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Abstract: Clustering in wireless sensor networks has been widely discussed in the literature as a
strategy to reduce power consumption. However, aspects such as cluster formation and cluster head
(CH) node assignment strategies have a significant impact on quality of service, as energy savings
imply restrictions in application usage and data traffic within the network. Regarding the first aspect,
this article proposes a hierarchical routing protocol based on the k-d tree algorithm, taking a partition
data structure of the space to organize nodes into clusters. For the second aspect, we propose a
reactive mechanism for the formation of CH nodes, with the purpose of improving delay, jitter, and
throughput, in contrast with the low-energy adaptive clustering hierarchy/hierarchy-centralized
protocol and validating the results through simulation.

Keywords: k-d tree algorithm; hierarchical protocol; quality of service; routing protocol; WSN;
clustering

1. Introduction

Wireless Sensor Networks (WSN) have exploded in popularity in the last few years. Part of this
growth is due to the popularization of the Internet of Things (IoT), where connectivity, sensitivity,
interaction, and energy are elements of the systems in a WSN. In a WSN, a node is defined as the
minimal functional unit of a network and is comprised of a sensor/actuator, a central processing unit
(CPU), a memory bank, a wireless transceiver, and a power source. As a unit, the node suffers energy
depletion of its internal battery as a result of sensing, processing, data transmission and reception.

Interaction through wireless transmission in a WSN includes issues such as link viability, time to
establish communication, data loss due to competition overuse of a wireless channel, data loss due to
simultaneous transmission attempts, data loss due to repeated network flooding, and data loss due to
transmission range.

Network scalability problems are caused by the birth, reboot, and death of one or several nodes
in the network. Link problems in WSNs include neighbor discovery, message, loss, latency, and
congestion. WSNs also have routing problems such as communication path and loop discovery [1].
In general lines, WSNs have a wide range of problems, although most of them have been addressed
through communication protocols.

The aforementioned problems have been approached through flat and hierarchical routing
structures. In a flat routing structure, all the nodes in the network play the same role in end-to-end
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routing protocols. In hierarchical routing structures, nodes are classified by functionality and the
network is divided into groups or clusters, each of which chooses a leading node that is called Cluster
Head node (CH). The CH node coordinates activities inside and outside the cluster with non-CH nodes.

The main feature of flat routing structures is the ability to establish communication between
any two nodes in the network without the participation of a central node. These networks, also
called ad hoc networks, can operate in isolation, without connection to network infrastructure such as
the Internet.

A hierarchical routing structure organizes large-scale ad hoc networks into groups or clusters,
with the objective of improving network efficiency beyond the attainable level of flat routing structures.
Although hierarchical routing can increase control traffic, its topology allows for data traffic to be
confined within each cluster. Nodes inside each cluster can organize to optimize communications and
reduce interference caused by simultaneous data transmission.

Cluster-based hierarchical routing presents some advantages in scalability and communication
efficiency. Protocols based on this schema have been used to achieve routing efficiency in connection to
node energy levels. That is, nodes with higher energy reserves are candidates to becoming CH nodes,
and those with lower energy levels are used to monitor the environment. In this type of routing, CH
nodes have specific functions to improve the scalability, lifetime, and energy efficiency of the network.

Cluster-based routing structures represent a simpler approach to the issues of WSNs, lowering
the complexity of flat routing structures [2]. However, cluster-based routing schemes are, in general,
comprised of a cluster-formation and a CH-node selection mechanism. The behavior of the latter has
an impact on the WSN’s general performance since a high degree of variability in this mechanism
creates a proportional variability of the network’s response regarding delay, jitter, and throughput,
and an inversely proportional response in energy levels.

The cluster formation mechanism creates clusters of varying sizes and, as a consequence, of
varying density. This cluster formation method has an impact on the behavior of the network, which
responds according to its cluster formation type. For example, a heterogeneous cluster formation
causes data traffic within the clusters to become heterogeneous, that is, having varying dataflow
responses in the majority of network nodes. This flow variability causes the network to show different
delay and jitter values, limiting the usefulness of resource-intensive applications.

Given the problems found in the cluster formation and CH node selection mechanisms, our
goal is to propose a WSN communications protocol that uses a hierarchical routing schema called
H-kdtree. Its routing algorithm is based on the k-d tree algorithm, which allows creating partitions
in an area with the mean of the data of one of its dimensions. Additionally, the H-kdtree protocol
proposes a low-variability CH node generation mechanism, with a positive impact on delay, jitter,
and throughput, compared with the low-energy adaptive clustering hierarchy protocol (LEACH) and
low-energy adaptive clustering hierarchy-centralized (LEACH-C).

As a comparison, we have selected the LEACH and LEACH-C protocols, on account of being
the most widely used hierarchical clustering protocol and also the most discussed in the literature.
Clustering protocols work through one or several metrics that provide the necessary ability to manage
network traffic efficiently and to improve the experience of a user or machine in different network
environments. These improvements are usually in one or several network metrics such as load
balancing, energy consumption, scalability, latency reduction, data traffic maximization, errors and
data loss minimization. Quality of Service (QoS) is the improvement in one or several of these network
metrics.

This article analyzes the performance of the LEACH, LEACH-C and the proposed H-kdtree
protocol, by measuring the following metrics: delay, jitter, throughput, packet drop rate (PDR), and
average network energy.

This article is structured as follows: Section 2 includes a review of literature related to cluster
formation and CH node selection. The fundamental basis for LEACH, LEACH-C and k-d tree is
described in Section 3. Protocol considerations and a description of the configuration and data



Sensors 2018, 18, 2899 3 of 25

transmission phases are discussed in Section 4. Section 5 includes parameters, metrics, and results of
the simulation of the proposed protocol. Finally, Section 6 presents the conclusions.

2. Related Work

This section presents some of the most relevant works about techniques and mechanisms for
cluster formation and CH node selection.

2.1. Cluster Formation

In WSNSs, cluster formation is a technique that allows the classification of nodes in groups or
clusters so that every node in a cluster shares a certain degree of homogeneity regarding the techniques,
rules or heuristics on which the selection is based.

In the majority of distance-based cluster formation algorithms for WSNs, it is assumed that the
nodes of the network know their a priori location in the plane. However, the literature includes
proposals where nodes transmit their distance to a Base Station node (BS) via either Received Signal
Strength Indicator (RSSI) [3] or geo-positioning by using the Global Positioning System (GPS) [4].

The main objective of partition clustering algorithms in WSNs is to divide the nodes into k
partitions, according to their position. Each partition is considered a cluster. The partitioning technique
will depend on an objective function. The most representative clustering mechanisms employed in
WSNs are k-means [5-7], fuzzy c-means [8], k-medoids [4,9].

The hierarchical grouping method in a WSN tries to build a tree-based network topology mainly
derived from the position of each node. This grouping process is represented by topologies with two
or more jumps to a BS node. Some of the most representative algorithms are LEACH [10], LEACH
variations [11-13].

Density-based cluster formation methods assume that nodes in each group are extracted from
a probability distribution in relation to the total number of nodes in the network. Some works in
this area are: to maximize the network lifetime [14,15], adaptive clustering [16], and density-based
fuzzy imperialist competitive clustering algorithm [17]. The approaches of cluster formation based on
cooperation have provided solutions to the problem of energy management using the information of
the energy spectrum detected [18].

2.2. Cluster Head Selection

Cluster-head capabilities depend on the clustering objectives or focus used in their formation, and
taking into account the capabilities of the nodes and their effective range. Most of the work on CH node
selection has focused on the energy capacity of network nodes [19,20]. The following node attributes
have been differentiating factors among the various clustering and CH node selection schemes.

Regarding the mobility or stationarity of nodes and CH nodes in WSN hierarchical routing,
some proposals adhere to mobile nodes where membership to each node changes dynamically and
clusters are required to auto-configure and keep an updated members list with incoming and outgoing
nodes [21,22]. Other proposals favor a stationary approach, in which all nodes tend to group into stable
clusters, which allows for simpler network administration and intra/inter-cluster communications [23].

The literature includes types of nodes of extended hardware capability [24]. Some algorithms
include references to advanced nodes, defined as those nodes with more energy [25]. Other
approaches focus on network interoperability, with nodes for different types of connectivity [26],
and interoperability between nodes of fixed and wireless networks [27].

The types of roles of a node in a hierarchical protocol can be either a data transmission node or a
CH node, and each node can change roles between rounds. Some proposals include auxiliary nodes
that can take the role of the CH node in cases where the CH node fails [28]. Other approaches use
a fuzzy inference system to improve the adaptability of the selection of CH nodes, finding that the
stochastic selection methods can not guarantee the availability of CH nodes [29].
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This article takes into account several aspects that are not approached completely in the cited
literature. In particular, this article proposes a hierarchical routing protocol based on the k-d tree
algorithm and on a reactive mechanism for the formation of CH nodes, validating its QoS through an
experimental approach through simulation. Complementary information can be consulted in [4,30],
also aspects related to the location of nodes in WSN [31], design problems [32] and the extension of
possible applications in other areas of knowledge such as robotics [33,34], social networks[35] and
applications that can support QoS [36,37].

3. Background and Preliminaries

The following subsections present the working principles of the LEACH and H-kdtree algorithms,
as their key concepts are used in the proposed protocol.

3.1. The LEACH Protocol

The Low-Energy Adaptive Clustering Hierarchy protocol (LEACH) uses a cluster-based routing
scheme to minimize total network energy consumption. In LEACH, nodes deployed in an area are
organized into clusters, with each cluster having a CH node, as shown in Figure 1. The communication
process is divided into two phases: the configuration phase and the stable state phase [10].

During the configuration phase, the CH nodes and member nodes of each cluster are selected.
During the stable state phase, nodes are added to the CH node and remain in waiting to initiate data
transmission to the Base Station (BS) node, using the sequence shown in Figure 2. In the literature,
many authors refer to the base node as Sink node [38], which we refer to from this point on as
Sink/BS node. The duration of the stable state phase is longer than the configuration phase, due to the
processing work performed in it. Consequently, energy consumption during the stable state phase is
higher.

_» CH CH

e’ i

@ Base st ation -.——‘.PCH-(—’

®
e & e :’7;“?.

Figure 1. LEACH protocol topology.

Round
« Configuration Phase -|-7 Stable state phase
CH Cluster Slot Slot Slot
selection | formation node 1 node 2 node N

Figure 2. LEACH protocol phases.

During the configuration phase, the nodes that will become CH nodes for the current round are
selected independently and randomly, with the requirement that their energy is greater than zero and
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a lower threshold. The capacity to become a CH node is determined by the generation of a random
number (R, ) where R, € [0,1]. The CH node is selected if R,, < T(n), where T (n) is a threshold value
obtained from Equation 1. The CH node will transmit its nomination to the nodes in the cluster. The
nodes in the cluster are selected by their distance to the CH node and, in some cases, this is measured
through the received signal strength indicator (RSSI) [39]:

p .

0, another case.

where p is the probability for a node to become CH node over all the nodes in the network, r is the
current number of selection rounds, and G is the set of nodes that were not selected as CH nodes
before L rounds.

The CH nodes selected for each cluster will reserve a free slot for data transmission of the member
nodes by using a distribution of a TDMA programming table that will indicate each CH node the
data transmission sequence, giving CH nodes the possibility of staying in repose for the longest
possible time.

Using TDMA for data transmission prevents collisions within each cluster [40]. In the steady state
phase, CH nodes compile data from the nodes in each cluster and send them to the Sink/BS node. Data
redundancy may occur during this phase. The redundant packets being processed and transmitted to
the Sink/BS node result in an increase in unnecessary network traffic and overall network bandwidth,
which directly affects energy consumption. The more redundant data is processed, the more energy
will be wasted. Data transmission to CH nodes saves energy in comparison to direct data transmission
from the nodes to the Sink/BS node. Therefore, to avoid the early death of CH nodes, all the nodes in
the network will elect other CH nodes, repeating both phases for every round during the lifetime of
the network.

For every node, we used the energy model described in [41], which is shown in Figure 3. This
assumes that the wireless channel is completely symmetrical, so the energy used in transmitting a
message through the round-trip route between a network node and the Sink/BS node through the
CH node, v; and v; is equal. The free space channel model used is dz(vi, vj), as the nodes are located
in a plane and remain static and we assume that there is a direct line of sight between the network
nodes and the Sink/BS node. If the communication distance d(v;, v;) from v; to v; is greater than the
threshold distance dy, that is, d(v;, v]-) > dy, the model chosen is the multipath fading model d*(v;, vj).
This is the case for both the LEACH protocol and the H-kdtree protocol presented in this article. Energy
consumption (Et I,d(v;, vj)) is calculated as:

Ep— { l- Eolec + l- €fs - d24(U,‘, vj),d(v,», Z)]) < dy, (2)
I Eec + 1+ €amp - d (vi, ‘U]‘),d(vi, vj) > do,

where [ is a message of I to be transmitted over d(v;,v;), given by Er(l) = I - Egec, where Egjec
represents the loss of the transmission circuit as a function of digital encoding, the type of modulation
used, filtering processes and signal dispersion, based on energy coefficients € - d?(v;, vj) and €amyp -
d*(v;, v;j) for power amplifiers in two channel models.

Er,(.d) } 4 I B,
i ! i ' : i {pies packet
Upies P‘uk“”:i Transmit Tx Amplifier ; Recieve 3 bits

Electronics i | Electronics

:»; Eelec- 1 €amp 1 - dar JE :“ Eelec- 1

Figure 3. Radio energy model.
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One of the characteristics of LEACH and its different variations is that it maintains the
configuration phase, transmission and a hierarchical topology of two jumps. Under these
characteristics, the algorithm LEACH runs in O(n - log - m) time for n sensor nodes and m CHs [42].

3.2. LEACH-C Protocol

The LEACH-C protocol is a centralized version of the LEACH protocol, and, therefore, it uses
the same phases of the LEACH protocol, which are configuration and transmission phase forming
rounds. During the LEACH-C configuration phase, each node in the network sends a packet to the
Sink/BS node that contains the location and power level. The Sink/BS node calculates the average
energy value of all the nodes, selected as possible node CH, only the nodes with more energy than the
average value of the energy of all the nodes in the network.

The Sink/BS node uses an annealing algorithm for the formation of clusters [43,44]. The other
LEACH-C operations are the same as those of LEACH and the results show that LEACH-C has energy
improvements on LEACH [45], for the following reasons:

o  The Sink/BS node is static and is the one that organizes. the roles of each node in the network,

centralizing information and cluster formation.
When clusters are formed, they do not communicate between nodes to save energy.
The Sink/BS node in the configuration phase establishes the CH nodes beforehand; therefore, the

network can use energy more effectively.

3.3. k-d Tree Algorithm

Given the problem of two-dimensional rectangular range queries, a rectangle is divided into a
smaller rectangle, which in turn is divided into another rectangle, and the process is repeated 7 times
(depth), obtaining successive smaller areas. Within these areas (rectangles), we can locate a set of
points that can be referenced as a unit, accessible via a route originated in a binary tree. Figure 4 shows
the basic working idea of the k-d algorithm [46].

15 11 17

. lw . SN N
7 O A A AT A

18 p3  pa 19 p7  p8  p9  plo

ey | 8 » AT A

L p2

Figure 4. Visualization of the k-d tree algorithm.

Given P as the set of n points in the plane, we can assume as a principle that no two points share
the same (x,y) coordinates. There are no cases where two or more points are superimposed.

Definition 1. In a two-dimensional rectangular range query in P, we ask for the points in P inside the query
rectangle [x : x'] x [y,y']. A point p := (px, py) is inside that rectangle if and only if:

px € [x:x'Tand py € [y, y]. 3)

Definition 2. Recursive binary search tree for a set of points in one dimension is divided into two subsets
of approximately the same size, based on the median of the set of points. In this way, the root contains two
subsets distributed in two subtrees, where each subset of the subsets already created become subtrees that will be
processed recursively.
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The procedure to build the k-d tree has two parameters: one set of points P and an integer value

that represents the depth of the subtree root, as shown in Algorithm 1.

Algorithm 1 k-d tree algorithm

Require: A set of points (x,y) named P and the tree depth value
Ensure: The root of the k-d tree

1

2
3
4
5

function: build_k-d_tree (P,depth)

. if (P contains only one point) then

return the root with that point
else if (depth is an even number) then

divide the values of P into two subsets by using the median of the x coordinates of the P set. It
generates two subsets:
if (Py, < median(x)) then
P}i := subset s
else
Pi := subset jon;
end if

. else

divide the values of P into two subsets by using the median of the y coordinates of the P set. It
generates two subsets:

. end if

depth = depth +1

: end function

For the function of the Algorithm 1:

Creates a root node with two subsets P(l*)‘ for the left side of the tree and P(z* ) for the right side of

the tree.

() is the subset of initial data where the partitioning of points will begin. In this algorithm, x is
used for even depth values and y is used for odd values.

Repeat steps 1 to 14 to create the branches of the tree, where the input parameter with the input

data set is the subset P(lj‘.

The time used in k groups of the kd-tree algorithm is O(k) for the depth of the tree and because P

is a finite set each partition has a length in time of O(log(n)), so the time total used in the algorithm is
O(log(n) + k) [46].

4. Proposed Protocol

This section describes in detail the hierarchical k-dimensional tree algorithm (H-kdtree). Unlike

conventional WSN routing protocols like LEACH, HEED, TEEN, etc. [47,48], which used a few
variations on Equation 1 to form clusters and select CH nodes according to nodes’ residual energy and
their distance to the Sink/BS node, H-kdtree uses the one-dimensional clustering principle taken from
the k-d tree algorithm. This algorithm generates a hierarchical two-hop network topology similar to
LEACH's.

Next, we will explain the clustering mechanism of the k-d tree algorithm intuitively, using the

data from Table 1.
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Table 1. Test data.

Dimension x Dimension y
node 1 54 93
node 2 80 55
node 3 96 86
node 4 74 77
node 5 42 68
node 6 22 45
node 7 11 53
node 8 27 75
node 9 64 29
node 10 81 63

The data in Table 1 are divided into two clusters, starting data partition with data from the x
dimension, implementing the median value(v,,), where vy, = (Umax + Ui ) /2. For the data in Table 1,
we have a median value of 53.5 for the x dimension, as shown in Figure 5.

y (meters)

Cluster 2
*

Cluster 1

*

.
* %=53.5

Cluster 1 Cluster 2

*

R L A
60 80 100 120
x (meters)

Figure 5. k-d tree algorithm with x-dimension.

In Figure 5, the algorithm shows the formation of two clusters. Each of the clusters found contains

three variables:

Dimension used for the division (x or y),
Median value (vy,),
Limits of the nodes in each cluster.

The limits on the y dimension for cluster, and cluster; are, respectively, 29 < Y(cyster;) < 75y
29 < Y(cluster,) < 93. The structure in Figure 5 is divided in the same way but alternating the dimension,
which in this case would be y, obtaining a new structure with four clusters, as shown in Figure 6.

y (meters)

Cluster 1 # Cluster 2
>53.5
'S . X
L 4
e
| *
L 4
Cluster 3 ¢ Cluster 4 | y>52 | y>61
T
0 20 40 60 80 100 120 * # % %
X (meters)

Cluster 3 Cluster 1 Cluster 4 Cluster2

Figure 6. k-d tree algorithm with dimension on y.

Based on the structure obtained so far, as shown in Figure 6, we change dimension and begin to
create new partitions, as shown in Figure 7. The process shown so far is repeated iteratively until the
stop condition is met, being the number of clusters or the minimum group condition.
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Algorithm 2 has the k variable as the input parameter. The k variable represents the number of
clusters desired (this is a parameter similar to the Algorithm 2 has the k variable as the input parameter.
The k variable represents the number of clusters desired (this is a parameter similar to the k-means
algorithm.) If k = 3, the first iteration obtains the data in Figure 5. Up to this point, we have two
clusters. In the next iteration, we would obtain four clusters, but since the goal is to obtain three
clusters, we take the clusters obtained so far and we select the cluster with the highest node count and
partition only this cluster. In this way, we obtain the desired three clusters. In case the two clusters
obtained in the first iteration have an equal number of nodes, one of them is chosen randomly.

¥>52.5 ks
CEL‘LE ter |5 *

Cluster 1

T2 Cluster 6
* |y>52 |y>61

* Vool
Cluster 3 ®  Cluster 4 Cluster 3 x=37.5 Cluster 4 =75
e
0 20 40 60 80 100 120

x (meters)

Cluster 1 Cluster 2 Cluster 5 Cluster 6

Figure 7. Clustering using the k-d tree algorithm.

4.1. Protocol Considerations

The maximum number of clusters that can be obtained is the total number of nodes divided by
four. The minimum cluster condition regarding the number of nodes is three nodes and a CH node. In
case we have a remainder smaller than four, the remaining nodes are added to the nearest cluster. In
other words, the last partition of the current dimension in the algorithm is not performed.

The working principle of the H-kdtree protocol determines the following condition and
consideration for the management of the complete network: Every action in the network is centralized
and managed by the Sink/BS node, and all nodes in the network are within the range of the
Sink/BS node.

Every node has a minimum energy threshold. This threshold is a function of the power supply
voltage of each node. Every node will send the Sink/BS node a “Death” message when their power
reserves reach 3% of the minimum operational threshold, informing the Sink/BS node that it is dead.

4.2. Configuration Phase

The Sink/BS node begins flooding the network with a broadcasted “Hello” message, to which
every node in the network will reply with an acknowledgment message informing their nd energy level.

With the information obtained in the flooding process, H-kdtree begins the cluster formation
process, based on the k-d tree algorithm. Once the clusters are formed, the following step is to select
the CH nodes, based on the energy levels obtained during the flooding process. The node with the
highest energy is selected as CH node. If two or more nodes have the same energy level, one of them
is randomly selected to become a CH node.

At this point, the Sink/BS node already has information of every cluster, with their respective CH
node and member nodes. The next step is configuring static routes. The Sink/BS node sends the CH
nodes the static routes information, which is then forwarded to the rest of the nodes in each cluster.
The result is the typical LEACH hierarchical routing, using a two-hop topology.

4.3. Transmission Phase

The data transmission phase is divided into rounds. Every round has a time slot of N-nodes,
where N-nodes is the number of non-CH nodes in the network. During this period, the Sink/BS node
sends a “Request” packet to the first CH node. Once the CH node receives this “Request” packet, it
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organizes a programmed transmission with the nodes in its cluster by using TDMA as access method.
This process is repeated for all the clusters in the network.

The “Death” packet informs the Sink/BS node that a node has just died. Nodes in a cluster
transmit the “Death” packet to the Sink/BS node using their respective time slot. If a CH node dies, it
transmits its “Death” packet to the Sink/BS node when queried by the Sink/BS node. At the end of
each round, the Sink/BS node reviews which nodes sent a “Death” packet. In case a “Death” packet
arrives at the end of a round, the Sink/BS node begins the configuration phase, as shown in Figure 8.

Round 1 Round 2 “ le—— Roundn Round N

Data
transmission

Received Data
packet | transmission
“Death” phase

Received
packet
“'Death”

Received Data
packet transmission
“Death”

Data
transmission
phase

Received
packet
“Death™

Configuration
Phase

Configuration
Phase

Tovdprooess | omuster e Static routing Slottime Slottime. Slottime | Received packet
"y Iy . o configuration node 1 node 2 o node N “'Death™
‘Hello' kd tree CH

c Phase ! Data phase

Round 1

Figure 8. Protocol header H-kdtree.

start

round = 0

<

v

flood process
send package "Hello”

cluster
formation

node
selection CH

Configuration of
static routes

-~

send package
“Request”.

round = round + 1

receiving packets
from the nodes

"Death”
package received

Figure 9. Routing flowchart H-kdtree protocol.

Figure 9 below shows the H-kdtree protocol’s algorithm. Algorithm 2 shows the cluster formation
process as a complement to the processes described in this section.
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Algorithm 2 Cluster formation based on the k-d tree algorithm

Require: Matrix obtained in the flooding process, with the following fields: id,,,4e, Xcor, Yeor, €n1EYY.
The dim variable is the value of the column to that corresponds to the dimension to be selected,
where Xcor = 2, Yeor = 3.

Ensure: List with the vectors of the positions selected in each cluster

1: function: cluster_formation (mat,dim)

#Variable vecq, stores the positional values of clustery
2: vecy = rep(NA, length(mat[,1]))

#Variable vec,, stores the positional values of cluster
3: vecy = rep(NA, length(mat[,1]))

#Calculate the median of the selected partition
4 vy, = median(mat|,dim))

#Traverse the data in the selected dimension

5: for (i in 1:length(mat[,1])) do

6:  #Subdivide the dimension into two clusters, depending on the median value
7. if (matli,dim] > v,,) then

8: vecy[i] =i

9: else
10: vecyli] =i
11:  endif
12: end for

13: return (list(vecy, vecy, vy))

5. Simulation and Results Analysis

For the simulation, we used NS-2 version 2.35, simulating LEACH, LEACH-C and H-kdtree in
the same network environment to make a comparison and obtain metrics in the same simulator. The
LEACH, LEACH-C and H-kdtree algorithms were implemented using R version 3.4.3. Implementing
the algorithms using R allowed us to generate scripts in “.tcl”, which were embedded in the main
script to configure position and initial energy of the nodes, static routing between nodes, CH nodes and
Sink/BS node, along with traffic generated in each time slot, and planned information transmission in
TDMA.

5.1. Simulation Parameters

There were two simulation scenarios for LEACH, LEACH-C and H-kdtree. Scenario 1 consisted
of a random deployment of sensors. Scenario 2 was a sensor deployment with higher density in the
central zone of a deterministic scenario, as shown in Figure 10.

The use of random and deterministic node deployment scenarios aimed at abstracting network
traffic behavior to evaluate QoS. Node deployment was done in a 100 m x 100 m area, maintaining
the same density in both scenarios. The deterministic scenario aimed to evaluate network traffic in
a scenario with higher density in its central area, with the objective of analyzing the influence of
clustering in both types of scenarios.

Table 2 shows the simulation parameters used. These parameters are used in literature mainly to
evaluate the performance of LEACH and LEACH-C [49-52].
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Figure 10. Evaluated scenarios.

Table 2. Simulation parameters.

Parameters Values
Protocols LEACH, LEACH-C and H-kdtree
Initial energy 0.5]

Eelec 50 nJ /bit

€amp 0.0013 pJ /b/m*

€fs 10 p]/bit/m2
Data aggregation Ep 4 5 nJ/bit/signal
Message size 4000 bits
Additional energy a=1
Heterogeneity m = 0.5

CH probability p=03,k=4
Scene Random, Deterministic
Number of nodes 200

Position node sink/BS (x, ) (50,150)

Type of traffic uDp

Hierarchical protocols present two types of networks, according to their energy: homogeneous
and heterogeneous networks. In homogeneous networks, the initial energy level is the same for all
the nodes in the network. In heterogeneous networks, the nodes in the network have different initial
energy values.

In the scenarios shown in Figure 10, the network is divided into two energy levels. This energy
division is represented by the parameter m, which is used to calculate cluster energy (Es) [53]. (Egs)
can be calculated as follows:

Ecls:Ncls'EO'(1_m)+Ncls'm'EO'(1+“)' (4)

where Ej is the initial energy of a regular node, N is the number of clusters, and m is the percentage of
nodes in the network with an advanced energy level. The quantity of advanced energy is represented
by a. H-kdtree uses the simulation parameter k to obtain the depth with which the nodes in the network
will be partitioned. This partition is similar to LEACH’s p parameter, which is used to estimate the
expected number of CH nodes.

5.2. Simulation Metrics

To assess data traffic performance and QoS in the proposed scenarios, we used the following
performance metrics:



Sensors 2018, 18, 2899 13 of 25

5.2.1. End-to-End delay (EED)

Is the time elapsed since a packet is sent by a node and until the packet is received by the Sink/BS
node, taking into account the latencies experienced in all its path, including the latency of the CH node
[54]. Tt is calculated as follows:

EED = Trec - Tsentr (5)

where T, is the time when the Sink/BS node receives a data packet, and Ts¢ is the time when a
non-CH node sends that data packet.

5.2.2. Throughput

This is the number of bits that can be transmitted by each node to the Sink/BS node in a period of
time [55]. The sum of the throughput of each node in the network is known as network throughput.
The throughput is obtained by dividing the total number of packets received (by the Sink/BS node) by
the total time for each round

paCketSreceived X puCkEtsize

Throughput = :
total _timey,ansmitted

(6)

5.2.3. Packet Delivery Ratio (PDR)

This is the ratio between the number of data packets received by the Sink/BS node and the number
of data packets sent by the network nodes [56]. The PDR value can be obtained by the following
equation:

)N NO—PaCkEtreceived
Y. No_packetsent

PDR(%) = x 100. @)

5.2.4. Jitter

Jitter can estimate the instability of a communication link. It is the variability in the time needed
by a packet to reach the previously transmitted packet [57]. It is calculated by:

1 y/Delay; — Dela
Jitter = Z y;\[ ]/.

i=0

®)

5.2.5. Auxiliary metrics

Other performance metrics used in hierarchical routing protocols are summarized below. These
metrics are the synthesis of the results in terms of node extinction per round. The metrics evaluated in
both protocols are:

e First node died (FND): It is the number of rounds in the network until the first node has depleted
its energy and died.

e Half of nodes died (HND):It is the number of rounds in the network until half of the nodes in the
network have depleted their energy and died.

e Lastnode died (LND): It is the number of rounds in the network until all nodes in the network
have depleted their energy and died.

5.3. Results and Discussion

In the results obtained, one of the most stable parameters found in the proposed H-kdtree protocol
is related to the formation of CH nodes, as shown in Figure 11. In this section, we analyze the impact
of low variability in CH node formation, in relation to the following performance metrics: delay;,
throughput, and jitter, and their results are interpreted as QoS.
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Figure 11. Cluster Head formation behavior.

Regarding CH node formation in each round, we observed that LEACH and LEACH-C reduces
the formation of CH nodes as nodes die. On the contrary, H-kdtree increases CH node formation in the
network because of the minimum nodes per cluster value: as the number of nodes goes down, H-kdtree

tends to maintain its k value by iterating more times, which tends to comply with the minimum nodes
per cluster condition. This behavior can be seen in Figures 11 and 12 after round 80.
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Figure 12. Dead nodes.

Regarding energy levels, we did not find a significant variation or tendency in H-kdtree compared
to LEACH and LEACH-C, as shown in Figure 13. The reason is that the energy that LEACH and
LEACH-C used in node formation is offset by the energy used in selecting CH nodes in H-kdtree,
being that the latter is more stable in terms of variations and allows for a more stable behavior in the
data transmission phase. Figure 12 shows node death compared to energy. H-kdtree resulted in a
lower number of dead nodes in both scenarios, compared to LEACH and LEACH-C.
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The scenarios allow us to assess QoS features from a hierarchical point of view for LEACH,
LEACH-C and H-kdtree, as the protocols share a clustering topology with a two-hop distance to the
Sink/BS node.

Regarding delay, the scenario with random node deployment shows more delay than the
deterministic scenario with more density in its central area. H-kdtree maintains a stable number
of CH nodes for the maximum possible number of rounds. This simplifies the work of the Sink/BS
node, as each node has an identifiable death threshold that, when reached, triggers the transmission of
a “Death” packet to the Sink/BS node to inform its death. This feature enables H-kdtree to maintain a
network topology for the maximum possible number of rounds. This is not possible for LEACH and
LEACH-C, per changes in the network topology in each round.

In the rounds we evaluated in the random scenario, H-kdtree changes the topology of the network
five times, and nine times in the deterministic scenario, as shown in Figure 12. LEACH and LEACH-C
changed its topology 100 times in both scenarios (in each round, the topology changes).

CH nodes do not transmit sensory data. CH nodes compile packets from each cluster and
retransmit them to the Sink/BS node. For this reason, if the network topology remains constant, delay,
jitter, and throughput metrics will not vary, as these three metrics are a function of time. On the other
hand, TDMA divides the network nodes into tie slots and ensures no packet loss due to simultaneous
transmission.

In both scenarios, H-kdtree shows the lowest values for Delay and Jitter, due to H-kdtree’s low
variability of topology, compared to LEACH and LEACH-C. This is shown in Figures 14 and 15.

Delay (seconds)

Random scenario

H-kdtree
*—LEACH

4— LEACH-C)
& ry

Delay (seconds)

Deterministic scenario

H-kdtree
*—LEACH
4—LEACH-C|
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0,064
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Figure 14. Delay behavior.

Random scenario
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*—LEACH
4—LEACH-C

0,04 4

Deterministic scenario

H-kdtree
e—LEACH

Figure 15. Jitter behavior.

The stability of H-kdtree allows data traffic to remain constant, with very low variability in the
rounds we evaluated as compared to LEACH and LEACH-C, in both scenarios. The results shown in
Figures 14-16 support our recommendation for multimedia applications, due to its stability in delay,
jitter, and throughput metrics.
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Figure 16. Throughput behavior.

5.4. Results Summary

Figure 17 shows a general overview of the distribution symmetry of metrics, showing that a)
LEACH and LEACH-C shows a tendency to a symmetrical distribution of CH nodes in both the
random and deterministic scenarios (This is due to the random function used in its algorithm). This
result does not occur with H-kdtree. The four anomalous values shown in LEACH and LEACH-C are
the minimum and maximum values in the observed rounds, outside the first and third quartile.

The anomalous values for H-kdtree in the deterministic scenario are in the last rounds. Regarding
CH node formation, H-kdtree shows low variability, with most of the data in the first and second
quartile. Our interpretation is that at least 75% of CH nodes formed showed low variability along the
observed rounds.

Figure 17a and Table 3 show the low variability in the number of CH nodes. H-kdtree kept the
number of CH nodes below the number of CH nodes generated by LEACH for the first 75 rounds (Q3).
H-kdtree showed a reduction of 14.21% for the random scenario and of 30.14% for the deterministic
scenario, as compared to LEACH.

Regarding average energy consumption for all nodes as shown in Figure 17b and Table 4, the
energy behavior was similar in both H-kdtree and LEACH during the observed rounds. LEACH-C
presents an energy efficiency above 40%, in relation to LEACH and H-kdtree. Figure 17c and Table 5
shows a proportional relationship between CH node formation and the number of dead nodes along
the observed rounds.
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Figure 17. General energy metrics with 200 nodes.
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To compare the results and quantify them as percentages, we used normalized averages. This
will allow us to estimate the performance improvement for the metrics in the protocols, taking as a
reference point the results for LEACH in the random scenario.

Table 3. Number of cluster head with 200 nodes. (r) random - (d) deterministic.

Protocol LEACH (r) LEACH-C(r) H-kdtree(r) LEACH(d) LEACH-C(d) H-kdtree (d)
Min 17 15 23 21 12 20

Q1 24 28 23 27 24 20
Average 28.01 34.15 24.03 30.22 31.69 21.78

Q3 32 40 30 34 39 23
Max 36 68 30 40 74 25
Normalized 1 1.2192 0.8579 1.0789 1.1313 0.7775
average

Variance 37.2625 34.8312 2.9384 33.7894 39.7114 5.3248

Table 4. Average energy of each node with 200 nodes. (r) random — (d) deterministic.

Protocol LEACH (r) LEACH-C(r) H-kdtree(r) LEACH (d) LEACH-C(d) H-kdtree (d)
Min 0.03918 0.08321 0.04041 0.04849 0.07806 0.04343
Q1 0.05265 0.09902 0.06184 0.06551 0.09443 0.05878
Average 0.07959 0.11681 0.09122 0.09061 0.11377 0.0851
Q3 0.112 0.1343 0.12 0.1188 0.13331 0.1157
Max 0.1416 0.15162 0.142 0.1339 0.1623 0.1414
Normalized 1 1.4676 1.1461 1.1384 1.4294 1.0692
average

Variance 0.001139 0.000406 0.001115 0.000951 0.000487 0.001042

Figure 17¢c and Table 5 shows that between quartiles Q1 and Q3, which correspond to the 25% and
7% of the number of observed rounds, H-kdtree presented the lowest number of dead nodes. In its final
stage, H-kdtree shows the highest number of dead nodes due to the on-demand CH node generation
mechanism, compensated with energy expenditure after the Q3 quartile. Although H-kdtree does not
provide an optimal node energy distribution, the on-demand CH node selection mechanism provides
a significant improvement in QoS, as measured in delay; jitter, and throughput.

Table 5. Number of death nodes with 200 nodes. (r) random — (d) deterministic.

Protocol LEACH (r) LEACH-C(r) H-kdtree(r) LEACH(d) LEACH-C(d) H-kdtree (d)
Min 0 0 0 0 0 0

Q1 1.941 0 0 0 0 0
Average 27.06 13.96 9.7799 13.52 6.91 10.38

Q3 48.29 25 10.012 25 12.5 16
Max 76 68 78 44 33 27
Normalized 1 0.5158 0.3614 0.4996 0.2553 0.3835
average

Variance 677.3701 401.614 368.7591 232.9591 106.38 120.3591

The variability in delay, jitter, and throughput of the proposed H-kdtree protocol as compared to
LEACH and LEACH-C is very low in the random and deterministic scenarios, as shown in Figure 18.
This is because the level of dispersion of values from the central trend in LEACH and LEACH-C is
quite noticeable. These observations allow us to estimate QoS both quantitatively and qualitatively,
supporting applications with higher demands.
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Figure 18. General QoS metrics.

With the level of delay variability shown in Figure 18a and Table 6, H-kdtree is able to provide QoS
in networks with hierarchical topologies. In both the random and deterministic scenarios, H-kdtree
showed a reduction in delay of 87.72% in the random scenario and of 95.39% in the deterministic
scenario, compared to LEACH. With respect to LEACH-C, H-kdtree presented a reduction of 82,095%
for the random scenario and 93.1% for the deterministic scenario.

Table 6. Delay with 200 nodes. (r) random — (d) deterministic.

Protocol LEACH (r) LEACH-C (r) H-kdtree(r) LEACH (d) LEACH-C(d) H-kdtree (d)
Min 0.1568 0.077 0.02986 0.13 0.039 0.01

Q1 0.4328 0.573 0.09687 0.4273 0.5565 0.02026
Average 0.928 0.8758 0,114 0.8495 0.9068 0.04285
Q3 1.324 1.1715 0.1392 1.236 13115 0.04935
Max 1.588 1.56 0.1411 1.546 1.669 0.1094
Normalized 1 0.94375 0.1228 0.9154 0.9771 0.0461
average

Variance 0.251437 0.16277 0.000960 0.218075 0.21478 0.000851

Jitter response shown in Figure 18b and Table 7, interpreted as temporal variability in packet
transmission, is also due to using TDMA for medium access. The level of jitter reduction found in the
random scenario was of 76.52%, and 74.4% for the deterministic scenario. The values for delay;, jitter,
and variance were so low during the observed rounds that we can estimate that H-kdtree can guarantee
the requirements for multimedia applications. The reason for this is that H-kdtree’s on-demand CH
node selection mechanism is able to manage WSN resources efficiently.

The results obtained show that H-kdtree is able to provide QoS in applications with high
restrictions in bandwidth and delay, at the expense of energy consumption. On the other hand,
LEACH and LEACH-C are able to adapt to energy fluctuations in the network but is not capable of
supporting multimedia applications or time restrictions, on account of its high variability.

Regarding bandwidth and the amount of data that it can transport per round, H-kdtree showed
an increase of 48.96% in the random scenario and of 39.37% in the deterministic scenario, which
compensates and justifies the energy requirements for transmitting data packets to the Sink/BS node
as shown in Figure 18c and Table 8.
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Table 7. Jitter with 200 nodes. (r) random — (d) deterministic. The values of the table are on a scale

of 1073.

Protocol LEACH (r) LEACH-C(r) H-kdtree(r) LEACH (d) LEACH-C(d) H-kdtree (d)

Min 7.478 6.88 4.611 7.652 6.04 4.988

Q1 11.47 21.3 4.611 8.928 48.12 4.988

Average 20.5 40.61 4.815 21.46 33.77 5.25

Q3 22.07 57.88 5.05 25.64 48.12 5.53

Max 55.46 87.03 5.05 61.5 79.84 5.635

Normalized 1 1.9809 0.2348 0.10468 1.6473 0.25609

average

Variance 0.2185 0.55136 0.00003998 0.4729 0.35932 0.00006838

Table 8. Throughput with 200 nodes. (r) random — (d) deterministic.

Protocol LEACH (r) LEACH-C (r) H-kdtree(r) LEACH (d) LEACH-C(d) H-kdtree (d)
Min 22630 20267 140400 12060 5096 133200
Q1 66410 65741 145900 40210 49350 135100
Average 97940 107854 145900 104300 101705 136500
Q3 131900 149547 150300 154400 149510 137600
Max 178200 190903 150300 172200 192501 141500
Normalized 1 1.0122 1.4896 1.0649 1.0384 1.3937
average
Variance x10° 2154.20 2285.91 9.49 3502.15 3346.94 12.3741

Among the metrics for hierarchical protocols, we took into account the metrics related to node
death, included in Table 9.

Table 9. Comparison of network lifetime with respect to FND, HND and LND with 200 nodes. (r)
random - (d) deterministic.

Protocol LEACH (r) LEACH-C(r) H-kdtree(r) LEACH (d) LEACH-C(d) H-kdtree (d)

FND 24 47 38 37 51 35
HND 113 99 94 122 103 96
LND 134 164 131 144 180 140

5.5. Other Tests Performed

As a complement to the results obtained, we performed tests with 100, 300, and 400 nodes on
areas of proportional size, maintaining the same node density of the 200-nodes tests. These tests were
performed in a scenario with random node deployment. Energy assignment for 100, 300, and 400
nodes was also proportional to the 200-nodes tests. For these tests, we only took into account the
average values of metrics, using the same metrics of the 200-nodes tests.

In the evaluation of a random scenario with 100, 200, 300, and 400 nodes, the average of CH
nodes in the scenario is not relevant. However, the lower variability shown in the variance confirms
H-kdtree’s characteristic on-demand CH node selection mechanism, maintaining its variance 83%
below LEACH and LEACH-C as shown in the Table 10.

Regarding energy value, results show that H-kdtree maintains energy levels that are very close to
those of LEACH, and therefore does not show an improvement in this area. However, H-kdtree shows
a significant improvement in QoS as compared to LEACH and LEACH-C as shown in the Table 11.
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Table 10. Number of cluster head. (r) random.

E‘;{‘;Zer of LEACH () LEACH-C (r) H-kdtree (r)

100 Average 29.34 13.703 28.16
Variance 42.4871 34.0309 4.7477

200 Average  28.01 34.15 24.03
Variance 37.2625 34.8312 2.9384

300 Average  24.80 43.4356 32.43
Variance 39.3804 48.0083 6.4618

400 Average 34.11 39.5644 32.67
Variance 46.3957 39.7683 5.6382

Table 11. Average energy of each node. (r) random.

Number of Nodes LEACH (r) LEACH-C (r) H-kdtree (r)

100 0.06682 0.0901 0.07915
200 0.07959 0.11681 0.09122
300 0.08839 0.1217 0.09623
400 0.09272 0.1433 0.1062

Table 12 shows the use of an on-demand mechanism implies that the protocol only reacts to a
change requested by the network. In the case of H-kdtree’s CH node selection mechanism, this means
that it will only be used as a response to receiving a “Death” packet. Note that the number of nodes
close to death is the number of CH nodes. Death node in H-kdtree is stepped, and in LEACH and
LEACH-C it is incremental.

Table 12. Number of death nodes. (r) random.

Number of Nodes LEACH (r) LEACH-C (r) H-kdtree (r)

100 12.35 5.3465 6.39
200 27.06 13.96 9.77
300 43.08 21.9604 32.83
400 64.72 33.521 58.91

H-kdtree shows an improvement in delay reduction, with values over 60% as compared to LEACH
y LEACH-C, as shown in Table 13.

Table 13. Delay (seg). (r) random.

Number of Nodes LEACH (r) LEACH-C (r) H-kdtree (r)

100 0.283324844 0.8021 0.10480334
200 0.928 0.8758 0,114
300 0.841188642 0.6348 0.177976
400 0.6150795862 0.9217 0.104979

H-kdtree shows a 95% jitter reduction as compared to LEACH and LEACH-C, as shown in
Table 14.

H-kdtree shows a 50% throughput increase as compared to LEACH and LEACH-C, as shown in
Table 15.

In the observed metrics in Table 16, show that the stability periods in the half-life of network
nodes for the proposed H-kdtree protocol is longer than in LEACH and more short that in LEACH-C.
After 50% of the rounds, in H-kdtree, we have found node death to be stepped and maintaining low
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variability in delay and jitter. This was not only due to its reactive mechanism but also because of its
stability derived from using TDMA for medium access. The WSN we studied did not present node
mobility: all nodes maintained their positions. This characteristic was used by H-kdtree and its cluster
formation mechanism, which is based on the k-d tree algorithm and adds more stability by keeping
the majority of nodes in the same clusters after each configuration phase.

Table 14. Jitter (seg). (r) random.

Number of Nodes LEACH (r) LEACH-C (r) H-kdtree (r)

100 0.0200929664 0.2216 0.00499735
200 0.0205 0.04061 0.004815

300 0.0227276422 0.03975 0.00462749
400 0.0200274796 0.2368 0.00552575

Table 15. Throughput (bps). (r) random.

Number of Nodes LEACH (r) LEACH-C (r) H-kdtree (r)

100 96134 101319 135210
200 97940 107854 145900
300 102603 110623 163092
400 90956 96521 170688

Table 16. Metrics of network lifetime. (r) random.

Numberof  [EACH(r) LEACH.C(r) Hkdtree (1)
FND 26 36 30
100 HND 121 88 83
LND 147 184 127
FND 24 47 38
200 HND 113 99 94
LND 134 164 131
FND 39 71 45
300 HND 119 117 89
LND 152 174 149
FND 52 115 37
400 HND 137 154 101
LND 164 223 152

The results on PDR showed that TDMA-based packet transmission planning did not show packet
loss in LEACH, LEACH-C and H-kdtree, in all scenarios with 100, 200, 300, and 400 nodes.

6. Conclusions and Future Work

The H-kdtree protocol has main contributions. First, the clustering formation method based on
the k-d tree algorithm partitions the sensor node deployment area in a two-hop hierarchical topology.
Second, it is a WSN protocol that provides QoS in support of services with stricter resource demands
while keeping energy usage at a level similar to the LEACH protocol.

The proposed H-kdtree protocol was based on the k-d tree algorithm in evaluating the spatial
partitioning to organize nodes in a dimensional space (x and y).The average energy results obtained
with LEACH-C, exceed LEACH and H-kdtree on 42%. The partitions found become clusters, creating
a network topology that is able to provide QoS for the longest possible time with energy requirements
similar to those of LEACH. H-kdtree is characterized by keeping the number of CH nodes stable for
the longest number of rounds, maintaining a constant network topology and, as a consequence, low
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variability in delay, jitter, and throughput metrics. Although these metrics are a function of time, they
depend on the variability of the number of CH nodes.

The H-kdtree protocol has three main processes. First, the protocol uses a two-hop network
topology that was not altered in each round. Then, during the data transmission phase, the “Death”
packet allows H-kdtree to implement a reactive mechanism that only returns to the configuration
phase when a node requires it by sending the “Death” packet. This means that the configuration
phase is only repeated on-demand. Finally, the minimum group condition allows network traffic to
be more homogeneous, which is reflected in delay, jitter, and throughput and, as a consequence, in
improved QoS.

The set of experiments performed in random scenarios with 100, 200, 300, and 400 nodes, and a
deterministic scenario with 200 nodes, helped us compare LEACH and LEACH-C with the proposed
H-kdtree protocol. The conclusion is that the H-kdtree protocol fulfilled the objective by addressing
existing problems in cluster generation mechanisms by reducing the variability in CH node formation:
with the same resources used in LEACH and LEACH-C, H-kdtree improved delay and jitter by 60%
and 95% percent, throughput improved by over 50%, while keeping energy usage at the same levels of
LEACH.

Additional experiments will be required to measure H-kdtree’s performance in additional
scenarios, incrementing the number of rounds, varying density in environments with heterogeneous
node-energy levels, and proposing optimization mechanisms for CH node selection to maximize
energy levels in the network. Additionally, with the QoS results obtained, it will be necessary to
perform traffic analysis with multimedia data.
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The following abbreviations are used in this manuscript:

CH Cluster Head

WSN Wireless Sensor Networks
IoT Internet of Things

CPU Central Processing Unit

LEACH Low Energy Adaptive Clustering Hierarchy
LEACH-C Low Energy Adaptive Clustering Hierarchy-centralized

QoS Quality of Service

PDR Packet Drop Rate

BS Base Station

GPS Global Positioning System

RSSI Received Signal Strength Indicator
TDMA Time Division Multiple Access
HEED Hybrid. Energy-Efficient Distributed
TEEN Threshold sensitive Energy Efficient sensor Network
NS-2 Network Simulator

EED End-to-End Delay

FND First Node Died

HND Half of Nodes Died

LND Last Node Died

H-kdtree  Hierarchy protocol based on the k-d tree algorithm
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