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Abstract: The strapdown inertial navigation system (SINS) is widely used in autonomous vehicles.
However, the random drift error of gyroscope leads to serious accumulated navigation errors
during long continuous operation of SINS alone. In this paper, we propose to combine the Inertial
Measurement Unit (IMU) data with the line feature parameters from a camera to improve the
navigation accuracy. The proposed method can also maintain the autonomy of the navigation system.
Experimental results show that the proposed inertial-visual navigation system can mitigate the SINS
drift and improve the accuracy, stability, and reliability of the navigation system.

Keywords: autonomous vehicle; strapdown inertial navigation system; inertial-visual fusion method;
Kalman Filter

1. Introduction

The successful use of automated vehicles will have a great impact on human live [1]. It will bring
more convenient and easier driving experiences for human. How to offer accurate, stable, and reliable
navigation information is pivotal in order to keep an automated vehicle safe. The inertial navigation
system (INS) has been widely used for automated vehicle positioning and navigating because of its
high autonomy, concealment, continuum, insusceptible climate, and the successive supply of position,
velocity, and attitude (PVA) information [2]. The strapdown inertial navigation system (SINS) is simple,
small in size, and is convenient in maintenance compared with plat INS (PINS) and is also very popular
in vehicle navigation systems [3,4]. However, the random drift error of gyroscope in SINS may lead to
serious accumulated navigation errors during the long operation of SINS alone. As a result, how to
keep the accuracy of SINS has attracted the attention of many researchers.

There are two ways to improve the accuracy of SINS. One uses an enhanced production technology
of IMU such as improving the structure of the gyroscope [5–7] and using more advanced materials [8,9]
to improve the accuracy of SINS. However, these methods will increase the production cost and make
a longer research cycle of IMU. The other way is to combine IMU with other sensors to mitigate the
SINS drift. Integrated IMU with Global Navigation Satellite System (GNSS) is a widely used approach
to improve the accuracy of SINS [10–12]. Map-based navigation is another approach to get high
accuracy navigation [13]. Fusing map matching with SINS can also improve the accuracy of vehicle
navigation [14]. However, the signals of GNSS and satellite imageries can be jammed easily and are
sensitive to weather and environmental conditions [15]. In addition, using GNSS and map matching
will cause the navigation system to lose the high autonomy of SINS.

Machine vision is increasingly being used in automated driving. An automated car is usually
driven on structural roads [16]. The characteristics of structural roads include clear road markings,
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a sample background, and obvious geometric shapes. Satzoda et al. propose a drive analysis method
using a camera, IMU, and the Global Position System (GPS) to get the position of the vehicle [17].
Vivacqua et al. propose the low-cost sensors approach for accurate vehicle localization and autonomous
driving that uses a camera and SINS [18]. However, in these applications, the visual sensor is only used
for the lanes detection and the visual information is not fused for navigation. An improved Features
from Accelerated Segment Test (FAST) feature extraction based on the Random Sample Consensus
(RANSAC) method is proposed to remove the mismatched points in Reference [19]. It uses point
feature extraction to improve the accuracy of the navigation system during driving. These studies are
all about moving vehicles. There is no study on the inertial and visual integrated navigation system
when the vehicle stops. However, stops, such as waiting for the traffic lights, comity pedestrians that
are inevitable in automated driving. The navigation information in static state is an important part of
navigation systems as well. Thus, it is necessary to study the application of the navigation system at a
static situation. Moreover, all these published papers on integrated navigation systems are combined
with GNSS and lose the autonomy of navigation systems.

In this paper, a novel integrated navigation method only based on inertial visual sensors is
proposed. The camera is not used for lane detection. It is the first time that a combined line feature
in the image with SINS, in order to constitute an integrated navigation system, has been presented.
Additionally, the feasibility of the proposed method is proved by the static experiment. It lays a
theoretical foundation for the research of the proposed method in a dynamic situation. Experimental
results show that the proposed inertial-visual integrated navigation system can improve the accuracy
and reliability of the navigation system.

2. Coordinate Systems and Kalman Filter

2.1. The Reference Coordinate Systems

The different coordinate systems in this paper are defined as follows:

• Coordinate: Earth-Centered Initially Fixed (ECIF) orthogonal reference coordinate system;
• t-coordinate: Orthogonal reference frame aligned with East-North-Up (ENU) geographic

coordinate system;
• b-coordinate: Body coordinate system;
• n-coordinate: Navigation coordinate system;
• c-coordinate: Camera coordinate system;
• im-coordinate: Image coordinate system.

2.2. Kalman Filter

Kalman Filter (KF) is the most widely used estimation method in inertial navigation systems.
For a discrete-time system [20], at tk+1, the system equations can be expressed by

Xk+1 = Φk+1,kXk + ΓkWk (1)

where Xk+1 is estimated state vector, Φk+1,k is the one-step transfer matrix from tk time point to tk+1,
Γk is the driven-noise matrix, and Wk is system excitation noise vector.

The measurement equation is given by

Zk+1 = Hk+1Xk+1 + Vk+1 (2)

where Zk+1 is the measurement vector, Hk+1 is the measurement matrix, Vk+1 is the measurement
noise vector.
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The Kalman Filter includes a one-step state prediction equation, a state estimation equation,
a filtering gain equation, a one-step prediction mean square error equation, and an estimated mean
square error equation. They are listed as below:

X̂k+1,k = Φk+1,kX̂k (3)

X̂k+1 = X̂k+1,k + Kk
(
Zk − HkX̂k+1,k

)
(4)

Kk+1 = Pk+1,k HT
k

(
HkPk+1,k HT

k + Rk

)−1
(5)

Pk+1,k = Φk+1,kPkΦT
k+1,k + ΓkQkΓT

k (6)

Pk+1 = (I − Kk Hk)Pk+1,k(I − Kk Hk)
T + KkRkKT

k (7)

where X̂k+1,k denotes the prediction of the state vector from tk to tk+1, X̂k denotes the prediction of the
state vector at tk, Kk denotes filtering gain matrix, Pk+1,k denotes one-step estimated mean square error
matrix from tk to tk+1, Pk+1 denotes estimated mean square error matrix, Qk is system noise covariance
matrix, and Rk denotes measurement noise covariance matrix.

To analyze the problem of the SINS static error model arising in the Kalman Filter, the local-level
ENU frame is selected as the navigation frame [21]. The state vector of the system error model is
defined as

X =
[
δL, δλ, δh, δVE, δVN , δVU , δφx, δφy, δφz,∇E,∇N ,∇U , εE, εN , εU

]T (8)

where L, λ and h denote the local latitude, longitude, and height respectively; δV defines the body
velocity vector, δφ defines the body attitude error, and ∇, ε, denote the accelerometer zero-biases,
and the constant gyroscope drifts, respectively; the subscript E, N , U denotes the projection on the East,
North, and Up axis of the t-coordinate, respectively.

Equation (1) can be written as
Xk+1 = FXk + Wk (9)

where F defines the system matrix as below

F =


0 F1,2 0 0 0
0 F2,2 F2,3 F2,4 0

F3,1 F3,2 F3,3 0 F3,5

0 0 0 0 0
0 0 0 0 0

 (10)

where 0 denotes a 3× 3 zeros matrix, the non-zero element in F shown as below:

F1,2 =

 0 1/R 0
sec L/R 0 0

0 0 1

, F2,2 =

 0 2ωie sin L −2ωie cos L
−2ωie sin L 0 0
2ωie cos L 0 0

, F2,3 =

 0 −g 0
g 0 0
0 0 0

,

F3,1 =

 0 0 0
−ωie sin L 0 0
ωie cos L 0 0

, F3,2 =

 0 −1/R 0
1/R 0 0

tan L/R 0 0

, F3,3 =

 0 ωie sin L −ωie cos L
−ωie sin L 0 0
ωie cos L 0 0

,

and F2,4 = F3,5 = Cn
b , Cn

b denotes the translated matrix from the b-coordinate to the n-coordinate,
R defines the Earth radius, g defines the gravitational acceleration in the n-coordinate, ωie defines the
angle velocity of the earth in the i-coordinate.
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Theoretically, when a vehicle is in the stationary base, the velocity is zero and the attitude is
invariable. Thus, velocity error and attitude error in the n-coordinate can be selected as measurement
elements. Therefore, the measurement vector can be written as below

Zk =

[
δVk
δφk

]
(11)

Therefore, the system measurement equation from Equation (2) can then be written as

Zk = HXk + Vk (12)

where Vk is a white noise, and the measurement matrix is written as

H =
[

06×3 I6×6 06×6

]
(13)

3. Visual Image Processing

In this section, we discuss how to obtain the line feature from the image, and how to translate
the line feature to the navigation information, which can be combined with SINS. Firstly, the line
feature includes the angle feature parameter θ, which is extracted by the Hough transform [22]. Next,
by analyzing the mean of ∆θ, we get the relative attitude error of the vehicle when it stops. Then,
it projected the relative attitude error from the im-coordinate to the b-coordinate. Thus, the relative
attitude error can be combined with the attitude error of SINS via KF.

In Figure 1, the line feature extracted by the Hough transform in image processing is given by [22]

v cos θ + u sin θ − ρ = 0 (14)

where Oim, u, and v denote the origin point and axis of the image plane, and the axis of the image
plane, θ denotes the angle of the line and axis u,θ ∈ [−π/2, π/2), ρ denote the distance of line and Oim.
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Figure 1. The line representation in the image.

It is important to transform the line feature in the n-coordinate as a navigation parameter for
fusing image information into the navigation system. As per the discussion below, we can obtain a
related attitude error, which can be combined with SINS, from the angle feature parameter θ.

From the process of a camera record, as is known to all, we can get the relationship between the
im-coordinate and the c-coordinate, as shown in Figure 2a. The optical axis of the camera superposes
with the zc axis and crosses the image plane in the middle point Mim.
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Figure 2. The relationships of the im-, c-, and b-coordinate. (a) The relationship between the im- and
c-coordinate; and (b) the relationship between c- and b-coordinate.

In Figure 2a, the line lim is in the im-coordinate, and its angle feature parameter is θim.
The projection of lim in c-coordinate is lc, and the angle feature parameter is θc. According to the
principle of camera imaging, the image plane parallels with the xcyc plane in the c-coordinate. So,
lc//lim. Thus, θc = θim. In other words, the feature angle in the c-coordinate is the same as within the
im-coordinate.

Figure 2b shows the relationship between the c-coordinate and b-coordinate. From it, the transfer
matrix between the c-coordinate and b-coordinate is given by

Tc
b =

(
Cb

c t
0 1

)
, Cb

c =

 0 1 0
0 0 1
1 0 0

 (15)

The vehicle attitude includes the pitching angle, rolling angle, and heading angle. They mean
the angle b-coordinate rotates around the xb, yb, and zb axis, respectively. In this paper, we set that
the c-coordinate is orthogonal to the b-coordinate. So, the angle caused by heading and pitching will
be not projected onto the zc axis. Thus, when the vehicle is rolling, θc will be changed. Additionally,
the pitching and heading of the vehicle cannot change θc. Thus, we can use θc to describe the
vehicle-rolling angle. We define the vehicle rolling angle error as ∆θc, it is the difference between θc

and the mean value of θc. Thus, the visual attitude error ∆Ac in the c-coordinate is derived as

∆Ac =

 0
∆θc

0

 (16)

Thus, ∆Ac can be translated into the b-coordinate as ∆Ab, which is expressed as

∆Ab = Cb
c ∆Ac (17)

Thus, the visual attitude error in the n-coordinate is derived as

∆An = Cn
b Cb

c ∆Ac (18)

4. The Proposed Fusion Algorithm

In this section, we describe how to fuse the visual attitude error from images with SINS.
The inertial-visual integrated navigation system schematic is shown in Figure 3. We fuse the visual
attitude error with the SINS attitude error. Then, using Kalman Filter to estimate errors of position,
velocity and attitude to improve the accuracy of SINS. In this section, we discuss the algorithm of how
to fuse the visual attitude error with SINS.



Sensors 2018, 18, 2952 6 of 13

Sensors 2018, 18, x FOR PEER REVIEW  5 of 12 

 

Figure 2. The relationships of the im-, c-, and b-coordinate. (a) The relationship between the im- and 
c-coordinate; and (b) the relationship between c- and b-coordinate. 

In Figure 2a, the line  is in the im-coordinate, and its angle feature parameter is imθ . The 
projection of iml  in c-coordinate is cl , and the angle feature parameter is cθ . According to the 
principle of camera imaging, the image plane parallels with the c cx y  plane in the c-coordinate. So, 

/ /c iml l . Thus, c imθ θ= . In other words, the feature angle in the c-coordinate is the same as within the 
im-coordinate. 

Figure 2b shows the relationship between the c-coordinate and b-coordinate. From it, the transfer 
matrix between the c-coordinate and b-coordinate is given by 

0 1 0
, 0 0 1

0 1 1 0 0

b
c bc
b c

C t
T C

 
   = =       

 (15) 

The vehicle attitude includes the pitching angle, rolling angle, and heading angle. They mean 
the angle b-coordinate rotates around the bx , by , and bz  axis, respectively. In this paper, we set that 
the c-coordinate is orthogonal to the b-coordinate. So, the angle caused by heading and pitching will 
be not projected onto the  axis. Thus, when the vehicle is rolling, cθ  will be changed. 
Additionally, the pitching and heading of the vehicle cannot change cθ . Thus, we can use cθ  to 
describe the vehicle-rolling angle. We define the vehicle rolling angle error as cθΔ , it is the difference 
between cθ  and the mean value of cθ . Thus, the visual attitude error cAΔ  in the c-coordinate is 
derived as 

0

0
c cA θ

 
 Δ = Δ 
  

 (16) 

Thus, cAΔ  can be translated into the b-coordinate as bAΔ , which is expressed as 

b
b c cA C AΔ = Δ  (17) 

Thus, the visual attitude error in the n-coordinate is derived as 
n b

n b c cA C C AΔ = Δ  (18) 

4. The Proposed Fusion Algorithm 

In this section, we describe how to fuse the visual attitude error from images with SINS. The 
inertial-visual integrated navigation system schematic is shown in Figure 3. We fuse the visual 
attitude error with the SINS attitude error. Then, using Kalman Filter to estimate errors of position, 
velocity and attitude to improve the accuracy of SINS. In this section, we discuss the algorithm of 
how to fuse the visual attitude error with SINS. 

 

iml

cz

Figure 3. The schematic diagram of inertial-visual integrated navigation system. The strapdown
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offered by Global Position System (GPS).

To fuse the visual attitude error with SINS, the attitude error of inertial-visual integrated
navigation system can be obtained as

δφ∗ = δφ− ∆An (19)

Thus, the new measurement vector is expressed as

Z =

[
δV
δφ∗

]
(20)

An image is constituted by pixels. The image offered by the camera, which is fixed on the static
vehicle, only has slight variations. The line feature in those images is a random value in finite countable
values. It is not vailed that applying the white noise model to the inertial-visual integrated navigation
system measurement noise. Thus, we cannot fuse the visual attitude error with the SINS directly. It is
necessary to find a new model for the inertial-visual integrated navigation system measurement noise.

Ideally, the line feature of images from the camera fixed on static vehicles is the same. That means
that the visual attitude error of static vehicles is zero. However, there are some noise sources, like the
shuddering of the engine and the actions of the driver and passengers. Thus, ∆An can be thought of as
the visual attitude measurement noise.

In a known size image, the status number of line feature θ is finite and enumerable. For an
appointed line, in all the t frames of the video, line feature θ is only related to the last one. In other
words, we define E as the state space of θ. For any t1 < t2 < · · · < tp < t, there are ∆A1

n,∆A2
n,

. . . ,∆Ap
n∈ E. When it is known that ∆An(t1) = ∆A1

n, ∆An(t2) = ∆A2
n, . . . ,∆An

(
tp
)

= ∆Ap
n,

the condition probability curve is related to ∆An
(
tp
)

= ∆Ap
n, and is not related to ∆An(t1) =

∆A1
n,∆An(t2) = ∆A2

n, . . . ,∆An
(
tp−1

)
= ∆Ap−1

n . That means

P
(

∆An(t) ≤ x
∣∣∣∆An

(
tp
)
≤ ∆Ap

n, ∆An
(
tp−1

)
≤ ∆Ap−1

n , · · · , ∆An(t1) ≤ ∆A1
n

)
= P

(
∆An(t) ≤ x

∣∣∣∆An
(
tp
)
≤ ∆Ap

n

)
(21)

Thus, the visual attitude measurement noise can be modeled by the first-order Markov Process.
The inertial-visual integrated navigation system measurement noise, Vk, includes SINS

measurement noise and the visual attitude measurement noise. SINS measurement noise is a Gaussian
White noise. Additionally, the inertial-visual integrated navigation system is a linear system. Thus, Vk
also can be modeled by the first-order Markov Process. Thus, Vk satisfies the equation as

Vk+1 = Ψk+1,kVk + ξk (22)

where Ψk+1,k = e−αT , α is the inverse correlation time constant of the first-order Markov Process, T is
the sample interval, ξk is white noise with a zero mean and is uncorrelated with Wk [20].
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From Equation (12), Vk can be expressed as

Vk = Zk − HkXk (23)

We have combined the Equations (1), (22), and (23) into the right side of Equation (2) here

Zk+1 = Hk+1(Φk+1,kXk + ΓkWk) + Ψk+1,k(Zk − HkXk) + ξk (24)

By rearranging Equation (24), it becomes

Zk+1 −Ψk+1,kZk = (Hk+1Φk+1,k −Ψk+1,k Hk)Xk + Hk+1ΓkWk + ξk (25)

The measurement matrix and measurement noise vector can then be expressed as

Z∗k = Zk+1 −Ψk+1,kZk, H∗k = Hk+1Φk+1,k −Ψk+1,k Hk, V∗k = Hk+1ΓkWk + ξk (26)

Additionally, the new measurement equation becomes

Z∗k = H∗k Xk + V∗k (27)

The mean and variance of V∗k can be expressed as{
E
[
V∗k
]
= 0

E
[
V∗k V∗j

T
]
=
(

Hk+1ΓkQkΓT
k HT

k+1 + Rk

)
δkj

(28)

where V∗k is white noise with a zero-mean. Thus, the covariance matrix of V∗k can be expressed as

R∗k = Hk+1ΓkQkΓT
k HT

k+1 + Rk (29)

V∗k is correlated with Wk, and the correlation coefficient is Sk = QkΓT
k HT

k+1. Therefore,
Equations (3), (5), and (7) become

X̂∗k+1 = Φk+1,kX̂k + Kk+1
(
Zk+1 −Ψk+1,kZk − H∗k X̂k

)
(30)

K∗k+1 =
(

Φk+1,kPk H∗k
T + ΓkSk

)(
H∗k Pk H∗k

T + R∗k
)−1

(31)

P∗k+1 = Φk+1,kPkΦT
k+1,k + ΓkQkΓT

k − Kk+1

(
H∗k PkΦT

k+1,k + ST
k ΓT

k

)
(32)

5. Experiment and Results

As shown in Figure 4, an experimental system is assembled to evaluate the proposed approach.
The system includes an IMU, a camera, a GPS, and a power system on a vehicle. IMU is constituted
by a three-axis fiber-optic gyroscope with three accelerometers on each gyro-axis. The camera is a
vehicle data recorder. The IMU, GPS receiver, and power system are in the vehicle trunk. The IMU is
fixed on the vehicle via a steel plate which is parallel with the under panel of the vehicle. The GPS
antennas are on the top of the vehicle. The camera is attached to the windshield. When installing the
camera, the Gradienter, and the Vertical marker are used to make sure the optical axis is parallel with
the North-East plane of the n-coordinate.
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to provide a coarse alignment of the position system and to provide a position reference. In the 
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During the experiment, the vehicle is started and stopped. In this experiment, the GPS is used
to provide a coarse alignment of the position system and to provide a position reference. In the
experiment, the frequency of the IMU is 100 Hz, the frequency of the video is 25 Hz, the image
resolution is 1920 × 1080, and the static time length is two min.

5.1. Camera Information Pre-Processing

The camera used in the experiment is a wide-angle automobile data recorder. As the picture taken
from the wide-angle is distorted, the picture needs calibration. Thus, the picture needs pre-process
to remove its distortion. We calibrated the camera in a lab environment to get the parameters of the
camera using the Lee-method [23]. Camera calibration results are shown in Figure 5a,b. We then
used the parameters from the calibration to calibrate the on-road experiment images, as shown in
Figure 5c,d. Apparently, the distortion was reduced.
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(c) one of the original images during the experiment; (d) the calibrated image of (c) and the line feature
parameter θ.

During the experiment, the vehicle stops, the view of the camera is fixed. There are two-lane lines,
the white solid line, and the yellow dotted line. We chose the white one as the reference object and
extracted its line feature parameters, as shown in Equation (18). As shown in Figure 5d, the pink line is
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the extraction line, and the blue solid-dotted line is the schematic of the extraction line. After extracting
all images in the video during this static experiment, we get θ in Equation (14) of all the images.

Based on the line feature parameter θim, and the transfer matrixes Cb
c and Cn

b , calculated the
attitude error ∆An offered by image processing as shown in Section 3.

5.2. Experimental Results and Discussions

In this section, we discuss the experimental results from two aspects, static attitude error and
static position estimation. The experimental results prove that the proposed inertial-visual integrated
navigation system can improve the accuracy and stability of the navigation system.

Figure 6 presents the static attitude error of only-SINS. Figures 7 and 8 show the static attitude error
of the inertial-visual integrated navigation system that fused directly and as proposed, respectively.
The attitude error includes the pitching error, rolling error, and heading error, as shown in the
legend. While, the initial alignment times of integrated navigation systems are longer than only-SINS.
The initial alignment time of the proposed inertial-visual integrated navigation system meets the
requirements of automated vehicle applications. Besides, the integrated navigation system has a longer
initial alignment time that resulted from the data rate of the camera being lower than that of the IMU.
Thus, using high data rate cameras is a useful method to reduce the initial alignment time of the
integrated navigation system [24].
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The attitude errors from 100 s to 120 s are shown in the enlarged inset pictures of Figures 6–8.
For only-SINS, the heading error was increased, up to−0.65 arcmin at 120 s. For the direct inertial-visual
integrated navigation system, the heading error was increased too, up to −1.20 arcmin at 120 s.
It confirms that the white noise model does not fit to the inertial-visual integrated navigation system
measurement noise, while the attitude errors of the proposed model are stable, as shown in Figure 8.
The heading error keeps at −0.35 arcmin in the enlarged picture. The heading error of the proposed
integrated method is more stable than the only-SINS and the direct integrated method during, from 20 s
to 120 s. It is decreased by 46.15% compared to the heading error of only-SINS at 120 s. The Figures 6–8
show that the proposed inertial-visual integrated navigation system improves the accuracy and stability
of the navigation system.

Figure 9 shows the static position, during 120 s, by the latitude and longitude of the GPS,
only-SINS, direct inertial-visual integrated navigation system, and the proposed inertial-visual
integrated navigation system, as shown in the legend. The enlarged inset picture indicates the position
of the only-SINS and integrated navigation system. As shown in Figure 9, the position estimation
range of the proposed inertial-visual integrated navigation system is more concentrated than the
only-SINS and direct inertial-visual integrated navigation system. For GPS, the amplitude variation of
latitude and longitude are 4 × 10−50 and 8 × 10−50, respectively. The GPS position can prove that the
position estimations of the other three navigation modes is receivable. For the only-SINS, the amplitude
variation of latitude and longitude are 1.4236 × 10−60 and 6.3310 × 10−70, respectively. For the direct
inertial-visual integrated navigaiton system, the amplitude variation of latitude and longitude are
9.9625 × 10−70 and 6.7123 × 10−70, respectively. The position range is not obvious difference with
only-SINS. Thus, the direct integrated method cannot improve the accuracy of the navigation system.
For the proposed inertial-visual integrated navigaiton system, the amplitude variation of latitude
and longitude are 8.3885 × 10−70 and 3.5869 × 10−70, respectively. The position estimation of the
proposed inertial-visual integrated navigation system is more stable than that of only-SINS and direct
inertial-visual integrated navigation system. It also can be reflected by the position standard deviation,
as listed in Table 1. Figure 9 shows that the proposed inertial-visual integrated navigation system
improves the accuracy of the position estimation.
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Figure 9. The position estimation of GPS, only-SINS, direct inertial-visual integrated navigation system,
and proposed inertial-visual integrated navigation system.

Table 1. The Position Standard Deviation of GPS, only-SINS direct inertial-visual integrated navigation
system and proposed inertial-visual integrated navigation system.

Latitude Longitude

GPS 8.490414716838 × 10−6 2.278273360829 × 10−5

only-SINS 2.367825000248 × 10−7 1.528532246718 × 10−7

direct integrated 2.039732103084 × 10−7 7.745355384118 × 10−8

proposed integrated 7.260776501218 × 10−8 5.653344095192 × 10−8

Table 1 lists the position standard deviation of GPS, only-SINS direct inertial-visual integrated
navigation system, and the proposed inertial-visual integrated navigation system. It shows the
standard deviation of the proposed inertial-visual integrated navigation system is lower than only-SINS
and direct inertial-visual integrated navigation systems. Compared with only-SINS, standard deviation
of the proposed inertial-visual integrated navigation system decreases by 69.34% and 21.27% of
latitude and longitude, respectively. The latitude and longitude standard deviation of the proposed
inertial-visual integrated navigation system are 35.59% and 72.99% of the direct inertial-visual
integrated navigation system. The data in Table 1 verifies that the inertial-visual fusion method
can improve the stability of the navigation system.

6. Conclusions

In this paper, it is the first time that the inertial-visual integrated navigation system, which
combined the line feature in the image with SINS via KF, has been proposed. The experimental
results show that the proposed inertial-visual integrated navigation system improves the accuracy and
reliability of the navigation system prominently. In the meantime, the inertial-visual integrated system
can keep the autonomy of the SINS. This method provides a high accuracy inertial-visual integrated
navigation system and fills the static condition of an automated vehicle. At the same time, it lays a
theoretical foundation for the research of the proposed method in dynamic situation.

The future work plan includes the proposed inertial-visual integrated system used on automated
vehicle moves, like straight driving and making a turn. For the information fusion algorithm, the
improved Unscented Kalman Filter (UKF) will be used to reduce the computational load and improve
the robustness of the KF [25,26]. Additionally, the line feature recognition algorithm will be perfected
to improve the accuracy, stability, and reliability of the navigation system.
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