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Abstract: Wireless sensor networks (WSNs) have become a popular research subject in recent years.
With the data collected by sensors, the information of a monitored area can be easily obtained.
As a main contribution of WSN localization is widely applied in many fields. However, when
the propagation of signals is obstructed there will be some severe errors which are called
Non-Line-of-Sight (NLOS) errors. To overcome this difficulty, we present a residual analysis-based
improved particle filter (RAPF) algorithm. Because the particle filter (PF) is a powerful localization
algorithm, the proposed algorithm adopts PF as its main body. The idea of residual analysis is
also used in the proposed algorithm for its reliability. To test the performance of the proposed
algorithm, a simulation is conducted under several conditions. The simulation results show the
superiority of the proposed algorithm compared with the Kalman Filter (KF) and PF. In addition,
an experiment is designed to verify the effectiveness of the proposed algorithm in an indoors
environment. The localization result of the experiment also confirms the fact that the proposed
algorithm can achieve a lower localization error compared with KF and PF.

Keywords: wireless sensor network; non-line of sight error; mobile localization; particle filter;
residual analysis

1. Introduction

Wireless Sensor Networks (WSN), which can be used in many fields such as urban
management, environmental monitoring, disaster-relief, remote control of dangerous places, are a new
multi-disciplinary overlapping research area. Compared with the Internet, which provides people with
a fast and convenient way to communicate with each other, WSNs combine the logical information
world with the real physical world, changing the way human beings and the world interact. A WSN
is a comprehensive intelligent information processing platform which integrates sensor technology,
microelectromechanical technology, advanced network and wireless communication technology. It has
broad application prospects. Its development and application will have a far-reaching influence on all
fields of human life. In brief, a wireless sensor network is a computation and communication network
of sensors. These sensors are capable of computing and communicating with each other in a wireless
way. The data collected by sensors is gathered together so that the information of a scene monitored
by the network can be known easily.

Localization is widely applied as a key WSN technology. Due to the flexibility of WSNs, it is a
powerful supplement of to the Global Positioning System (GPS), especially when locating indoors
targets [1]. In the localization problem context, there are two types of nodes in WSNs: beacon nodes
and unknown nodes. The coordinates of a beacon node are known a priori, while the coordinates of
unknown nodes which are fixed on personnel or valuable equipment are unknown. There are several
ways of localization through WSNs: time of arrival (TOA), time difference of arrival (TDOA), angle of
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arrival (AOA) and received signal strength (RSS). The TOA scheme obtains the distance between the
unknown node and the beacon node through the propagation time, and once there are three or more
beacon nodes the unknown node can be located. The TDOA scheme obtains the distance difference
between the unknown node to any two different beacon nodes through the time difference of signal
propagation between two beacon nodes and with three or more beacon nodes the unknown node can
be located. The AOA scheme uses the angle of arrival. It is a high precision schem but it needs the
extra hardware such as an antenna array. RSS is a low cost and low power consumption solution,
but the localization accuracy is also lower compared with the other methods.

The above scheme can achieve high localization accuracy in an ideal environment.
However, in practical scenarios there must be some errors. These errors can be simply summarized into
two types. One of them is the measurement errors. These errors result from system noise or measurement
noise which are also exist in many other subjects. Another error is the Non-Line-of-Sight (NLOS) error.
Compared with the first type of error, NLOS error decreases the localization performance more severely.
As the major challenge of localization, NLOS errors occur when the propagation of the signal is obstructed
by some unknown obstacle. The NLOS error obeys different distribution functions for different scenes.
In order to eliminate the negative effect of NOLS error, many algorithms are proposed. In general, these
algorithms can be divided into two categories. One is detecting and selecting the measurements without
NLOS error. The other is weighting the data without figuring out its propagation status.

In this paper, we adopt both ideas in the proposed algorithm. Firstly, we generate some particles
around the target. By conducting a two-time residual analysis-based selection, some reasonable
particles are picked out to locate the target. Then, these selected particles are weighted by their residuals
to launch the localization. Thanks to the selection, the negative impact of NOLS error is decreased and
a reasonable position of the target is figured out through the particles. Besides, the system error and
the measurement error are also reduced by using the weighting algorithm in localization. The main
contribution of this paper is listed as follows:

(1) The residual analysis is used several times to ensure the effectiveness of the localization results.
(2) The beacon nodes work together so that the particle filter process is simplified and the negative

effect of NLOS errors can be decreased. The computational complexity of the proposed method
is lower than that of the PF algorithm.

(3) The proposed algorithm doesn’t make any assumption on the distribution of the NLOS error.

This paper is structured as follows: in Section 2, related works in localization technology are analyzed.
The signal model and some background knowledge are illustrated in Sections 3 and 4 explains the
proposed algorithm in detail. The simulations and experimental results of the proposed method are shown
in Section 5. Conclusions are drawn in Section 6. Some key notations are explained in Table 1.

Table 1. List of key notations.

Notation Explanation Notation Explanation

N the number of beacon nodes [xi, yi] the coordinates of beacon nodes
[x, y] the position of unknown node ε the measurement error

d̂k
i

the measured distance measurement of the i − th beacon node
at time k dk

i
the true distance between the i − th beacon node and the
unknown node at time k

εNLOS the NLOS error σ2
i the deviation of measurement error

P the number of particles
[

Xk
p, Yk

p

]
the coordinate of particles at time k

dk
i,p

the true distance between the i − th beacon node and the
p − th particle at time k

Wk
i,p the weight of p − th particle to i − th beacon node at time k

resk
i,p

the residual of the p − th particle to the i − th beacon node at
time k resk

p
the sum of the residuals of the p − th particle to all the beacon
node at time k

S the number of the reserved particles after the first selection Q the number of the reserved particles after the second selection
λ the estimated NOLS error probability L the number of the reserved particles after two-time selection

NWk
p

the weight of p − th particle to i − th beacon node at time k
after normalization disk

i
the estimated distance from the unknown node to the i − th
beacon node at time k

σ2
p the deviation of particle movement
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2. Related Works

As localization through WSNs is playing an increasingly important role in modern society,
many methods have been studied by researchers. These papers can be divided basically into two
categories. One of those identifies the propagation of the signal. Shi utilized the channel sight
information to improve the localization accuracy in [2]. A relocalization algorithm is used in this
method to review the identified channel sight conditions so that the error of position estimation
can be reduced. Zhang focused on identifying NLOS components by characterizing the acoustic
channels in [3]. By analyzing indoor acoustic propagations, the changes of acoustic channel from the
line-of-sight (LOS) condition to the NLOS condition are characterized. Then, an efficient approach
to estimate relative channel gain and delay based on the cross-correlation method is proposed.
Finally a support vector machine (SVM) classifier with a radial-based function (RBF) kernel is used
to realize NLOS identification. Yan adopted a three-step localization approach in [4]. A Bayesian
sequential test is designed to figure the measurement data with NLOS effect. A modified Kalman filter
(MKF) is used to smooth the measurement range and mitigate the NLOS effect. After adjusting the
measurement noise covariance and prediction covariance by an established measurement equation,
a residual weighting algorithm is used to finish the final estimated target position. Ma presented an
indoor localization method based on angle of arrival and phase difference of arrival (PDOA) in [5].
An antenna array is used to distinguish multipath signals and two strongest paths are chosen to
perform localization. Using the angles and distances, virtual stations are established to convert NLOS
paths into LOS paths. Finally, after possible positions of the tag are calculated, the weighted least
squares combined with residual weighted algorithm are used to calculate real position of the tag.
Choi proposed a recurrent neural network (RNN) model in [6]. The RNN model takes a series of
channel state data to identify the corresponding channel condition. Numerous measurement data
from an indoor office environment are trained. Performances of existing schemes that use handcrafted
features are also compared. The proposed method yields high accuracy. Pak proposed a new NLOS
identification algorithm based on a distributed filter in [7]. The proposed algorithm uses distributed
filtering and data association techniques to identify abnormal measurements due to NLOS so that
negative effects can be prevented. Besides, the hybrid particle finite impulse response filter (HPFF)
was adopted. The proposed algorithm can mitigate NLOS effects by identifying NLOS situations
and self-recovering from failures. Gazzah combined received signal strength and angle of arrival
(RSS/AOA) measurements to solve the problem of LOS/NLOS identification in [8]. By proposing a
hybrid hypothesis test (HHT), the most probable two base stations (BSs) to be LOS can be identified.
If two LOS BSs are identified, localization proceeds directly. Otherwise, a weighting approach will
be applied. Pandey proposed an algorithm using visible light to identify NLOS condition in [9].
Using the time difference of arrival in a maximum likelihood framework, the reflection points are
first localized. Then, by applying novel geometric methods from range and reflection angles the
location of the sensor nodes is then estimated. Shi proposed to use Maximum Likelihood Estimator
(MLE) for localization in [10]. The algorithm utilizes all the available measurements and explicitly
takes the probabilities of occurrences of LOS and NLOS propagations into account. Yang proposed
a localization algorithm based on Import Vector Machine (IVM) and a novel NLOS identification
algorithm with feature selection strategy in [11]. The classification accuracy is ameliorated by a feature
selection strategy. By employing the probability outputs of IVM, the localization algorithm yields
higher positioning accuracy. Momtaz proposed a novel algorithm to identify and eliminate the NLOS
error based on subspace method in [12]. Simulations showed that the algorithm is faster and more
accurate compared with conventional methods, especially in a large-scale environment.

Some other algorithms conduct localization without identify the propagation status. Among these
algorithms, Tomic proposed a localization method using RSS and AOA [13]. In this paper,
a comprehensive study of the state-of-the-art (SoA) solutions is presented. The localization problem is
converted into a generalized trust region sub-problem (GTRS) framework [14]. The computational
complexity of this algorithm is linear with the number of reference nodes. Simulation results
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confirm the capacity of new algorithm of possessing a steady NLOS bias mitigation. Abu-Shaban
proposed a two-stage closed-form estimator to localize an MS by three base stations in cellular
networks [15]. A distance-dependent bias model is adopted to derive a range estimator as a first
step. Then the trilateration is used to find an estimate of the MS position. Ding proposed a new
convex optimization model which is built upon the concept of Euclidean distance matrix (EDM)
in [16]. The resulting EDM optimization is conducive to algorithm developments. The EDM model
outperforms the existing SDP model and several others. Wang proposed a multi-domain features
based device-free wireless sensing system in [17]. In order to characterize the block distributions,
the time domain and frequency domain measurement matrices are partitioned into basic structure
blocks. By considering the spatial relationship between adjacent blocks, coherence histograms are
adopted to characterize the distribution of the blocks. Yang proposed a novel NLOS mitigation
method based on Sparse Pseudo-input Gaussian Process (SPGP) whose complexity is lower than
Gaussian Process (GP) regression in [18]. The approach directly mitigates the bias of both LOS and
NLOS conditions. With less training data, SPGP can achieve performance comparable to GP regression.
Vilà-Valls proposed a robust Bayesian inference framework to deal with target localization under NLOS
conditions in [19]. The proposed algorithm takes advantage of the conditionally Gaussian formulation
of the skew t-distribution. The proposed algorithm is also being able to use computationally light
Gaussian filtering and smoothing methods. Numerical results show the performance improvement of
the proposed algorithm. Wang developed a novel robust optimization approach to source localization
in [20]. The approach uses time-difference-of-arrival (TDOA) measurements which are collected under
non-line-of-sight (NLOS) environment. Instead of obtaining the distribution or statistics of the NLOS
errors, the approach only assumes that the NLOS errors have bounded supports. Then, formulating
the TDOA-based source localization issue as a robust least squares (RLS) problem. Besides, in this
paper, two efficiently implementable convex relaxation-based approximation methods are proposed
since the RLS problem is non-convex. Park utilized a weighted least squares (WLS) method to
deal with line-of-sight (LOS)/non-line-of-sight (NLOS) mixture source localization problem in [21].
Error covariance matrix is used for the sample mean and median to minimize the weighted squared
error (WSE) loss function. Via simulation compared with the mean square error (MSE) performance,
the superiority of the proposed methods is verified. Li used a two-state Markov chain to represent
the switching behavior of the LOS/NLOS time-of-arrival (TOA) measurements in [22]. The algorithm
cast the cooperative localization problem into a state estimation for a class of jump Markov nonlinear
system. By applying the interacting multiple model (IMM) method and the extended Kalman filter
(EKF) technique, a multi-sensor multi-model filter has been developed. Gaber proposed properly
weighted least square (WLS) and hybrid WLS estimators which are used to mitigate the effect of
undetected direct path channel profiles in [23]. The paper also presented an adaptive method to
select the reference base station (BS) and extract certain weights so that the observations based on
the estimated channel profiles can be scaled. A semidefinite programming (SDP) relaxation based
method is proposed by Biswas in [24]. The algorithm requires very few anchor nodes to estimate the
position of the unknown node. The algorithm can also achieve minimal estimation errors even when
the anchor nodes are randomly deployed. He proposed an indoor localization method combining
the strengths of trilateration and fingerprinting in [25]. An optimization formulation following the
spirit of the trilateration helps to find the target location. By some experiments in different place,
the effectiveness of the algorithm is confirmed. Based on received signal strength (RSS) and angle
of arrival (AoA) measurements [26], Tomic proposed a Bayesian methodology for target tracking
in [27]. The proposed algorithm performs better than the algorithms which uses only information from
observations. In another paper [28], Tomic linearizes the measurement models and incorporates the
prior knowledge obtained from target state transition model. Simulation results confirm the efficacy of
the proposed algorithms.

When the propagation is known a priori, Wang improved the performance of the existing robust
weighted least squares (RWLS) method in [26]. In his paper, a procedure of correcting the incorrect path



Sensors 2018, 18, 2945 5 of 23

status which makes the RWLS method robust against the path status identification errors is proposed
so that the algorithm performance will not degraded when the path status is incorrectly identified.
In his other paper [27], Wang impose a weight to the term with respect to the NLOS measurements
so that more accurate LOS measurements are fully utilized. Then, a second-order cone relaxation
technique is adopted to relax the problem as a tractable second-order cone program.

3. Problem Statement

3.1. Signal Model

As shown in Figure 1, we assume there are N beacon nodes deployed randomly in a certain
scenario in which an unknown node is to be located. The coordinate of each beacon node is known
a priori and can be represented as [xi, yi] (i = 1, 2, ..., N). The coordinates of the unknown node are
unknown and represented as [x, y]. When the direct propagation path between the beacon node and
unknown node is blocked, the propagation state is NLOS propagation.
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Thus, the true distance between i-th beacon node [xi, yi](i = 1, 2, ..., N) and the unknown node at
time k can be represented by the following expression:

dk
i =

√
(xi − x)2 + (yi − y)2 (1)

The above equation describes the distance between i-th beacon node and the unknown node in
an ideal scenario. However, there are some noises in the practical scenario, including system noise and
measurement noise. In LOS state, the measuring distance between i-th beacon node and the unknown
node is given by:

d̂k
i =

√
(xi − x)2 + (yi − y)2 + ε (2)

where, ε is the measurement error which follows a zero-mean Gaussian distribution with standard
deviation σ2

i .
In some complex environments, the direct path between the beacon node and unknown node

may be blocked by an obstacle. The signal propagation ways are reflection, diffraction or refraction.
The actual propagation distance will increase. Therefore, the measuring distance between i-th beacon
node and the unknown node in NLOS state as [29,30]:

d̂k
i =

√
(xi − x)2 + (yi − y)2 + ε + εNLOS (3)
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where, εNLOS is the NLOS error, it obeys different distribution in different scenario including Gaussian,
uniform or exponential distribution.

When NLOS error obeys Gaussian distribution εNLOS ∼ N
(
µNLOS, σ2

NLOS
)
, it can be described as:

f (εNLOS) =
1√

2πσ2
NLOS

exp

(
− (εNLOS − µNLOS)

2

2σ2
NLOS

)
(4)

When the NLOS error obeys a uniform distribution εNLOS ∼ U(umin, umax), it can be described as:

f (εNLOS) =

{
1

umax−umin
, f or umin ≤ εNLOS ≤ umax

0 , else
(5)

When the NLOS error obeys an exponential distribution εNLOS ∼ E(λ), it can be described as:

f (εNLOS) =

{
λ−1e−εNLOS/λ , εNLOS ≥ 0

0 , εNLOS < 0
(6)

Figure 2 shows the cumulative distribution function (CDF) of measurement noise and NLOS error.
The measurement noise ε obeys a Gaussian distribution, i.e., ε~N(0, 12). The NLOS error is uniform
distribution, Gaussian distribution or experimental distribution, i.e., εNLOS~U(2, 6), εNLOS~N(2, 42),
εNLOS~E(3).
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3.2. A Brief Introduction to PF

The particle filter (PF) was developed in the late 1990s. It is another form of implementation of
recursive Bayesian filtering [31]. The idea of PF is to use some random sample points to describe the
probability distribution of the target. These sample points are called particles. Then, by adjusting the
weight of each particle and the location of the sample points, the estimated value of the unknown
node can be obtained through weighted value of the sample. It can be applied to any non-linear non-
Gauss stochastic system in principle.

Based on Bayesian estimation theory and the Monte Carlo method, PF is reckoned as the most
representative non-linear filtering implementation method. PF uses a bunch of particles to fit the target.
Those particles which fit the target closely get bigger weight, and then get copied. After several rounds
of filtering, particles can achieve a good fit to the target. PF doesn’t make any assumption about the
probability density distribution of the NLOS error. When it comes to large measurement noise, PF can
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achieve better results than the Kalman Filter and other filtering algorithms. There are three major steps
in particle filter. Firstly, PF generates a set of particles around the target as a prediction. By calculating
the distance difference between the target to the node and particle to the node, the weight of the
particles is given. Secondly, those particles with small weight are discarded. At the same time, those
particles with big weight are copied. Then, the reserved and the copied particles undergo a weight
normalization. After the normalization, the particles are used to locate the target. Finally, all particles
adopt a random movement in a small range so that the particles will not gather together. These particles
are prepared for the next localization.

4. Proposed Method

4.1. General Concept

In this paper, we assume that there are N beacon nodes and P particles to locate a mobile unknown
node. The coordinate of the p-th particle can be represented as

[
Xk

p, Yk
p

]
. As mentioned in Section 3,

the measuring distance between the i-th beacon node and the unknown node at time k is described as
d̂k

i . The distance between i-th beacon node and p-th particle at time k can be described as dk
i,p. And then

according to the distance difference, the weight of p-th particle to i-th beacon node at time k is given as Wk
i,p.

The flow chart of the proposed algorithm is presented in Figure 3.
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4.2. Weighting Particles

The first step of the algorithm is to weight each particle. The weight of particles is directly
concerned with the localization result. The proposed algorithm weights particles by residual analysis
rather than the normal PF which weights particles from a Gaussian function. The proposed algorithm’s
weighting process can be divided into three steps:

Firstly, calculate the distance difference from the p-th particle to the i-th beacon node and the
unknown node to i-th beacon node at time k. The distance difference between them is defined as the
residual of the p-th particle to the i-th beacon node at time k, which can be represented as resk

i,p. It can
be given by:

resk
i,p =

∣∣∣d̂k
i,p − d̂k

i

∣∣∣ (7)
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Secondly, we calculate the residual of the p-th particle to every beacon node and sum them. This is
defined as the residual of the p-th particle at time k, which can be represented as resk

p. It can be given by:

resk
p =

N

∑
i=1

∣∣∣d̂k
i,p − d̂k

i

∣∣∣ (8)

Finally, obtain the reciprocal of the residual of the p-th particle at time k, and the weight of p-th
particle at time k is acquired. It can be given by:

Wk
p = 1/resk

p (9)

The pseudo code Algorithm 1 can be summarized as follows:

Algorithm 1. Weighting particles.

input : d̂k
i,j, d̂k

i

output : Wk
j

for j = 1:P
resk

j = 0
for i = 1:N

resk
i,j = abs

(
d̂k

i,j − d̂k
i

)
resk

j = resk
i,j + resk

j
end for
for j = 1:P

Wk
j = 1/resk

j
end for

end for

4.3. Overall Selection

Once the weights of all particles are given, the algorithm launches its first selection. Since the
weight represents the likelihood that a particle fits the unknown node, the reasonable particle should
get a bigger weight. Therefore, the first selection picks up some bigger weight particles, and the
threshold is defined as the average weight of these particles. Assuming there are in total S numbers
of the particles which are selected from the first selection, the pseudo code Algorithm 2 can be
summarized as follows:

Algorithm 2. Overall Selection.

input: particles and their weight Wk
i (i = 1, 2, ..., P)

output: particles and their weight Wk
i (i = 1, 2, ..., S)

for j = 1:P

i f
(

Wk
j ≥

P
∑

i=1
Wk

i /P
)

particle reserved;
else

particle discard;
end for

The selected particles are considered reasonable because the weight is bigger. However, once
several beacon nodes judge the particle improperly, the particle can also get a bigger weight and pass



Sensors 2018, 18, 2945 9 of 23

the first selection. Therefore, the first selection is not a complete judgement. A second selection must
be added to confirm these particles.

4.4. Local Selection

After the first selection, some particles of bigger weight are reserved. These particles are reasonable
in an overall level. In contrast to the first selection, the second selection is conducted in a local level.
Since the step of weighting remains the residuals of the particles, these residuals can be used to
estimate the probability of the NLOS error. The residual which is bigger than the average value of these
residuals is assumed to be involved with NLOS error. The percentage of these residuals is considered
as the probability of the NLOS error, and it can be recorded as λ. Therefore, there should be about
N · (1 − λ) numbers of beacon nodes which are smaller than the average value of these residuals for
its LOS propagation. The residual of particles to some certain beacon node can also become large
when it is far away from the unknown node. Once it is bigger than the average value of residuals, it is
considered as unreasonable. It will be discarded. The second selection as a supplement of the first
selection avoids the mistake which can be made in first selection cause a local optimum. The pseudo
code Algorithm 3 can be summarized as follows:

Algorithm 3. Local Selection.

Input: Reserved particles from Selection I and their weight
Output: Particles and their weight Wk

i (i = 1, 2, ..., Q)

m = 0;
for i = 1:N

for j = 1:P

i f

(
resk

i,j ≥
P
∑

p=1
resk

p/P ∗ N

)
m = m + 1;
end for
end for
λ = m/P ∗ N
thr = N ∗ (1 − λ)

for j = 1:P
n = 0;
for i = 1:N

i f

(
resk

i,j ≤
P
∑

p=1
resk

p/P ∗ N

)
n = n + 1;

end for
if (n>thr)

particle reserved;
else
particle discard;

end for

4.5. Location Estimation

When the two-time selection is done, the algorithm uses the reserved particles to locate the
unknown node. Before the localization starts, the number of reserved particles should be checked.
If the propagation state is very bad, most propagation between beacon nodes and unknown node
is under NLOS status, the second selection will deny the validity of the selected particles from the
first selection. The contradiction between the first selection and the second selection results in no
particles being left after the two-time selection. Then, the algorithm conducts localization using the
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particles selected from the first selection. Otherwise, those particles which pass the two-time selection
are reserved to locate the unknown node. Assuming there are L particles reserved after the two-time
selection, where L = S when the contradiction between the first selection and the second selection
happens or L = Q when there is no contradiction between the first selection and the second selection.

Before the localization starts, the weight of the reserved particles should be normalized.
The normalized weight of the p-th particles at time k is represented as NWk

p. As for i-th beacon
node, the distance disk

i between it and the unknown node at time k is fit from the weights of the
reserved particles and the distance from the reserved particles to the i-th beacon node.

The estimated distance disk
i can be given by:

disk
i =

L

∑
p=1

NWk
p ∗ d̂k

i,p (10)

Then maximum likelihood is employed to get the coordinates of the unknown node.
The maximum likelihood method can be explained by the following equations. Firstly, based on
the coordinate of the unknown node and the beacon nodes the formula which illustrate the distance
between the node and the unknown node can be written as follows:

(x1 − x)2 + (y1 − y)2 = (dis1)
2

...
(xN − x)2 + (yN − y)2 = (disN)

2

(11)

Then, it can be simplified as follows:
2x(x1 − x2) + 2y(y1 − y2) = (dis2)

2 − (dis1)
2 −

(
x2

2 + y2
2
)
+
(
x2

1 + y2
1
)

...
2x(x1 − xN) + 2y(y1 − yN) = (disN)

2 − (dis1)
2 −

(
x2

N + y2
N
)
+
(
x2

1 + y2
1
) (12)

Representing it by a linear equation AX = B, where A and B are defined by:

A = 2


(x1 − x2) (y1 − y2)

(x1 − x3) (y1 − y3)
...

...
(x1 − xN) (y1 − yN)

 B =


(dis2)

2 − (dis1)
2 −

(
x2

2 + y2
2
)
+
(

x2
1 + y2

1
)

(dis3)
2 − (dis1)

2 −
(
x2

3 + y2
3
)
+
(

x2
1 + y2

1
)

...
(disN)

2 − (dis1)
2 −

(
x2

N + y2
N
)
+
(
x2

1 + y2
1
)

 (13)

Finally, the estimated coordinate of the unknown node is:

[x, y]T =
(

ATA
)−1

ATB (14)

4.6. Particle Copy and Movement

When the localization is finished, the reserved particles are going to be used in the next localization.
Therefore, a copy layer is constructed to decide the particle copy progress. The length of each layer is
the value of particle’s weight. Due to the weight normalization, the total length of the constructed
layer is 1. As the layer is constructed, a random number whose value obeys uniform distribution from
minimum value zero to maximum value one is generated. The random number falls into a certain
layer. Then the corresponding particle copies for one time. The copy process continues for P times
which are the total number of the particles. The scheme ensures the particles with bigger value of
weight got more chance to be copied and avoid the situation of local optimum.

The pseudo code Algorithm 4 can be summarized as follows:
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Algorithm 4. Particle copy.

setting Layers L =

(
0, NWk

1 , NWk
1 + NWk

2 , ...,
L−1
∑

i=1
NWk

i , 1
)

for m = 1:P
Generate rand number r;

for j = 1:L
i f
(

r < Lj+1

)
copy particle j;
break;

end for
end for

When the copy processing is completed, the new particles take a small range movement in which
the variance of coordinate of the reserved particles obeys a zero-mean Gaussian distribution with
standard deviation σ2

p , avoiding the gathering of these particles. Particles now can be used for the next
localization. The movement of particles can be given by:(

Xk+1
p , Yk+1

p

)
=
(

Xk
p, Yk

p

)
+ N

(
0, σ2

p

)
(15)

5. Simulation and Experiment Results

5.1. Simulation Results

In this section, we evaluate the performance of the proposed residual analysis-based improved
particle filter (RAPF) algorithm. We compared the proposed method with the Kalman filter (denoted
as KF) and particle filter (denoted as PF). The simulation is performed using MATLAB. The position
of beacon nodes for each Monte Carlo run is uniformly deployed in the 100 m × 100 m square space.
The propagation condition between the unknown node and beacon node is generated randomly with
probability α. The simulation results are obtained over 1000 Monte Carlo runs. We consider the Root
Mean Square Error (RMSE) as the performance metric, it can be given by:

RMSE =

√√√√ 1
K · tn

tn

∑
i=1

K

∑
k=1

(
(x(k)− x̂i(k))

2 + (y(k)− ŷi(k))
2
)

(16)

where tn = 1000, K = 100, [x(k), y(k)] is the true position of the target at time k, and [x̂i(k), ŷi(k)] is the
estimated position for the i-th run at time k.

5.1.1. The NLOS Errors Obey a Gaussian Distribution

The default parameter values in the simulation are shown in Table 2.

Table 2. The default parameter values.

Parameters Symbol Default Values

The number of beacon nodes N 6
The probability of LOS propagation α 0.6

The standard deviation of measurement noise σi 1
The NLOS error N

(
µNLOS, σ2

NLOS
)

N
(
4, 62)

The standard deviation of particle movement σ2
p 3

The number of sample points T 100
The number of Monte Carlo runs tn 1000
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Figure 4 shows a one-time localization result of RAPF. As we can see from the picture, the proposed
algorithm achieves a reasonable result even when the beacon nodes are deployed randomly.
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Figure 5 reveals the localization error of each sample point. Compared with the KF and PF
algorithms, the proposed algorithm displays a lower localization error.
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Figure 6 shows the cumulative distribution function of the localization error. It can be seen that
ninety percent of the errors of the RAPF are less than 6.2 m. In contrast, the errors of KF and PF are
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The standard deviation of measurement noise σi is also considered. As we can see from Figure 7,
the RMSE increases when the σi changes from 1 to 7. The performance of the RAPF is better than that
of the other two algorithms. Compared with the KF and PF algorithms, the localization accuracy of
RAPF is improved about 17.841% and 11.897%, respectively.
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Figure 7. The RMSE versus the standard deviation of measurement noise σi.

Figure 8 shows the impact of number of beacon nodes on localization error. Compared with KF
and PF, the RAPF algorithm has better localization result as the number of beacon nodes increases.
As the number of beacon nodes increases, more beacon node re under LOS condition in which KF
will get a better localization result than PF. When the number of beacon nodes is 5, the localization
accuracy of RAPF improves by 23.336% and 15.393% compared with KF and PF.
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To further evaluate the performance of the RAPF algorithm, we compare the RMSE as the mean
and standard deviation of NLOS error in Figures 9 and 10. It can be seen that the localization errors
of all three algorithms increase with the NLOS error increases. As shown in Figure 9, the average
RMSE of RAPF algorithm is 2.024 m, however the average RMSE of KF and PF algorithm are 2.554 and
2.379 m. In Figure 10, the RMSE of RAPF increases slowly compared with KF. When the standard
deviation of NLOS error is larger (σNLOS = 9), the localization accuracy of RAPF improves 25.093%
and 15.307% compared with KF and PF algorithms.
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Figure 11 shows the impact of the probability of LOS propagation α on the localization error.
It can be observed that the α values have a significant impact on localization error.
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The localization error decreases with the α increases. This is because the larger α, the less the
NLOS interference is. The localization accuracy of RAPF improves by 20.067% and 17.392% compared
with KF and PF.
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5.1.2. The NLOS Errors Obey a Uniform Distribution

The default parameter values in the simulation are shown in Table 3.

Table 3. The default parameter values.

Parameters Symbol Default Values

The number of beacon nodes N 6
The probability of LOS propagation α 0.6

The standard deviation of measurement noise σi 1
The NLOS error U(Umin, Umax) U(2, 12)

The standard deviation of particle movement σ2
p 3

The number of sample points T 100
The number of Monte Carlo runs tn 1000

Figures 12 and 13 show the localization error when the NLOS error obeys a uniform distribution,
i.e., εNLOS ∼ U(2, 12). Figure 12 shows the relationship between the localization error and sample
points. It can be observed that the proposed method possesses the highest localization accuracy for the
most sample points. Figure 13 shows the cumulative distribution function of the localization error.
Ninety percent of the errors in RAPF are less than 8 m. In contrast, the Kalman filter and particle filter
errors reach 11.3 m and 9.3 m, respectively. RAPF achieves lowest localization error.
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Figure 14 shows the effect of the measurement noise on localization error. The standard deviation
of measurement noise σi increases from 1 to 7. The results demonstrate that performance of the RAPF
algorithm is obviously better than that of the other algorithms, but compared with PF, the advantage
of the RAPF is not obvious when σi is large. The localization accuracy of RAPF improves 10.824% and
5.749% in comparison with KF and PF.
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Figure 14. The RMSE versus σi.

Figure 15 shows the localization error when the number of beacon nodes changes. As we can
see, the more beacon nodes deployed, the less localization error is obtained. KF and RAPF are greatly
affected by the number of beacon nodes. Among the three algorithms, RAPF always achieves the
lowest error. When the number of beacon nodes is 10, the localization accuracy of RAPF improves
12.637% and 12.605%, compared with KF and PF.
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The parameter of NLOS error is considered in Figure 16. The performance of the three algorithms
degrades when the Umax increase. RAPF shows the best localization result. It improves 10.270% and
8.963% in comparison with KF and PF.



Sensors 2018, 18, 2945 17 of 23
Sensors 2018, 18, x FOR PEER REVIEW  17 of 23 

 

 

Figure 16. The RMSE the maxU . 

5.1.3. The NLOS Errors Obey Exponential Distribution 

The default parameter values in the simulation are shown in Table 4. 

Table 4. The default parameter values. 

Parameters Symbol Default Values 

The number of beacon nodes N  6 

The probability of LOS propagation   0.6 

The standard deviation of measurement noise i  1 

The NLOS error ( )E   ( )4E  

The standard deviation of particle movement 
2

p  3 

The number of sample points T  100 

The number of Monte Carlo runs nt  1000 

Figures 17 and 18 show the localization results when the NLOS error obeys the experimental 

distribution, i.e., ( )NLOS E ~ . Figure 17 shows the effect of the standard deviation of the 

measurement noise i  
on the RMSE. It can be observed that the localization performance of KF is 

similar to that of the PF when i . is small ( = 1i ). The localization errors of the three algorithms 

increase when the measurement noise increases. The RAPF algorithm displays the best localization 

accuracy. 

  

Figure 17. The RMSE versus i .
 

Figure 16. The RMSE the Umax.

5.1.3. The NLOS Errors Obey Exponential Distribution

The default parameter values in the simulation are shown in Table 4.

Table 4. The default parameter values.

Parameters Symbol Default Values

The number of beacon nodes N 6
The probability of LOS propagation α 0.6

The standard deviation of measurement noise σi 1
The NLOS error E(λ) E(4)

The standard deviation of particle movement σ2
p 3

The number of sample points T 100
The number of Monte Carlo runs tn 1000

Figures 17 and 18 show the localization results when the NLOS error obeys the experimental
distribution, i.e., εNLOS ∼ E(λ). Figure 17 shows the effect of the standard deviation of the
measurement noise σi on the RMSE. It can be observed that the localization performance of KF is similar
to that of the PF when σi. is small (σi = 1). The localization errors of the three algorithms increase
when the measurement noise increases. The RAPF algorithm displays the best localization accuracy.
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Figure 18 illustrates the impact of parameter λ on the localization performance between the RAPF
and other methods. When the NLOS effect is weak (λ = 1), the performance of the RAPF is similar to
that of the KF. However, the KF algorithm is greatly affected by the parameter λ. The PF and RAPF
algorithm are comparatively stable. When the NLOS effect is strong (λ = 8), the performance of the
RAPF improves 24.829% and 13.995% compared with KF and PF.

5.1.4. Computational Complexity Analysis

In this subsection, we analyze the computational complexity of the three algorithms. The three
algorithms are codeds using Matlab R2016a. The test platfoem is a Windows 10 Professional PC with
Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz and 8.00 GB RAM.

We use the running time to illustrate the computational complexity. The running time is calculated
through the MATLAB TIC_TOC functions for elapsed time. TIC_TOC is a directory of MATLAB
programs which consider the MATLAB tic and toc functions for computing elapsed time.

As shown in Table 5, the KF algorithm has the lowest computational complexity. The PF algorithm
has the highest running time. This is because PF must take some time to generate and adjust
particles. Every node in the PF generates its own particles resulting in the highest running time
of PF. In RAPF, all beacon nodes use a set of particles together. The computational complexity of RAPF
is relatively moderate.

Table 5. The running times.

Algorithms Running Times

KF 0.01196 s
PF 0.12832 s

RAPF 0.05548 s

5.2. Experiment Results

To verify the localization performance of RAPF, we design a real experiment in a practical
environment. The chirp spread spectrum (CSS) localization system which is built with a nanoLOC
chip is used to obtain the measurements. The CSS node is presented in Figure 19.
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As shown in Figure 20, the progress of measuring between beacon node and the mobile node in
CCS localization system is as follows:

Firstly, node A sends a data package to node B. As the data package is received in node B, it takes
some time for node B to deal the data package and reply an acknowledgement to A. The time spent by
node B is represented as TreplyB. When the acknowledgement is received, node A calculates the time
which is represented as TroundA.

Secondly, node B sends a data package to node A. As the data package is received in node A,
it takes some time for node A to deal the data package and reply an acknowledgement to B. The time
spent by node A is represented as TreplyA.

Thirdly, when node B receives the acknowledgement, it calculates the time which is represented
as TroundB and sends it to node A.

Finally, based on the four measurements the time of propagation between node A and node B can
be given by:

T =

(
TroundB − TreplyA

)
+
(

TroundA − TreplyB

)
4

(17)
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As shown in Figure 21, there are eight beacon nodes and one unknown node deployed in a room
for our experiment. The beacon nodes are deployed around the desk. The desk is the obstacle which
causes NLOS propagation. In this experiment, the unknown node moves outside the desk for one
loop. Forty sample points are obtained. In this experiment, the measurement frequency of CSS nodes
is 20 Hz. The average of the 20 distance measurements can be obtained at each sampling point in
order to weaken the adverse impacts imposed to localization accuracy. When the measurements are
obtained, this localization algorithm is applied with the measurements using MATLAB to testify the
localization performance in practical environments.
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Figure 21. The practical environment.

After the measurements are collected, we compare the localization error of the proposed algorithm
and the other two algorithms. The localization error and its CDF are represented in Figures 22 and 23.
The average localization error of RAPF is 1.1521 m. The localization error of KF and PF reach 1.6718 m
and 1.4735 m, respectively. Analyzing the result, we can see RAPF achieves a lower localization error
than the other two algorithms. It improves about 31.08% compared to KF and 21.81% compared to
PF. As shown in Figure 23, ninety percent of the localization in RAPF is less than 2 m. In contrast,
the Kalman filter and particle filter values are 3.2 m and 2.7 m, respectively.
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6. Conclusions

In this paper, we have proposed a residual analysis-based particle filter algorithm. The proposed
algorithm takes the particle filter as a main body. Residual analysis is used in this algorithm to enhance
the accuracy of the localization results. RAPF uses residuals to weight particles and select reasonable
particles. The residual of particle is fully used in this algorithm. Besides, the proposed algorithm
doesn’t make any assumption on the distribution of the NLOS error which means RAPF is robust to any
type of NLOS errors. The simulation result and the experiment result confirm the robustness of RAPF.
Moreover, RAPF estimates the distance from the unknown node to beacon nodes in this paper, it also
can be used to estimate the coordinate of the target. In the future, we will attempt to investigate the
performance of the proposed algorithm in RSS and AOA localization. Moreover, the implementation
of the proposed method in a distributed way is another inteersting further research topic.
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