
  

Sensors 2018, 18, 2890; doi:10.3390/s18092890 www.mdpi.com/journal/sensors 

Article 

Non-Contact Measurement of the Surface 

Displacement of a Slope Based on a Smart Binocular 

Vision System 

Leping He 1, Jie Tan 1, Qijun Hu 1,*, Songsheng He 1, Qijie Cai 2, Yutong Fu 1 and Shuang Tang 1 

1 School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu 610500, China; 

201231010028@swpu.edu.cn (L.H.); 201722000532@stu.swpu.edu.cn (J.T.); sheng583786602@163.com (S.H.); 

201622000204@stu.swpu.edu.cn (Y.F.); 201722000537@stu.swpu.edu.cn (S.T.) 
2 School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China; 

caiqijieswjt@my.swjtu.edu.cn 

* Correspondence: huqijunswpu@163.com; Tel.: +86-130-7283-2168 

Received: 14 July 2018; Accepted: 25 August 2018; Published: 31 August 2018 

Abstract: The paper presents an intelligent real-time slope surface deformation monitoring system 

based on binocular stereo-vision. To adapt the system to field slope monitoring, a design scheme of 

concentric marking point is proposed. Techniques including Zernike moment edge extraction, the 

least squares method, and k-means clustering are used to design a sub-pixel precision localization 

method for marker images. This study is mostly focused on the tracking accuracy of objects in multi-

frame images obtained from a binocular camera. For this purpose, the Upsampled Cross Correlation 

(UCC) sub-pixel template matching technique is employed to improve the spatial-temporal 

contextual (STC) target-tracking algorithm. As a result, the tracking accuracy is improved to the 

sub-pixel level while keeping the STC tracking algorithm at high speed. The performance of the 

proposed vision monitoring system has been well verified through laboratory tests. 

Keywords: slope monitoring; surface deformation; binocular vision; subpixel resolution; user 

defined target 

 

1. Introduction 

Landslide disasters cause serious damage to human life and the economy. Surface deformation 

is an important basis for assessing the safety status of a slope. At present, slope surface deformation 

monitoring methods are of five main classes: geodetic methods, global positioning system (GPS) 

technology, three-dimensional (3D) laser scanning, interferometric synthetic-aperture radar (INSAR) 

technology, and digital photogrammetry. Geodetic measurement [1] is a traditional monitoring 

method; however, owing to a low observation frequency and low intelligence, it is difficult to obtain 

monitoring data that has spatial-temporal continuity. GPS [2] has a high degree of intelligence and 

can achieve full-time monitoring; however, its target setting is limited, that is, no obstacles are 

allowed within a range of 15° around the elevation angle of the station in most cases [3]. Both 3D laser 

scanning [4] and INSAR technology [5] are free at the selection of the marker points, but are costly 

and difficult to apply to slopes covered with vegetation. 

In view of the above problems, owing to their non-contact and cost-effective features, vision-

based digital photogrammetry systems have been studied extensively in recent years. The method 

converts the image coordinates into spatial coordinates by tracking the target image, and obtains the 

structural deformation information [6]. In practice, the most prominent limitation of visual sensor 

systems is the measurement accuracy. The main factors affecting this accuracy are (1) marker points 

and (2) target tracking and positioning. On the one hand, some scholars have used natural marking 
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points when applying machine vision technology to structural deformation monitoring. For instance, 

Yoon et al. [7] use the Harris corner detection algorithm to extract the feature points of the specified 

area of a structure. Khuc et al. [8] use a Hessian matrix [9,10] to extract the key points on a steel beam. 

At the same time, others directly use obvious features such as a light-emitting diode lamps [11] and 

structural bumps [12–14] as the monitoring markers. On the other hand, target markers with specially 

designed features, such as a circle [15–17], a checkerboard [18–20], or a random pattern [21], have 

also been widely used. The position of a feature can be detected and then transformed into the 

coordinate information. Considering the insufficient feature points of a large slope, it is necessary to 

artificially set the landmarks to achieve a measurement. The positioning accuracy of the landmarks 

greatly determines the accuracy of the monitoring results. Common image positioning methods 

include the least squares fitting method [22], grey weighted centroid method [23], SUSAN algorithm 

[24], and Hough transform method [25]. Therefore, the authors propose a concentric marker and 

positioning method that adapts to the visual monitoring system applied. Even if the slope is covered 

by vegetation, high-precision positioning of the measuring point can be achieved. 

For continuous intelligent monitoring, consumer-level cameras can be used to track and locate 

the landmarks in each frame. The current tracking algorithms mainly include KLT [7,26], CN [27], 

KCF [28], ODFS [29], and spatial-temporal contextual (STC) [30,31]. However, existing target-tracking 

algorithms have mostly been studied with regard to their intelligent stability, whereas a few have 

been studied for their positioning accuracy. To meet the accuracy requirements of deformation 

monitoring, scholars usually use template matching technology to obtain high-precision monitoring 

results. A variety of methods are applied to template matching for vision sensors including digital 

image correlation, pattern matching, optical flow, sub-pixel Hough transforms, random sample 

consensus, edge detection, sum of squared differences, scale-invariant feature transform, and the 

orientation code matching(OCM) [14,16,20,32–35]. Based on the OCM template matching algorithm, 

Feng et al. [14] demonstrated the high accuracy of the vision sensor for dense full-field displacement 

measurements through experimental results. Javh et al. [34] showed a sub-pixel displacement 

resolution of less than thousandths of a pixel by a simplified gradient-based optical flow method 

under laboratory conditions. However, these methods are limited in obtaining the three-dimensional 

deformation of a structure. It is generally known that slope surface monitoring requires three-

dimensional information. Based on binocular stereoscopic vision measurement technology, to 

overcome the original frame-by-frame selection method for targets, we combine the temporal-spatial 

contextual visual tracking algorithm (STC) [31] with sub-pixel image registration technology [36], 

and improve the tracking accuracy to the sub-pixel level while maintaining the high speed STC 

algorithm to achieve real-time monitoring. 

In this paper, to realise the intelligent real-time monitoring of a slope surface deformation, 

binocular stereo-vision measurement technology is introduced into the monitoring of the slope 

surface deformation, and the designs of concentric landmark points and high-precision image 

positioning methods are described. At the same time, the existing tracking technology is improved 

to achieve high-precision target tracking and spatial positioning. Finally, laboratory tests conducted 

to verify the validity and accuracy of the proposed method are detailed. 

2. Proposed Smart Binocular Vision System 

2.1. Overview 

A binocular vision based displacement measurement system is typically composed of hardware 

and software (see Figure 1). The hardware components consist of a commercial binocular camera, a 

computer for storing and processing data, and a custom target. The binocular camera has a zoom lens 

from 4 mm to 12 mm, with a maximum resolution of 2560 × 960 pixels, and an adjustable acquisition 

frame rate up to 60 fps. The stereo baseline can be adjusted from 4.5 cm to 18 cm, and the field of 

view of the camera is from 29° to 78°. The vision system was worked on a laptop (Lenovo 

Xiaoxinchao500, Beijing, China) with an Intel i7-7500U processor with 4 GB of RAM and a mechanical 

hard disk drive. The movements of a target can be recorded and tracked by the camera and 
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synchronously transferred to the computer, where the displacement is calculated using object centre 

location algorithms and coordinate transformations. 

 

Figure 1. Displacement measurement system based on binocular vision technology: (a) hardware and 

(b) software. 
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2.2. Target Design 

Visual measurement technology is based on marker imaging. It must be clear that the precise 

positioning of an object requires searching for obvious feature points. Natural targets are often used 

in low-precision or near-distance measurements, whereas artificial targets are often used in high-

precision or long-distance measurements, particularly for large-scale outdoor engineering structures 

such as slopes. In this chapter, the design and positioning methods of existing mark points are 

proposed to achieve the high-precision positioning of the measuring points. 

2.2.1. Design Scheme 

A round mark point is one of the most common forms of feature points in monitoring. However, 

a circle shows an elliptical shape after a perspective projection in computer vision imaging. In general, 

region- and edge-based technologies are used in elliptical centre positioning. The former is inefficient 

in terms of its operation, and has difficulty ensuring the noise removal effect, and thus it cannot adapt 

to the complex environment of a slope-engineering site. Instead, the latter can effectively avoid these 

problems [37]. Therefore, this study uses edge-based elliptical centre positioning technology. 

Ellipse fitting technology has been widely used owing to its good fault tolerance, adaptive noise 

environment, and high efficiency in achieving centre positioning. The basis of the ellipse fitting 

technique is to obtain the edge information of an image. This study uses sub-pixel edge detection 

technology to achieve high-precision edge extraction, providing the best edge information for the 

centre positioning. 

After obtaining the centre coordination of each circular mark, the clustering algorithm is used to 

gain the representative value of the centre of the circle, avoiding the influence of singular values and 

random errors on the centre orientation. 

2.2.2. Object Positioning Method 

Remote monitoring requires higher accuracy. This study uses the modified template of Gao et 

al. [38] to extract concentric sub-pixel edges, the basic principle of which is as follows: calculate the 

edge parameters according to the rotational invariance of the Zernike moment, and use the edge 

parameters to determine whether it is an edge to accurately extract the edge position. An ellipse is 

then fitted using the least squares method [39] to locate the centre coordinates of each concentric circle: 
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a, b, c, d, e are the coefficients of the general equation of the ellipse 

+ + + + + =2 2          0ax bxy cy dx ey f , and f is a constant. Finally, the value of the centre is extracted 

based on the k-means clustering algorithm [40]. The basic principle lies in the optimisation of the 

following formula: 
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In this equation, N  represents the number of data samples; K  is the number of clusters; nk
r  

represents 1 when data point n  is assigned to class k , and is 0 otherwise; n
x  indicates the sample 

data object; and k
  is the cluster centre. 

The method in this study achieves the function of target centre location through programming 

(see Figure 2). 
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Figure 2. Target location process. 

2.2.3. Target Parameter Design 

(1) Number of Circles 

The optimal number of concentric circles is determined based on the central location technology 

of the marked points described in the previous section. The test image is an idealised concentric circle 

of different layers with a size of 1712 × 1712 pixels, and the 2-layer concentric circles are minimal, with 

diameters of 10 mm and 20 mm, respectively. Then, we add circles outside the previous 2-layer 

concentric circles with a bigger 5 mm radius in other six patterns of concentric circles. 

As shown in Table 1 and Figure 3, errors of the target coordinates generally decrease with the 

increase in concentric circles and then experience a relatively stable stage at layer 6 to 10. With the 

continuous increase in concentric circles, errors also rise almost linearly. Considering that in field 

measurement, when the number of concentric circles increases, the size of the targets increases 

accordingly, and the image noise caused by environmental factors such as air flow will also increase. 

To avoid this problem and save the early time cost, this study suggests setting the number of 

concentric layers to six (see Figure 3). At the same time, we can see that the algorithm has a deviation 

of 0.4 pixels. Since this deviation is stable, the center of each positioning is almost constant, so the 

accuracy requirements of the measurement system are met. 

Table 1. Error analysis of different concentric circle tests. 

Number of 

Circles 

Measured Coordinates (pixel) True Coordinates (pixel) Error (pixel) Time 

      (ms) 

2 855.620117  855.671021  856 856 0.379883  0.328979  3707 

4 855.615845  855.675781  856 856 0.384155  0.324219  3885 

6 855.619934  855.677551  856 856 0.380066  0.322449  4134 

8 855.619080  855.677856  856 856 0.380920  0.322144  4337 

10 855.618164  855.677368  856 856 0.381836  0.322632  4477 

12 855.611511  855.672791  856 856 0.388489  0.327209  4849 

14 855.605957  855.669495  856 856 0.394043  0.330505  5184 

 

Figure 3. Analysis of test results of concentric circles. 

u v u v u v
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(2) Minimum positioning size 

At different measurement distances, the pixel sizes of the targets in the image plane of the 

camera are inconsistent. This study will use six concentric (ellipse) circles with different pixel sizes to 

obtain the minimum detectable pixel size through the above-mentioned centring location technique, 

and thus provide guidance for a slope monitoring landmark design. 

From the positioning error analysis results (see Table 2), the positioning point is located on the 

upper-left side of the theoretical point when the pixel resolution is above 28 × 28 pixels. The 

positioning error u  is between 0.34 and 0.42, and the floating range is 0.07 pixels. Meanwhile, the 

positioning error v  is between 0.25 and 0.40, and the floating range is 0.25 pixels. It can be seen that 

the center of its positioning is relatively stable. In summary, this study suggests that the concentric 

pixel resolution should be greater than 28 × 28 pixels to ensure its effective positioning. 

Table 2. Concentric testing of different pixel dimensions. 

Size 

(pixels) 
Classify 

Number of 

Circles 

Detected 

Clustering Coordinates 

(pixels) 

True Coordinates 

(pixels) 
Error (pixels) 

u  v  u  v  u  v  

41 × 41 
circle 6 20.154753 20.214046 20.5 20.5 0.345247 0.285954 

ellipse 6 20.08853 20.192606 20.5 20.5 0.41147 0.307394 

36 × 36 
circle 6 17.625174 17.636324 18 18 0.374826 0.363676 

ellipse 6 17.594893 17.673111 18 18 0.405107 0.326889 

30 × 30 
circle 6 14.616336 14.700969 15 15 0.383664 0.299031 

ellipse 6 14.589076 14.743123 15 15 0.410924 0.256877 

28 × 28 
circle 6 13.625415 13.72232 14 14 0.374585 0.27768 

ellipse 6 13.612086 13.60793 14 14 0.387914 0.39207 

25 × 25 
circle 5 13.420197 11.999551 12.5 12.5 −0.9202 0.500449 

ellipse 6 12.436928 13.601745 12.5 12.5 0.063072 −1.10175 

2.2.4. Noise Robustness 

In image processing, noise is a ubiquitous phenomenon with great interference. In engineering 

applications, the obtained image is different from the “real” image due to the factors such as image 

acquisition equipment and natural environment. This part of difference is noise. In this section, the 

simulation noise image is used to verify the stability of the algorithm. At present, the image noise is 

mainly gaussian noise and salt noise. 

In this study, the 6-layer concentric circle images, a size of 767 × 767 pixels, with different 

variance Gaussian noise and different density impulse noise were obtained by means of Matlab 

simulation, and then the positioning experiment was carried out. Compared with the measured 

values in the non-noise case, the error of the proposed algorithm under the influence of noise is 

calculated. Finally, the stability of the proposed algorithm in dealing with noise is verified by 

comparison with the gravity method [23] based on regional positioning.  

As shown in Figure 4, when we increase the two noise levels to 0.08 respectively, we can see 

from the error analysis results that the fluctuation of the gravity method represented by the blue 

curve is significantly higher than that of the red curve. Locally, the centering technique based on the 

gravity method has a mis-positioning point when the impulse noise density reaches 0.05, and the 

center positioning cannot be achieved. The algorithm proposed in this study can still achieve accurate 

positioning when the impulse noise density reaches 0.08, and the maximum error is only 0.0183 (see 

Table 3). It is proved that the concentric center positioning method proposed in this study shows 

better accuracy and stability when dealing with noise. 
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Figure 4. Positioning error of marker points under the influence of noise; (a) Considering Gaussian 

noise; (b) Considering impulse noise. 

Table 3. Positioning error of marker points under the influence of noise. 

Number 
Noise 

Level 

Gaussian Noise Error (pixels) Impulse Noise Error (pixels) 

Vision System Gravity Method Vision System Gravity Method 

        

1 0 0 0 0 0 0 0 0 0 

2 0.005 0.002198 −0.00613 −0.00582 −0.00922 0.007202 0.000458 −0.06564 0.025549 

3 0.01 0.000031  −0.00558 −0.01349 0.007616 −0.00336 −0.00061 0.094164 −0.01722 

4 0.015 −0.000457 −0.00784 −0.0143 0.000161 −0.00513 −0.00552 0.087803 −0.0336 

5 0.02 −0.006286 0.000122 −0.00445 0.024084 −0.00107 −0.00293 −0.00639 0.072873 

6 0.025 0.002228 −0.00488 −0.01759 −0.00717 −0.00241 −0.00424 −0.05005 −0.11229 

7 0.03 0.000641 −0.00748 0.001939 −0.00858 0.001587 −0.00052 0.008688 −0.01136 

8 0.035 −0.002685 0.002228 −0.01136 −0.00445 0.000977 −0.00198 −0.00427 −0.13275 

9 0.04 −0.004699 −0.00928 −0.01524 −0.00603 0.000977 −0.00598 0.016176 −0.08148 

10 0.045 0.000489 −0.01071 −0.01459 −0.00226 −0.00095 −0.00345 0.09499 0.540542 

11 0.05 0.003693 −0.00229 −0.0059 −0.00388 −0.00513 −0.00339 — — 

12 0.055 0.004456 −0.0101 −0.01893 −0.00204 0.005402 −0.00037 — — 

13 0.06 0.010865 −0.01099 −0.00166 0.006228 0.001984 −0.01364 — — 

14 0.065 0.002076 0.002808 −0.03957 −0.00365 −0.00018 0.004792 — — 

15 0.07 0.001526 −0.00134 0.000937 0.006315 0.002747 −0.01834 — — 

16 0.075 −0.009491 0.002289 −0.0064 −0.00334 0.004792 −0.00192 — — 

17 0.08 −0.002868 −0.00134 −0.00178 0.007308 −0.00082 0.002961 — — 

2.3. Target Tracking 

2.3.1. Theory 

The STC tracking algorithm and sub-pixel image registration technology are employed to 

improve the target tracking accuracy. Theoretically, the accuracy of this method can probably 

increase to the sub-pixel level while maintaining the high speed of the STC algorithm. The basic flow 

is shown in Figure 5. 

Step 1: Target pixel-level positioning based on a confidence map. In the first frame, we suppose 

that the target location has been manually initialised. At the t-th frame, we learn the spatial context 

model ( )sch x  for (3) updating the spatio-temporal context model 1+

stc

tH  (4) and apply it to detect 

the object location in the (t + 1)-th frame. The object location *

1+tx  (5) in the (t + 1)-th frame is 

determined by maximising the new confidence map. 

u v u v u v u v
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In this function, F  denotes the fast Fourier transform function, 1F−  is the inverse of F , b  is a 

normalisation constant,   is a scale parameter,   is a shape parameter, ()I  is the image intensity 

that represents the appearance of the context, and ()w


 is the weighted function defined by 
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w z ae 


−

=  (7) 

where a  is a normalisation constant, and   is a scale parameter. 

Step 2: Target sub-pixel-level location based on image registration. UCC template matching 

technology is used to conduct template matching between the target and template images. The cross-

correlation in the neighbourhood of 1.5 × 1.5 pixels with respect to the initial estimate is calculated 

using the up-sampling factor k, which can achieve a 1/k registration accuracy of the pixel, eliminate 

the tracking drift, and allow the tracking process to reach the sub-pixel accuracy. The specific process 

is as follows: 

We assume that the t-frame target tracking image is 
( , )f x y

, template image is 
( , )g x y

, and the 

amount of drift between the two images is 
( , )dx dy

. 

( , ) ( , )g x y f x dx y dy= − −
 (8) 

Convert the image into frequency domain using Fourier transforms: 

2 ( )( , ) ( , ) i udx vdyG u v F u v e −   +
= 

 
(9) 

Divide the above equation to obtain the cross power spectrum: 

*
2 ( )

*

( , ) ( , )
( , )

( , ) ( , )

i udx vdyG u v F u v
H u v e

G u v F u v

−   +
= =


 

(10) 

In this function, 
*F  represents the complex conjugate of F . For the mutual power spectrum, 

the Dirac function can be obtained by inverse Fourier transform. The pixel-level registration is finally 

achieved by locating the peak coordinates of the Dirac function. 

After achieving pixel-level registration, the pixel-level drift value of the image can be obtained, 

and then the sub-pixel drift coordinate extraction is implemented by using the upsampling algorithm 

within one pixel drift. The upsampling multiple k = 100, therefore, the registration accuracy can reach 

0.01. After the image is amplified by upsampling, the image phase correlation algorithm is used to 

obtain the drift value of the image. Since the image drift value at this time is the result after the 

upsampling, it is necessary to perform the reduction in combination with the upsampling multiple, 

that is, multiply by 0.01 to obtain the sub-pixel drift coordinates. After obtaining the pixel-level and 

sub-pixel translation coordinates respectively, the final result of sub-pixel image registration can be 

obtained by combining the two. 
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In this study, the above-mentioned upsampling and image phase correlation algorithm is used 

to correct the drift phenomenon of the target tracking process, and then the tracking coordinates can 

be combined to achieve accurate target positioning. Eventually the target tracking accuracy is raised 

to the sub-pixel level. 

 

Figure 5. Flowchart of object tracking based on spatial-temporal contextual (STC) and Unsampled 

Cross Correlation (UCC). 

2.3.2. Performance Evaluation 

The moving platform test experiments were used to evaluate the performance of the improved 

STC algorithm. In this study, the MTS test machine was used to clamp the moving plate to reciprocate 

up and down, and it was continuously monitored by the camera. In order to better demonstrate the 

advantages of the improved STC algorithm, two different loading methods were set up in this study, 

namely linear loading and sinusoidal loading. The frequency of the MTS tester was set to 0.1 Hz and 

the amplitude was set to 9 mm. The moving platform test setup is shown in Figure 6. 

 

Figure 6. Setup for moving platform tests. 
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After obtaining the moving plate test sequence image, the target object is tracked and detected 

by using the STC algorithm and the improved STC algorithm. The pixel coordinate transformation is 

converted into physical coordinate transformation by the scale factor calculation method [41], and 

the result is shown in Figure 7. 

 

Figure 7. The moving platform tests results: (a) linear loading; (b) sinusoidal loading. 

As shown in Figure 7, both the STC algorithm and the improved STC algorithm can achieve 

target tracking measurements. From the partial enlargement, the measured value of the improved 

STC algorithm is less fluctuating. According to the measurement error analysis, the normalized root 

mean squared error (NRMSE) of the STC algorithm is 0.0127 for linear loading, and the improved 

STC algorithm is 0.0106. When sinusoidal loading, NRMSE of the STC algorithm measurement is 

0.0122, and the improved STC algorithm is 0.0098. It can be seen that the improved STC algorithm 

can effectively reduce the measurement error, improve the measurement accuracy, and make the 

measurement result more stable and reliable. 

2.4. Coordinate Transformation 

According to Zhang’s calibration method [42], two coefficient matrices can be constructed by 

calibrating a binocular camera. The left- and right-image pixel coordinates are then combined using 

a coefficient matrix to solve the over-determined equations and obtain the spatial coordinates. After 

obtaining the spatial coordinates of the target in each frame of the image, the displacement value of 

the measurement point can be quantified to obtain the surface deformation of the slope. The 

calculation principle is shown in Figure 8. 
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Figure 8. Schematic of binocular vision measurement. 

3. In-Laboratory Validation Test  

This chapter describes tests to verify the method proposed in this study. 

3.1. Static Distance Measurement Test 

To quantify the effect of the mark point size and centre distance on the measurement accuracy, 

two sets of tests are described in this section. The major instrumentation includes the targets, 

binocular cameras, and computer (see Figure 9). The stereo baseline is set to 12 cm, and the distance 

from the camera to the measuring point is 4 m. Then, we get the best image by manually adjusting 

the focus and keep it constant. 

 

Figure 9. Setup for static distance measurement test, left: image of 3D simulation test, right: 

laboratory test scene. 
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Test 1: The sizes of the marked points are different, and the centres of the circles are the same. 

The marker points were designed using eight different sizes according to the relevant parameters in 

Chapter 3. It is assumed that the minimum concentric diameter is D , the remaining diameters are 

=   
n
D D n , n is an integer from 1 to 6, and the distance between two centres is 150 mm accordingly, 

which is measured in vector drawing tool Coreldraw. 

Test 2: The marked points have the same size, but the centres of the two circles are 

different. We chose a minimum diameter of the marker point of 15 mm, and a distance to the 

circle centre of 100 to 300 mm. 

The results obtained after calculating the spatial coordinates using the proposed method in 

Chapter 2 are shown in Tables 4 and 5. 

Table 4. Measurement results of Test 1. 

Number 
Minimum 

Diameter 

Pixel 

Size 

Target Space Coordinates Measurement 

(mm) 

Error 

(mm) x  y  z  

I-1 5 66 × 66 
−47.2496 60.7972 1540.49 

149.7765 0.2235 
101.466 64.0262 1522.99 

I-2 7.5 99 × 99 
−45.7566 48.5814 1526.84 

149.8464 0.1536 
102.9 55.1874 1544.49 

I-3 10 132 × 132 
−72.0315 72.8357 1535.54 

150.2367 0.2367 
76.8983 78.3795 1554.52 

I-4 12.5 165 × 165 
−45.524 70.3383 1534.15 

149.7905 0.2095 
101.925 71.9863 1507.82 

I-5 15 198 × 198 
−33.9774 64.1482 1523.63 

149.8362 0.1638 
115.1 67.5548 1538.3 

I-6 17.5 231 × 231 
−84.4728 90.9581 1536.39 

149.7684 0.2316 
63.3845 91.6196 1512.55 

I-7 20 264 × 264 
−37.0946 87.539 1517.28 

150.1354 0.1354 
108.986 84.4612 1482.76 

I-8 22.5 297 × 297 
−101.026 85.8391 1518.59 

149.8158 0.1842 
46.4737 86.6175 1492.36 

Table 5. Measurement results of Test 2. 

Number Real (mm) 
Target Space Coordinates 

Measurement (mm) Error (mm) 
x  y  z  

II-1 100 
−31.187 95.2045 1529.29 

100.1681 0.1681 
66.6902 95.3143 1507.99 

II-2 125 
15.1994 81.9168 1526.35 

124.7468 0.2532 
139.581 85.3977 1535.23 

II-3 150 
−33.9774 64.1482 1523.63 

149.8362 0.1638 
115.1 67.5548 1538.3 

II-4 175 
−84.989 109.588 1543.95 

174.8049 0.1951 
87.5032 109.406 1515.61 

II-5 200 
−36.0215 65.7006 1538.77 

200.1552 0.1552 
163.315 67.5481 1556.76 

II-6 225 
−86.3799 60.4379 1544.6 

225.26 0.26 
137 61.2969 1573.63 

II-7 250 
−65.7222 107.195 1540.87 

250.1702 0.1702 
183.541 113.807 1561.1 

II-8 275 
−52.424 74.3521 1516.97 

275.2898 0.2898 
221.944 80.5141 1538.62 

II-9 300 
−144.008 67.8541 1520.25 

300.2821 0.2821 
154.401 74.3054 1553.11 
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As can be seen from the above table, during the testing of different target size measurements, 

the distance between the two markers was measured using a stereo-vision system. The mean value 

of the measurement error is 0.1923 mm, and the maximum error is 0.2367 mm. During the testing of 

the circle centre distance for different sign points, the average value of the measurement error is 

0.2153 mm, and the maximum error is 0.2898 mm. This shows that the system can achieve millimetre 

level accuracy in monitoring, and ensure the accuracy of the spatial coordinate measurements. 

Furthermore, the development of its error has no obvious relationship with the marked point size 

and the distance from the centre of the circle, and thus can reach the millimetre level in any sized 

measurement of the mark.  

3.2. Moving Platform Experiment 

The above distance measurement test verifies the accuracy of the system proposed in this paper. 

However, the test capture process is static and cannot be used to verify the feasibility of the system. 

Based on this research, the laboratory model test is used to verify the tracking and positioning 

accuracy of the system. The overall layout of the test is shown in Figure 10. The test instruments 

included slidable panels, binocular cameras, Vernier callipers, and laptops. The slidable squad 

consists of two plates that can slide up and down, and can simulate the local deformation and overall 

deformation, respectively. To compare and analyse the accuracy, the sliding distance is obtained 

using the binocular stereo-vision system and Vernier calliper, respectively. 

 

Figure 10. Moving platform experiment: (a) test site settings and (b) experimental procedure. 

Test 1: Local deformation monitoring test. The lower plate is fixed in the sliding plate group, 

and the upper plate is moved slowly downwards. At the same time, a Vernier calliper and a binocular 
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stereo-vision system are used to measure the distance between the two objects in the upper plate. A 

total of 34 frames are tested. 

Test 2: Overall deformation monitoring test. The slope deformation is simulated by connecting 

the upper and lower plates, and moving them slowly at the same time. The displacement is quantified 

by monitoring the changes in the spatial position of the four landmarks.  

The test results obtained are shown in Figures 11–13. 

 

Figure 11. Local deformation marker point displacement monitoring results: (a) target 1, (b) target 2, 

and (c) spatial results. 

It can be seen from the above test data that the spatial displacement value tracked by the 

binocular stereo-vision measurement system is compared with the displacement value measured 

using the Vernier calliper. Through local deformation monitoring error can be obtained (see Figures 

11 and 13a), The average value of the error is 0.2568 mm, and the maximum error is 0.5427 mm. Only 

five of the 68 groups of measurement data have errors exceeding 0.5 mm, which proves that the 

binocular stereo-vision measurement system has strong tracking and positioning stability. The results 

of the overall deformation-monitoring test are shown in Figures 12 and 13b. The average values of 

the monitoring errors for each marker are 0.2503, 0.2995, 0.2404, and 0.2619 mm, respectively, and the 

maximum error is 0.9219 mm. In the two hundred groups of stereo-vision system measurements, 

there are three groups with errors exceeding 0.8 mm, six groups with errors exceeding 0.7 mm, and 

eight groups with errors exceeding 0.6 mm. In addition, the mean and maximum values of the error 

are increased relative to the static measurement test. This is because there is a certain error in the 

target-tracking process, which causes the average error and fluctuation range to increase. 
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Figure 12. Overall deformation marker point displacement monitoring results: (a) target 1, (b) target 

2, (c) target 3, (d) target 4, and (e) spatial results. 

 

Figure 13. Results of measurement error: (a) Local deformation; (b) Overall deformation. 

4. Conclusions 

The exploration of structural health monitoring based on vision sensors is still in its infancy. In 

this study, a non-contact dynamic displacement measurement system with binocular stereo vision is 

designed. The slope is used as a carrier to explore the possibility of tracking and positioning 

technology to monitor the three-dimensional deformation of the structure. The specific conclusions 

are as follows: 

(1) Target markers adapted to the monitoring system are specially designed as concentric circles. 

Considering the error of program operation, graphics positioning size and time cost, the research 

suggests setting the number of concentric layers to six, and the pixel size of the marker points to 
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no smaller than 28 × 28 pixels. Under the design of the target, it can be seen from the noise 

robustness test that the positioning method has better positioning accuracy and stability under 

different levels of Gaussian noise and impulse noise than the center of gravity method. 

(2) This study successfully introduces the target tracking technology into the deformation 

monitoring of the slope and improves the degree of intelligence. The tracking performance 

evaluation test shows that the use of UCC sub-pixel template matching technology to optimize 

the tracking accuracy of an STC target can effectively reduce the measurement error. 

(3) Finally, slope movement is simulated by the indoor sliding plate, and the deformation is 

monitored employing the proposed method. The results show that the accuracy of the 

deformation measurement can achieve a millimeter level. It validates the potentials of the stereo 

vision displacement sensor for cost-effective slope health monitoring. However, the actual slope 

application needs to be further explored according to the actual situation. 

The vision sensor system proposed in this paper can also be applied to deformation monitoring 

scenarios in other engineering fields, such as bridge deflection, tunnel convergence, and also 

structural deformation. However, detailed monitoring plans in these circumstances should take into 

full consideration specific site conditions and the primary monitoring objects closely related to the 

structural health. 
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