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Abstract: A compact ultrawideband (UWB) antenna based on a hexagonal split-ring resonator (HSRR)
is presented in this paper for sensing the pH factor. The modified HSRR is a new concept regarding the
conventional square split-ring resonator (SSRR). Two HSRRs are interconnected with a strip line and
a split in one HSRR is introduced to increase the electrical length and coupling effect. The presented
UWB antenna consists of three unit cells on top of the radiating patch element. This combination
of UWB antenna and HSRR gives double-negative characteristics which increase the sensitivity of
the UWB antenna for the pH sensor. The proposed ultrawideband antenna metamaterial sensor was
designed and fabricated on FR-4 substrate. The electrical length of the proposed metamaterial antenna
sensor is 0.238 × 0.194 × 0.016 λ, where λ is the lowest frequency of 3 GHz. The fractional bandwidth
and bandwidth dimension ratio were achieved with the metamaterial-inspired antenna as 146.91%
and 3183.05, respectively. The operating frequency of this antenna sensor covers the bandwidth
of 17 GHz, starting from 3 to 20 GHz with a realized gain of 3.88 dB. The proposed HSRR-based
ultrawideband antenna sensor is found to reach high gain and bandwidth while maintaining the
smallest electrical size, a highly desired property for pH-sensing applications.
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1. Introduction

Microwave sensors using metamaterial antennas have great potential in the field of sensors
because of their simplicity, portability, sensitivity, and cost effectiveness. Water plays an important
role in the development of civilization. Nowadays, protection of human health is an alarming concern
for researchers. For many biochemical industries like food, cosmetics, and beverages, pH factor is a
vital parameter to monitor. The number of water-related diseases and deaths due to lack of pure water
is increasing daily [1]. The measurement of water quality depends on several variables, including
conductivity [2] and pH [3]. Each of them has a different range of acceptable values depending
on the application. Available standard methods that focus on the features and characterization of
various kind of pH sensors are presented in [4]. The solid-state reference electrode (SSRE) [5] is
a popular pH sensor that minimizes the ongoing problems with conventional reference electrodes.
In recent years, there has been a huge interest in metamaterial antenna sensors for determination of
the pH value of liquid since ultrawideband (UWB) metamaterial antennas offer good penetration
and resolution characteristics. Ultrawideband antennas have been used for near-field imaging [6],
UWB radar sensors [7], temperature sensors [8], and indoor identification and localization systems [9].
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State-of-the-art metamaterial-based UWB antenna sensors have been considered eminent among other
microwave pH sensors.

In 1968, Victor Veselago first introduced a theoretical explanation of a material which has unique
electromagnetic properties that cannot be found in nature [10]. The unique properties of this material
are that it can simultaneously give negative permittivity and permeability. Thirty years later, Smith et al.
introduced an artificial material by using a split-ring resonator and metallic wire that shows negative
permittivity and permeability at the same time [11]. These artificially structured composites have the
potential to fill the void in the electromagnetic field. The impedance of metamaterials can be matched
to the impedance of free space by alteration of permittivity (ε) and permeability (µ). In this context,
researchers have developed and investigated the extraordinary properties of metamaterials and have
come up with many designs, such as complementary split-ring resonators [12], elliptical split-ring
resonators [13], omega-shaped metamaterials [14], and so on. Due to their unique electromagnetic
properties, they can be used in invisibility cloaks [15], gain enhancement [16], filters [17], sensors [18],
highly directive subwavelength cavity antennas [19–21], etc. Metamaterial structures have been
adopted by many researchers because of their cost effectiveness, size reduction, and label-free detection.
A proper geometry of metamaterials can control the sensitivity of the sensor to both electric and
magnetic fields and their working resonant frequency [22]. Lee et al. [12] presented a complementary
split-ring resonator (CSRR) microwave sensor for the S-band (2–4 GHz) frequency to detect the
variation in terms of permittivity or thickness. The changes in transmission coefficient are observed for
multilayer dielectric structures. A compact polarization-insensitive dual-band metamaterial absorber
for the X-band (8–12 GHz) was proposed in [23]. There, they used a 0.6-mm FR-4 epoxy resin dielectric
substrate to make it ultrathin. Alam et al. [24] proposed a hexagonal metamaterial structure that
achieved double-negative characteristics of about 1.50 and 0.95 GHz for mobile wireless communication
systems. Zhou et al. [25] proposed a multiband left-handed metamaterial (LHM)-based double
Z-shaped resonator. The structure exhibits three passbands at 7.3, 8.1, and 9.4 GHz. However,
the double-sided structure makes it difficult to fabricate.

Microwave sensing technology has been developed over the years for several sensing
applications, including liquid solution concentrations [26], moisture sensors [27], and real-time
glucose monitoring [28]. Microstrip patch antennas are widely used in sensing applications [29–31].
The main advantages of patch antennas are their light weight, small size, low fabrication cost, reliability,
and durability. Patch antennas as microwave sensors work by interacting the electromagnetic waves
and dielectric properties. The interaction results in a change in frequency, which can be related to the
nature of the sample being tested. Rodrigues et al. [32] proposed a low-cost microwave radiometric
sensor for noninvasive detection of brain temperature. A 25 × 28 mm2 microstrip log-spiral antenna
was used as a sensor element. The authors in [33] proposed an UWB radio sensor for monitoring
elderly people who live alone. The functional frequency band is from 6 to 8.5 GHz and it also monitors
position and breathing motion. A rectangular-shaped UWB antenna was reported in [34] for breast
cancer detection. The antenna size was 36 × 34 mm2 with an operating frequency from 2.68 to
12.06 GHz, which is still large. A combination split-ring resonator (SRR) and capacitive-loaded strip
(CLS) UWB antenna was reported in [35] with dimensions of 0.21 × 0.20 × 0.015 λ for 2.90 GHz.
However, the antenna does not cover the UWB frequency range and is only able to manage from 2.9 to
9.9 GHz. A configurable meta-inspired UWB monopole antenna was presented in [36] with a maximum
peak gain of 6 dBi and maximum efficiency of 70%. Four Ω-shaped strip layers were used in the SRR
to make it configurable. In [37], a compact ultrawideband antenna was investigated. The antenna
consists of a spectacle-shaped resonator and a tapered-slot ground plane with a radiation efficiency
of 89% and an average gain of 5.7 dBi. A negative index metamaterial-inspired UWB antenna that
integrates complementary SRR and CLS unit cells has been presented for microwave imaging sensor
applications [38]. The UWB antenna sensor has an electrical dimension of 0.20 × 0.29 λ and achieves a
131.5% bandwidth, covering the frequency bands from 3.1 to 15 GHz with a maximum gain of 6.57 dBi.
The antenna has a high fidelity factor and nearly omnidirectional radiation patterns with low cross
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polarization, which are suitable for microwave imaging. In [39], a UWB antenna with the smallest
form factor was reported for breast tumor sensing applications, utilizing two rectangular split-ring
resonators (RSRR) and four rectangular complementary split-ring resonators (RCSRR). The proposed
antenna delivers a wide impedance bandwidth from 3 to 11 GHz with nearly omnidirectional radiation
patterns and good radiation efficiency over the entire frequency band. In [40], they designed a compact
quad-notched UWB antenna by utilizing CSRRs on the radiating semicircular patch for rejecting the
WiMAX, INSAT, and lower and upper WLAN bands. They also analyzed the coupling among the
multiple-notch resonators due to coupling near CSRRs.

In this paper, a miniature UWB metamaterial antenna based on a hexagonal split-ring resonator
(HSRR) was designed and analyzed for sensing the pH factor of liquid. The hexagonal metamaterial
unit cell exhibits a wide double-negative characteristic from 7.43 to 11.79 GHz. Moreover, an array
configuration of the proposed UWB antenna was also investigated to see the response to variations in
the number of unit cells. The proposed UWB antenna consists of three hexagonal split-ring resonators
along with a slotted elliptical patch and a microstrip feed line. A partial ground plane was also used,
which was rectangular and elliptically slotted to achieve the targeted frequency band. The antenna
had a wide UWB profile along with high gain and efficiency, stable radiation patterns, and electrical
dimensions of 0.238 × 0.194 × 0.016 λ. This article is ordered as follows. Section 2 describes the
configuration of the metamaterial structure, extraction method, and discusses the results. The scattering
parameters of the unit cell and UWB antenna was obtained by using the CST Microwave Studio based
on the finite integration technique (FIT) method. In Section 3, the UWB metamaterial antenna sensor
configuration, gain, radiation patterns, and efficiency are presented. Section 4 describes the sensing of
pH for different solutions. Finally, Section 5 presents the conclusion.

2. Hexagonal Split-Ring Resonator

2.1. Materials and Methods

The configuration of the proposed unit cell is shown in Figure 1. The metamaterial structure
consisted of two hexagonal split-ring resonators interconnected by a strip line. The FR-4 (εr = 4.3, µr = 1,
and δ = 0.025) substrate was employed and the overall dimensions of the structure were 6 × 6 × 1.6 mm3.
The conductive copper layer of the substrate was 0.035 mm thick. The design parameters of the unit cell
are represented in Table 1.
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Table 1. Design parameters of the unit cell.

Parameters Values mm Parameters Values mm

a1 2.5 g 0.3
a2 2 w 6
b1 1.5 l 6
b2 1 rx 2.5
c 0.25 ry 2.17
e 0.5

The S-parameters of the unit cell were obtained by using the CST Microwave Studio based on
the finite integration technique (FIT) method. The transverse electromagnetic (TEM) mode was used
to investigate the metamaterial performance. Perfect electric conductor (PEC) in the x-direction and
perfect magnetic conductor (PMC) in the y-direction were set as boundary conditions. Throughout
the z-direction, the electromagnetic wave was propagated. The simulation setup of the unit cell is
shown in Figure 2. The effective parameters of the proposed unit cell were extracted by using the
transmission-reflection method [41].

S11 =
R01(1 − ei2nk0d)

1 − R2
01ei2nk0d (1)

S21 =
(1 − R2

01)eink0d

1 − R2
01ei2nk0d (2)

where R01 = z − 1/z + 1
eink0d =

s21

1 − s11R01
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The refractive index η and the impedance z are obtained by

z = ±

√√√√ (1 + S11)
2 + S2

21

(1 − S11)
2 + S2

21
(3)

η =
1

k0d
cos−1

[
1

2S21
(1 − S2

11 + S2
21)

]
(4)

ε =
η

z
(5)

µ = ηz (6)
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where k0 = ω/c is the free-space wavevector, ω is the angular frequency, and c is the speed of light.
Symbol ε is the effective permittivity, µ is the effective permeability, and d denotes the thickness of the
substrate material.

2.2. Chracterization of HSRR

The real and imaginary parts of the effective permittivity, effective permeability, and refractive
index parameters are illustrated in Figure 3 to demonstrate that the proposed HSRR has negative
permittivity from 5 to 6.21 GHz and also from 6.75 to 11.79 GHz and negative permeability over the
frequency band from 7.43 to 15 GHz. The plasma frequency of the structure can be varied by changing
the dimensions of the wire length. The structure has a double-negative characteristic bandwidth of
4.36 GHz. The variations in the value of the effective parameters depend on the values of S11 and S21

according to Equations (1)–(6). A summary of the effective parameters is listed in Table 2.
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Table 2. Summary of the effective parameters of the unit cell.

Effective Parameters Negative Index Frequency Span (GHz)

Permittivity (ε) 5–6.21 and 6.75–11.79
Permeability (µ) 7.43–15

Refractive Index (η) 5.31–5.95 and 7–12.96
DNG 7.43–11.79

3. UWB Metamaterial Antenna

3.1. Boundary Condition

The electromagnetic field interacts with the metallic inclusions of the metamaterial, the metallic
inclusions placements, and their distributions. Therefore, the electric and magnetic fields are oriented
in a specific direction, which retrieves the permittivity and permeability characteristics. The response
of the metamaterial depends on the direction of the magnetic field, which is normal to the surface of the
structure, and the electric field is tangent to the inclusions. The precise polarization and distribution
of the electromagnetic field must be specified by the characterization technique. In this article, as the
PEC boundary condition was applied at the upper and lower walls of the HSSR unit cell that was
perpendicular to the incident E vector, the PMC boundary was applied to the back and front walls
of the HSSR that was perpendicular to the incident H vector. For antennas operating in free space,
the open add space boundary condition was used. To record the far-field pattern, this boundary
condition was essential. Furthermore, to investigate the electric field in the radiating near-field region,
the added space was manually extended in the open add space boundary conditions by a distance of
2D2/λ, where D is the diameter of the antenna and λ is the free space wavelength. Therefore, by adding
specific fields like electric, magnetic, and open space at every wall, the field characteristics for resonant
frequencies can be investigated.

3.2. Configaration of UWB Antenna

The antenna was investigated without HSRR and by using one, two, and three hexagonal
split-ring resonators, as shown in Figure 4a,b. The unique electromagnetic properties of the HSRR were
responsible for the miniaturization of the antenna. The reflection coefficient (S11) of these configurations
was studied. From Figure 5, S11 of the antenna without HSRR and with one HSRR shows a wide
bandwidth response (below −10 dB), but the Federal Communication Commission (FCC) standard for
a UWB antenna is not fully covered. The antenna with two HSRRs showed ultrawideband response,
but with the three HSRR, a better reflection coefficient was obtained. Therefore, the antenna with three
HSRRs was used as the final prototype.

The configuration of the proposed UWB metamaterial antenna is shown in Figure 6. The three
hexagonal split-ring resonators were on top of a slotted elliptical patch. A microstrip feed line was
used to feed the antenna. A partial ground plane was rectangular and elliptically slotted in the middle
to achieve UWB frequency band. The antenna was fabricated on a flame-resistant composite material
named FR-4 (εr = 4.3, µr = 1, and δ = 0.025) substrate. The overall dimensions of the UWB antenna were
19 × 23.35 × 1.6 mm3. The conductive copper layer of the substrate was 0.035 mm thick. The design
parameters of the proposed antenna are represented in Table 3.

Table 3. Design parameters of the proposed antenna.

Parameters Values (mm) Parameters Values (mm)

k 19 r2 5.1
m 13.6 s 2
n 23.35 t 4
p 1.4 u 4.61
q 3 v 9.16
r1 9 x 1
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3.3. Results and Discussion of UWB Antenna

A prototype of the proposed UWB antenna was designed and fabricated according to the optimized
parameters in Table 3 and as depicted in Figure 7. The computational and measured reflection
coefficients of the antenna are plotted in Figure 8, which show very good agreement between them.
The measurement was performed using Agilent performance network analyzer N5227A. The measured
−10 dB reflection coefficient bandwidth was from 3 to 20 GHz. The antenna compactness with wideband
characteristics can be expressed in terms of the bandwidth dimension ratio (BDR) [42]. The bandwidth
dimension ratio of the proposed antenna was shown to be 3183.05 by using Equation (7).

BDR =
(BW%)

λlength × λwidth
(7)
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The radiation performances of the fabricated antenna were measured using a SATIMO near-field
measurement system, illustrated in Figure 9. Figure 10a,b shows the antenna total efficiency and
realized gain as a function of frequency for without and with HSRR. The measured and simulated
efficiency and realized gain shows good agreement despite a small discrepancy due to fabrication
and measurement tolerances. The average measured efficiency was found to be about 70% and the
realized gain is plotted in Figure 11a,b. The average realized gain between 2 and 12 GHz is about 2 dB.
Moreover, the gain increases up to 3.88 dB at the higher frequency of 15 GHz, where the radiation
pattern becomes directional with some nulls due to the excitation of the higher-order current mode.
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For dispersion analysis in the time domain, the antenna is derived by the input signal.
The transmitted and received signal without and with HSRR is illustrated in Figure 12. From the
pulse shapes, it can be observed that the transmitted pulse is not considerably distorted. The correlation
coefficient between the received and transmitted signals can demonstrate the amount of pulse distortion
that the antenna induced [43].
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From Figure 14, it can be observed that the simulated and measured radiation patterns of the
proposed antenna are in good agreement. Cross polarization can be negligible at 2.91 GHz both in the
simulated and measured results. In the measured results, cross polarization is lower than simulated
radiation patterns. The occurrence of slight disagreement between measured and simulated radiation
patterns is due to fabrication and measurement tolerance.
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To compare the proposed metamaterial-inspired UWB antenna sensor with existing antennas
reported in the literature, a comparison is presented in Table 4.

Table 4. Comparison of the proposed antenna with previous works.

Ref. No. Size (mm2) Bandwidth (GHz) Gain (dB)

[34] 36 × 34 2.68–12.06 −1 to 6.48
[35] 22 × 21 2.9–9.9 −1 to 5
[36] 40 × 40 3.1–10.6 −2 to 6
[37] 21 × 24 3–11.5 3–5.7
[38] 19.36 × 27.72 3.1–15 3.81

Proposed antenna 19 × 23.35 3–20 1.5–3.88
(Realized Gain)

4. UWB Antenna as pH Sensor

The fundamental principle of metamaterial-based microwave sensors depends upon the dielectric
perturbation phenomenon. Therefore, the microwave sensor is used to measure the transmission
coefficient of the sensor within different concentrated acid and base solutions. The amplitude of the
S-parameters changes because of the change in pH of the solutions. The dielectric constant decreases
with the increase in pH level in the solution for high frequency [44]. This is due to the positive and
negative ions of the solution. The more concentrated the solution, the closer the positive and negative
ions. When these two opposite ions come closer, the retardation force increases. Hence, the ions face
greater resistance. As a result, the dielectric properties change due to the bond of dissolved ions and
water molecules when acids and bases are added to the water. This change reduces the polarization of
water and decreases the dielectric constant and loss factor [45].

The sensitivity of the microwave pH sensor was investigated with different pH standard solutions
by using the N5227A Performance Network Analyzer. The solution was prepared by mixing sodium
hydroxide (NaOH) and hydrochloric acid (HCL) with various volume ratios. To measure the pH
level of the solutions, a pH meter having a measure range from 0 to 14 pH was used. The pH
meter was dipped into the solutions until the potential reached an equilibrium value. Nine solutions
with pH levels from 2.5 to 12.11 were used and the corresponding S-parameters were measured.
The metamaterial antenna sensor was sensitive to the pH level based on the dielectric properties and
conductivity of the solutions in terms of the transmission coefficient.
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The sensor investigated the various concentrated solutions of NaOH and HCL. The tested water
sample had a pH level of 7. First, the base substance NaOH was added to increase the pH of water
and, secondly, the acidic substance HCL was added to decrease the pH of water. The reflection and
transmission coefficients of the metamaterial antenna sensor were measured by placing the solutions
between the two antennas. The measured arrangement is depicted in Figure 15. The sensor detected
the pH of the solutions at 2.91, 5, and 11.2 GHz. The frequency response of the sensor antenna was
plotted against pH values, as shown in Figure 16. From Figure 16, it can be clearly observed that the
transmission coefficients increase while increasing the pH of the acid and base solution. The reduction
of the permittivity of the solution caused the reduction of the effective dielectric constant of the solution.
Due to the reduction of the effective dielectric constant of the solution, the load impedance increased.
Hence, the transmission coefficients gradually increased with the increase of pH.
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5. Conclusions

A compact ultrawideband antenna based on a hexagonal split-ring resonator has been presented
with two interconnected HSRRs and a split in one HSRR for the miniaturization, increase in
electrical length, and coupling effect for pH sensor application. The proposed sensor antenna has
increased ultrawideband performance (3–20 GHz) while reducing the total dimensions by inserting
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the metamaterial unit cell. The UWB antenna sensor shows the fractional bandwidth and bandwidth
dimension ratio of 146.91% and 3183.05, respectively. The total efficiency of the presented sensor
antenna is about 70% with 3.88 dB realized gain. The proposed antenna managed to reach high gain
and bandwidth while maintaining the smallest electrical size, which is a highly desired property for
pH sensing applications.
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