProductList control was disregarded because
the occurrence frequency was only 22%. Two touch() gestures detected in the Zoom control and the
AddButton control, for which the occurrence frequencies were over 40%, were regarded as symptom
type 2, unexpected gesture. In the construction of the next version of the MyRemocon application,
implementation of the missed touch gesture on the Zoom control and the AddButton control should
be discussed.

Symptom Type 3: Repeated Gesture. The Zoom.touch() gesture was already analyzed as
an unexpected gesture (symptom type 2) above; here, the Zoom.touch() gesture was identified as
an action in the reflexive transition in state Main_4. Action in a reflexive transition means that the
action can be performed repeatedly, and that the state model can continuously stay in the same state.
In terms of usability, this indicates that some users make the same gesture repeatedly to obtain desired
services in the same viewing state. Of course, the action is regarded as normal in cases where the same
reflexive transition is observed in the expected activity model. However, in this case, the Zoom.touch(
) gesture was not defined as a reflexive transition action in the expected activity model. Moreover,
the occurrence rate was 61%, exceeding the threshold. Thus, the gesture was detected as an instance of

Sensors 2018, 18, 2963 14 of 19

bad symptom type 3, repeated gesture. This symptom could be resolved by providing a proper help
message in the next revision.

Figure 10. An instance of a user activity model, including bad symptom type 2 and type 3.

Symptom Type 4: Exceeded Elapsed Time. Even equivalent action sequences, included in both
an expected activity model and a merged user activity model, can cause a bad symptom if the elapsed
time detected in the latter model, exceeds twice the elapsed time for the equivalent transition in
the former model. This is the fourth type of bad symptom: exceeded elapsed time. In the example
shown in Figure 11, the average execution time for actual users to reach the state SS_Remocon is 5423
ms. This value was much larger than twice the execution time of 2643 ms of the same transition
in the expected activity model. This showed that unlike the designers’ assumptions, actual users
took a much longer time to achieve their specific purpose using the mobile application. This result
could be interpreted to mean that the current version of the application was not designed to be
understood intuitively. To resolve this type of symptom, the design parts requiring more time for
users to understand must be identified. The problematic parts of the application’s design should be
modified in the next revision, to enhance usability.

Sensors 2018, 18, 2963 15 of 19

Figure 11. An instance of a user activity model, including bad symptom type 4.

6. Evaluation

This study utilized two metrics to verify the accuracy and benefits of the proposed method.
The first metric was precision: To verify the accuracy of the proposed method, we measured the
precision of the automatic detection of usability-hindering elements. Precision and recall are generally
used as metrics to measure relevance; however, in the case of detecting latent requirements, it is nearly
impossible to define a totally complete set of requirements. Accordingly, we thought it impossible
to calculate recall. Thus, we only used precision as a metric to demonstrate the proposed method’s
accuracy. To demonstrate the benefits of the proposed method, the second metric selected was the
degree of quality improvement to the mobile application when the automatically detected symptoms
were resolved.

With these two-selected metrics, we conducted experiments to automatically detect the four
types of bad symptoms, from several open-source mobile applications. We selected five applications
(see Table 1), for which GUI-related error issues were frequently posted in open-source storage
over one year, and for which more than 100 commits were recorded. According to Reference [27],
which indicated that the appropriate number of experimental subjects when evaluating GUI usability
should be five, we organized three groups of five users who had similar profiles by gender, age group,
and app use proficiency. Then, we had them use the selected five applications on mobile devices
equipped with the framework introduced in Section 3. The three groups of users executed a total
of 174 usage scenarios, selected from the five mobile applications. We applied analysis of variance
(ANOVA) [28], a collection of statistical models, to analyze the differences among group means in the
sample, to determine whether any kinds of unique characteristics existed in the results of the respective
groups. The difference in average values among the groups was 0.318, meaning that there was no
statistically significant difference between the groups. Therefore, we did not compare the experimental
result values among the groups; instead, we denoted the averaged result of all groups together in
Table 1.

The precision values in Table 1, were calculated according to the following calculation Formula
(1), redefined to reflect characteristics of the domain for detecting bad symptoms, which hinder the
usability of mobile applications.

Precision = TP/(TP + FP) (1)

• True Positive (TP): The number of cases where automatically detected symptoms coincide with
the usability-related issues posed by actual developers.

• False Positive (FP): The number of cases where automatically detected symptoms were not
mentioned in the report of usability-related issues posed by actual developers.

Sensors 2018, 18, 2963 16 of 19

As can be seen from the verification results in Table 1, the average precision of automatic detection
of the symptoms of poor usability in two times of experiments was 0.70 and 0.78, respectively.
The difference between the results from the two repeated experiments shows the differentiating point
of this study, compared with our previous study [5]. In this study, we extended the implementation
of the proposed method from a stand-alone typed tool, to a part of a generic self-adaptive software
framework. Owing to the extension, as the cycle to detect bad symptoms and resolve them runs
again and again in the proposed self-adaptive software architecture, a mobile application can evolve
more usable. According to the results in Table 1, the number of TPs detected automatically was 18 in
the first round, whereas the number of TPs detected in the second round was significantly reduced
to 10. The eight bad symptoms that were detected automatically in the first round, but not in the
second round, were automatically resolved through the MAPE cycle implemented by the proposed
self-adaptive software framework. In the experimental results of the other four mobile applications,
the decrease in the number of TPs due to the implemented self-adaptation cycle in the proposed
architecture was equally observed. Even without considering the gradual improvement of precision
due to self-adaptation, the results in Table 1 mean that at least 70% of usability-related issues detected
by developers through repetitive tests, could be automatically detected when the proposed method
was applied. This in turn suggested that the proposed method has the potential to significantly reduce
GUI testing time, which amounts to 50–60% [29] of total application development time.

Table 1. Precision of symptom detection.

App Name
Round 1 Round 2

TP FP Precision TP FP Precision

IMSI 9 3 0.75 6 2 0.75
News-android 18 8 0.69 10 3 0.77
MyRemocon 8 4 0.66 5 2 0.71

open-key 5 2 0.71 2 1 0.67
Shhapp 4 2 0.67 2 0 1.00
Average 8.80 3.80 0.70 5.00 1.60 0.78

The second metric, measured the degree of quality improvement to mobile applications when
automatically detected symptoms (TP in the round 1) were resolved. Table 2 shows the degree to
which users’ probability of success was improved through symptom resolution, as they implemented
target usage scenarios using the mobile application. Table 2 shows the degree to which the time needed
to implement the scenarios was reduced by correcting the mobile application’s bad symptoms, in turn
reflecting the usability-inhibiting elements of the mobile application. We measured changes in the
probability that users would achieve the final goals of the usage scenarios, as well as how much time
it took users to perform each scenario, before and after resolution of the automatically detected bad
symptoms. Both measures demonstrated usability improvement after resolving bad symptoms.

According to the experimental results in Table 2, the success rate of users’ implementation of
usage scenarios in the mobile applications with potentially bad symptoms was 58% on average,
whereas the success rate was on average 80%, when the symptoms were resolved in the next version
of the mobile application, showing an improvement of around 21%, compared to the previous version.
In addition, the average time needed to execute each scenario using the application before the detection
and resolution of bad symptoms was 5125.4 ms, whilst the average time taken to do so using the
revised mobile application was 4071.4 ms, demonstrating a reduction of 1082.4 ms. While usability
improvements to the mobile application reflect a certain amount of learning from the re-execution of
the same scenarios, it is reasonable to suggest that most usability improvements arose from applying
the proposed automatic usability analysis method, for detecting and resolving usability issues.

Sensors 2018, 18, 2963 17 of 19

Table 2. Comparison of efficiency: application with vs. without bad symptoms (a) Comparison of
scenario success rates before and after resolving bad symptoms, (b) Comparison of time taken to
perform usage scenarios before and after resolving bad symptoms.

IMSI
#59

News-Android
#23

MyRemocon
#157

Open-Key
#54

Shhapp
#47 Average

(a)

Success rate before resolving 61% 68% 37% 71% 54% 58%
Success rate after resolving 84% 74% 86% 88% 66% 80%

Changes in success rates +23% +6% +49% +17% +12% +21%

(b)

Time taken before resolution 4975 ms 5941 ms 7378 ms 3259 ms 4074 ms 5125.4 ms
Time taken after resolution 3157 ms 5324 ms 5349 ms 3117 ms 3268 ms 4043 ms

Changes in time taken −1818 ms −617 ms −2029 ms −142 ms −806 ms −1082.4 ms

7. Conclusions and Future Work

In IoT environments, whilst some change requests are explicitly issued by users, various
environmental changes or dynamic configuration changes among participating devices can cause latent
requirements, which are difficult for users to express. Thus, to ensure system quality, systems must
possess the ability to analyze user activities and detect user contexts, from the results of that analysis.
With such a background, this study proposed a method for analyzing user activities conducted on
applications operated on Android platform-based mobile phones, and for automatically detecting
symptoms that hinder usability. Most of the method’s steps, with the exception of the algorithm
used to identify symptoms by issue, are general approaches applicable to the automatic detection of
a multitude of bad symptoms related to quality attributes. However, to enable the evaluation of the
effectiveness of the method and framework in more tangible instances, the scope of application of
the proposed method in this study was limited to usability issues, which are the most closely related
issues to the activity patterns of users, among the diverse quality attributes of mobile applications.

By limiting the target to usability, we could present quantitative results evaluating the accuracy
and benefits of the proposed method, with several open-source mobile applications already in use.
In the experiments, the proposed method was applied to five open-source applications actually in
use in mobile phones, in which an average of 70% of the symptoms were automatically detected as
hindering usability, coinciding with the usability-related issues reported by actual developers. Given
that the percentage of time spent in GUI testing is 50–60% of the total development time, it can be
expected that the overall development time will decrease by applying the proposed method. It was
also confirmed that when the automatically detected symptoms were repaired in the next revision,
the users benefited from both a higher probability (+21%) of achieving their service goals, and from
a reduction in the time (−1082.4 ms) needed to achieve these goals.

However, some additional follow-up studies must be preceded to apply these benefits in daily
life. The proposed method for an automatic analysis of activity model was implemented as part of
a self-adaptive framework we developed ourselves. Accordingly, we could detect bad symptoms of
mobile applications on Android-based mobile devices on which the proposed framework had already
been installed. To extend the proposed method to normal Android-based devices, a whole cycle,
including planning and execution phases, in the proposed self-adaptive framework, should be
completed. We are currently working on identifying a general set of rules for self-adaptation,
and a generic mechanism for executing the automatically generated self-adaptation plans. Another
concern in our future work, is the optimization of the size of action logs located in a local mobile
device. We are searching for an optimal spot, between the size of the action logs and the amount of
network overload, for sending log data by implementing tests in various environmental contexts.

Author Contributions: S.P. (Soojin Park) and S.P. (Sungyong Park) made substantial contributions to the original
ideas and designed the experiments; K.M. developed the experimental platform and performed the experiments;
S.P. (Soojin Park) wrote the manuscript. All authors read and approved the manuscript.

Sensors 2018, 18, 2963 18 of 19

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support program (IITP-2018-2017-0-01628) supervised by the IITP
(Institute for Information & communications Technology Promotion).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ahmed, A.; Ahmed, E. A Survey on Mobile Edge Computing. In Proceedings of the 10th International
Conference on Intelligent Systems and Control (ISCO 2016), Coimbatore, India, 7–8 January 2016.

2. Frank, H.; Fuhrmann, W.; Ghita, B. Mobile Edge Computing: Requirements for Powerful Mobile Near
Real-Time Applications. In Proceedings of the 11th International Network Conference (INC 2016), Frankfurt
am Main, Germany, 19–21 July 2016.

3. Bordel, B.; Alcarria, R.; Robles, T.; Martín, D. Cyber–physical systems: Extending pervasive sensing from
control theory to the Internet of Things. Pervasive Mob. Comput. 2017, 40, 156–184. [CrossRef]

4. Kephart, J.O.; Chess, D.M. The vision of autonomic computing. Computing 2003, 36, 41–50. [CrossRef]
5. Ma, K.W.; Park, S.; Park, S. Automatic detection of usability issues on mobile applications. KIPS Trans. Softw.

Data Eng. 2016, 5, 319–326. [CrossRef]
6. Park, S.; Park, S.; Park, Y.B. An Architecture framework for orchestrating context-aware it ecosystems: A case

study for quantitative evaluation. Sensors 2018, 18, 562. [CrossRef] [PubMed]
7. Harrison, R.; Flood, D.; Duce, D. Usability of mobile applications: Literature review and rationale for a new

usability model. J. Interact. Sci. 2013, 1, 1–16. [CrossRef]
8. Dolstra, E.; Vliegendhart, R.; Pouwelse, J. Crowdsourcing GUI Tests. In Proceedings of the 2013 IEEE Sixth

International Conference on Software Testing, Verification and Validation, Luxembourg, 18–22 March 2013.
9. Gómez, R.; Caballero, D.; Sevillano, J. Heuristic evaluation on mobile interfaces: A new checklist. Sci. World J.

2014, 2014, 178–188. [CrossRef]
10. Hussain, A.; Ferneley, E. Usability Metric for Mobile Application: A Goal Question Metric (GQM) Approach.

In Proceedings of the 10th International Conference on Information Integration and Web-Based Applications
and Services (iiWAS ’08), Linz, Austria, 24–26 November 2008.

11. Munson, W.A.; Gardner, M.B. Standardizing auditory tests. J. Acoust. Soc. Am. 1950, 22, 675. [CrossRef]
12. Zen, M. Metric-based Evaluation of Graphical User Interfaces: Model, Method, and Software Support.

In Proceedings of the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
London, UK, 24–27 June 2013.

13. Abrahao, S.; Insfran, E. Early Usability Evaluation in Model Driven Architecture Environments.
In Proceedings of the 2006 Sixth International Conference on Quality Software (QSIC06), Beijing, China,
27–28 October 2006.

14. Kronbauer, A.H.; Santos, C.A.S.; Vieira, V. Smartphone Applications Usability Evaluation: A Hybrid Model
and Its Implementation. In Proceedings of the 2012 Human-Centered Software Engineering (HCSE 2012),
Toulouse, France, 29–31 October 2012.

15. Bastien, J.M.C. Usability testing: A review of some methodological and technical aspects of the method.
Comput. Res. Repos. 2010, 79, 18–23. [CrossRef] [PubMed]

16. West, R.; Lehman, K. Automated summative usability studies: An empirical evaluation. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’06), Montreal, QC, Canada,
22–27 April 2006.

17. Waterson, S.; Landay, J.A. In the lab and out in the wild: Remote web usability testing for mobile
devices. In Proceedings of the Extended Abstracts on Human Factors in Computing Systems (CHI EA’02),
Minneapolis, MN, USA, 20–25 April 2002.

18. Ma, X.; Yan, B.; Chen, G.; Zhang, C.; Huang, K.; Drury, J. A Toolkit for usability testing of mobile
applications. In Proceedings of the International Conference on Mobile Computing, Applications, and
Services (MobiCASE 2011), Los Angeles, CA, USA, 24–27 October 2011.

19. Garlan, D.; Cheng, S.W.; Huang, A.C.; Schmerl, B.; Steenkiste, P. Rainbow: Architecture-based self-adaptation
with reusable infrastructure. IEEE Comput. 2004, 37, 46–54. [CrossRef]

http://dx.doi.org/10.1016/j.pmcj.2017.06.011
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.3745/KTSDE.2016.5.7.319
http://dx.doi.org/10.3390/s18020562
http://www.ncbi.nlm.nih.gov/pubmed/29439540
http://dx.doi.org/10.1186/2194-0827-1-1
http://dx.doi.org/10.1155/2014/434326
http://dx.doi.org/10.1121/1.1917190
http://dx.doi.org/10.1016/j.ijmedinf.2008.12.004
http://www.ncbi.nlm.nih.gov/pubmed/19345139
http://dx.doi.org/10.1109/MC.2004.175

Sensors 2018, 18, 2963 19 of 19

20. Hallsteinsen, S.; Geihs, K.; Paspallis, N.; Eliassen, F.; Horn, G.; Lorenzo, J.; Mamelli, A.; Papadopoulos, G.A.
A development framework and methodology for self-adapting applications in ubiquitous computing
environments. J. Syst. Softw. 2012, 85, 2840–2859. [CrossRef]

21. Al-Zinati, M.; Araujo, F.; Kuiper, D.; Valente, J.; Wenkstern, R.Z. DIVAs 4.0: A multi-agent based simulation
framework. In Proceedings of the IEEE/ACM 17th International Symposium on Distributed Simulation and
Real Time Applications, Delft, The Netherlands, 30 October–1 November 2013.

22. OSGi Specifications. Available online: http://www.osgi.org/Specifications/HomePage (accessed on
30 June 2018).

23. Monkeyrunner. Available online: https://developer.android.com/studio/test/monkeyrunner/ (accessed on
30 June 2018).

24. Hierarchy Viewer. Available online: http://android.xsoftlab.net/tools/help/hierarchy-viewer.html
(accessed on 30 June 2018).

25. Mariani, L.; Pastore, F.; Pezze, M. Dynamic analysis for diagnosing integration faults in software engineering.
IEEE Trans. 2011, 37, 486–508. [CrossRef]

26. Zhang, Y.; Zhao, X.; Zhou, Y.; Wang, Y.; Hou, X. The improvement of Gk-tail algorithm of software behavior
modeling. In Proceedings of the International Conference on Computer Science and Application Engineering
(CSAE 2017), Shanghai, China, 21–23 October 2017.

27. Nielson, J. Why You Only Need to Test with 5 Users. Available online: http://www.nngroup.com/articles/
why-you-only-need-to-test-with-5-users/ (accessed on 30 June 2018).

28. O’Brien, R.G. A general ANOVA method for robust tests of additive models for variances. J. Am. Stat. Associ.
1979, 74, 877–880. [CrossRef]

29. Memon, A.M. A Comprehensive Framework For Testing Graphical User Interfaces. Ph.D. Thesis, University
of Pittsburgh, Pittsburgh, PA, USA, 2001.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jss.2012.07.052
http://www.osgi.org/Specifications/HomePage
https://developer.android.com/studio/test/monkeyrunner/
http://android.xsoftlab.net/tools/help/hierarchy-viewer.html
http://dx.doi.org/10.1109/TSE.2010.93
http://www.nngroup.com/articles/why-you- only-need-to-test-with-5-users/
http://www.nngroup.com/articles/why-you- only-need-to-test-with-5-users/
http://dx.doi.org/10.1080/01621459.1979.10481047
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Usability Testing Method for Mobile Applications
	Self-Adaptive Software Framework

	A Self-Adaptive Framework for Automatic User Activity Analysis
	An Overview of the Automatic User Activity Analysis Method
	An Automatic User Activity Analysis Process with a Case Study for Usability Issue Detection in a Mobile Application
	Generate Activity Model Using Automated Finite-State Machine
	Merge Multiple User Activity Models into a Representative Real User Activity Model
	Analyze Differences between Expected Activity Model and Merged Real User Activity Model

	Evaluation
	Conclusions and Future Work
	References

