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Abstract: Terrain-aided navigation (TAN) is a technology that estimates the position of the vehicle by
comparing the altitude measured by an altimeter and height from the digital elevation model (DEM).
The particle filter (PF)-based TAN has been commonly used to obtain stable real-time navigation
solutions in cases where the unmanned aerial vehicle (UAV) operates at a high altitude. Even though
TAN performs well on rough and unique terrains, its performance degrades in flat and repetitive
terrains. In particular, in the case of PF-based TAN, there has been no verified technique for deciding
its terrain validity. Therefore, this study designed a Rao-Blackwellized PF (RBPF)-based TAN, used
long short-term memory (LSTM) networks to endure flat and repetitive terrains, and trained the
noise covariances and measurement model of RBPF. LSTM is a modified recurrent neural network
(RNN), which is an artificial neural network that recognizes patterns from time series data. Using this,
this study tuned the noise covariances and measurement model of RBPF to minimize the navigation
errors in various flight trajectories. This paper designed a TAN algorithm based on combining RBPF
and LSTM and confirmed that it can enable a more precise navigation performance than conventional
RBPF based TAN through simulations.

Keywords: terrain-aided navigation (TAN); Rao-Blackwellized particle filter (RBPF); long short-term
memory (LSTM); terrain validity check; digital elevation model (DEM); inertial navigation
system (INS)

1. Introduction

Aircraft safety requires highly reliable navigation information. Traditionally, the inertial
navigation system and global positioning system (INS/GPS) integrated navigation algorithm has been
widely used [1]. However, GPS cannot operate independently and is also vulnerable to jamming.
To overcome such weakness, the terrain-aided navigation (TAN) techniques can be used. TAN is a
navigation technology that estimates the aircraft’s precise position by comparing the altitude measured
by an altimeter with the uploaded digital elevation data (DEM). To acquire precise position information
using TAN, nonlinear estimation problems must be solved in real-time. The extended Kalman filter
(EKF)-based TAN algorithms have solved these problems through regional linearization [2]. However,
because of the highly nonlinear characteristics of the terrain, the EKF-based TAN algorithm can diverge
due to linearization. Recent studies have suggested that the TAN techniques that use the Bayesian
estimate method, such as particle filter (PF) and point mass filter (PMF), can prevent the problem [3–7].
The techniques can be directly applied to nonlinear problems without having to perform linearization,
like EKF. When using the Bayesian approach, integration terms are included when the measurements
are updated. It’s difficult to calculate the integration terms in real time. PF uses the Monte-Carlo
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sampling method instead of the integration terms required to normalize the posterior pdf via Bayes’
rule [8]. Increasing the precision of PF requires many particles, and the computation load rapidly
increases if the dimension of the state variables increases. As a means for more efficient calculations,
there have been studies that applied the Rao-Blackwellization technique where state variables are
divided into linear and nonlinear parts [9–11]. In this study, the two-dimensional PF was composed of
latitude and longitude errors. The altitude bias generates errors in the likelihood calculations of the
PF. To compensate for this, a one-dimensional Kalman filter was added. If the three-dimensional PF
was composed of latitude, longitude, and altitude errors, more particles are needed to ensure accuracy.
This causes the computational complexity. To alleviate this problem, we used the Rao-Blackwellization
technique that marginalize the states that vary close to linearly in the dynamics. One Kalman filter
was assigned to each particle by marginalization.

TAN for aircraft, UAVs, and missiles is a well-established technique that has been studied for
several decades. Recently, there have been active studies in the field of the autonomous underwater
vehicles (AUVs) [10,12]. The main differences between TAN for AUVs and aerial vehicle systems
are the vehicle dynamics and sensors used to measure the relative position from the vehicle to the
terrain [12]. In particular, the AUVs and UAVs systems require high reliability and have to guarantee a
stable navigation performance in the GPS-less environment, but most studies about the TAN technique
for AUVs and UAVs have focused on rough and unique terrains. Otherwise, there have been studies
that represented the stable TAN performance to make a detour around the flat and repetitive terrains
through path planning or simultaneous localization and mapping (SLAM) techniques [12,13], but as
vehicles have been recently required to perform various missions, even in GPS-less environments,
the path planning or SLAM techniques are limited in terms of survivability and reliability. Therefore,
in this study, we suggest the robust TAN technique for reliable navigation performance, even in flat or
repetitive terrains. In other words, we designed a TAN technique that can perform in flat or repetitive
terrain, instead of avoiding these terrains and moving into rough or unique terrains by using the path
planning and SLAM techniques.

For the robust TAN, the validity check technique of measurements by terrain roughness and
uniqueness is an important technique that determines the navigation performance. The mean squared
difference (MSD) and mean absolute difference (MAD) of the height deviation have been widely
used for contour matching based TAN [14,15]. As for the bank of Kalman filter (BKF)-based TAN,
the validity check technique that uses smoothed weighted residual squared (SWRS) is standard [16].
However, for the TAN that uses Bayesian filters, like PF and PMF, there is no commonly used validity
check technique. Therefore, at first, we considered the validity check technique by using mutual
information (MI) and residual check logic, which can be applied to PF. In [17], the validity check
technique that uses MI was introduced. The MI about the joint probability function of the likelihood
and prior probability distribution measures how much the likelihood reduces uncertainty about
the prior distribution. Therefore, if the value of MI is positive, the likelihood from generating the
measurement can be useful [17]. However, although the measurement error is instantaneously large,
using the measurement can be helpful to the PF in some cases. In other words, the current value of MI
is not enough to provide robust solutions on certain flight trajectories. Also, the incorrect estimates of
PF can cause the validity check logic by using residuals between the measurements and the estimates to
malfunction. The validity check technique cannot thoroughly guarantee the reliability and robustness
of the TAN.

Next, we considered the method that can control the noise covariance and measurement model to
reduce the navigation error. There have been studies that estimated the process noise by modelling the
magnitude of the maximum uncertainties or the sufficient statistics of the process and measurement
noise parameters [18,19]. However, this method models the magnitude of noise at the moment
accurately instead of determining the optimal process and measurement noise for generating stable
particles in flat and repetitive terrains. In other words, modeling close to the true magnitude of noise
may, at times, degrade the filter performance in flat and repetitive terrains. To solve this problem, this
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study adopted an improved recurrent neural networks (RNN) method called long short-term memory
(LSTM). RNN is an artificial neural network that recognizes patterns from the time series data, which is
one of the deep learning techniques that considers current and past input data via inner memory [20].
However, as for the RNN, its error gradient decreases along with back propagation when going back
in time, so it is inappropriate to analyzing long time series data patterns. LSTM networks update
intermediate memory cells with the sum of values that pass through the input and output gates, so
they can deal with longer sequences than RNN, which is composed of only multiplication. Recently,
there have been active studies that use the expectation-maximization (EM) algorithm or Bayes rules to
efficiently conduct RNN or LSTM training or studies that use LSTM to improve the performance of KF
or PF [21–26]. These studies are not suitable for providing real-time solutions or they are mostly limited
to image recognition. This paper used LSTM networks to train noise covariances and measurement
model of RBPF based TAN for improving the navigation performance in flat and repetitive terrains.

Section 2 summarizes the design of the conventional RBPF based TAN. Section 3 introduces the
terrain and measurement validity check logic and its application to the designed RBPF-based TAN.
Next, the LSTM modules are designed, and an LSTM-RBPF-based TAN is proposed, of which the noise
covariances and measurement model are trained by the LSTM modules. Finally, this study determines
the model parameters for the proposed LSTM modules using training data and performs Monte Carlo
simulations that use evaluation data to verify the proposed design.

2. Conventional RBPF Based TAN

As for the EKF-based TAN, there is a high probability of divergence if the nonlinearity of the
system or measurement model is too great. Therefore, this study considered PF-based TAN. PF is one
of the general Bayesian filters that use global approximation instead of regional linearization [3,8,27].
In this study, the two-dimension PF was composed of latitude and longitude errors. The Bayesian filter
was applied to the following TAN system and measurement model:

xk = xk−1 + uk + wk−1, (1)

yk = hk(xk ) + vk, (2)

xk =
[

δφ δλ
]T

is a two-dimensional state vector composed of latitude and longitude errors at

the k-th time. uk =
[

vn,k ve,k

]T
and hk(xk) denote the velocity vector composed of velocities in

a northward and eastward direction and terrain elevation from the DEM evaluated at the position,
xk. yk is the terrain height calculated by the measurements of the IRA and barometer. In the system
above, wk is the system white noise that meets E(wk) = 0 and E(wk)E(wk)

T = Qk∆t. Here, Qk is the
system process noise covariance, and ∆t is the sampling time. In the measurement above, vk is the
white measurement noise that meets E(vk) = 0 and E(vk)E(vk)

T = Rk. Here, Rk is the measurement
noise covariance. The prior pdf is as follows. The prediction step uses the TAN system model (1) to
obtain the prior pdf of the state at time step k via the Chapman-Kolmogorov Equation (6):

p( xk|xk−1 ) = pwk−1(xk − xk−1 − uk), (3)

By using the same process above from Equation (2), the likelihood is as follows:

p(yk|xk ) = pvk (yk − hk(xk)), (4)

At time step k, measurement yk becomes available, and this may be used to update the prior pdf
via Bayes’ rule [28]. The posterior pdf that uses this is as follows:

p( xk|Yk ) =
1
αk

pvk (yk − hk(xk))p( xk|Yk−1 ), (5)
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Here, αk =
∫

pvk (yk − hk(xk))p(xk|Yk)dxk and Yk = {y1, y2, . . . , yk}. αk is the parameter that
normalizes the posterior pdf. The state variable estimate and covariance that minimize the mean
square error are as follows:

x̂k|k =
∫

xk p(xk|Yk)dxk, (6)

p̂k|k =
∫ (

xk − x̂k|k

)(
xk − x̂k|k

)T
p(xk|Yk)dxk, (7)

The computational load due to the integral calculation included in the above conditional pdf is
large. To alleviate the computational load, the sequential importance sampling-PF (SIS-PF) is generally
used. SIS-PF is a technique that implements a sequential Bayesian filter using Monte Carlo sampling.
If
{

xi
1:k, i = 1, . . . , Ns

}
is the i-th weighted particle with the i-th weight,

{
wi

k|k, i = 1, . . . , Ns

}
, the time

propagation equation of the PF is as follows:

wi
k|k−1 = p

(
xi

1:k

∣∣∣Yk−1

)
= p( xi

k

∣∣∣xi
1:k−1, Yk−1 )p

(
xi

1:k−1

∣∣∣Yk−1

)
= p

(
xi

k

∣∣∣xi
k−1

)
wi

k−1|k−1, (8)

Ns is the number of the sampled particles and xi
1:k =

{
xi

1, xi
2, · · · , xi

k
}

. If xi
k ∼ q(x1:k|Yk−1),

i = 1, · · · , Ns is a sample generated from the target probability density, q(x1:k|Yk), the above weight is
as follows by the importance sampling principle:

The process of PF can be expressed as follows by separating the time propagation equation and
the measurement update equation:

xi
k ∼ q( xi

k

∣∣∣xi
k−1, yk ), (9)

wi
k|k−1 = p

(
xi

k

∣∣∣xi
k−1

)
wi

k−1|k−1, (10)

wi
k|k =

p
(
yk
∣∣xi

k
)

∑Ns
i=1 p

(
yk
∣∣xi

k
)
wi

k|k−1

wi
k|k−1, (11)

In this study, the current value of the state vector is determined by the one previous value that
uses a Markov process, and the Gaussian distribution is used as the target distribution, q( xi

k

∣∣∣xi
k−1, yk ).

By using the Dirac delta function, the posterior pdf, p( xk|Yk ) at the k step can be approximated as (12):

p( xk|Yk ) ≈
Ns

∑
i=1

wi
k|kδ
(

xk − xi
k

)
, (12)

Here, δ denotes the Dirac delta function. The state variable estimate and covariance that minimize
the mean square error are as follows [8]:

x̂k|k ≈
Ns

∑
i=1

wi
k|kxi

k, (13)

p̂k|k ≈
Ns

∑
i=1

wi
k|k

(
xi

k − x̂k|k

)(
xi

k − x̂k|k

)T
, (14)

The SIS-PF updates the weights and particles when the measurements are put sequentially. When
the method runs several steps, a degeneracy problem occurs in which the weights of all particles are
too small, except for a few particles. To solve this problem, the number of valid samples, Ne f f , should
be maintained [28]. Ne f f is determined by the user and is set to 2

3 Ns in this study:

Ne f f =
Ns

1 + Var
(
w∗ik
) ∼ 1

∑Ns
i=1

(
wi

k
)2 ≤ Ns, (15)
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Here, w∗ik+1|k =
p(xi

k+1|Yk)
q(xi

k+1|xk , yk+1)
. It is hard to calculate the target weight, w∗ik+1|k, as the target

distribution is unknown exactly. So, the estimate is used as shown in the above equation. That is,
to maximize Ne f f , important sampling is performed so that Var(w∗ik ) becomes the minimum. The
simplest way to implement this is to perform resampling, and this PF is called sequential importance
resampling-PF (SIR-PF). Among various resampling methods, this study employed the stratified
sampling method with simulation. This method is as follows [28]:

Ne f f [{xn
k }

N
n=1] = Resample

[{
xi

k, wi
k|k

}Ns

i=1
, N
]

, (16)

When the number of particles after resampling is N, the weights are recalculated as follows:

wi
k|k =

1
N

, (17)

Resampling can resolve the degeneracy problem, but since the particles with large weights
are replicated when the filter is updated, a sampling impoverishment problem occurs where the
diversity disappears over time. To alleviate this problem, the Markov Chain Monte Carlo (MCMC)-step
was added to PF by replacing only particles that satisfy the diversity judgement condition through
Metropolis-Hasting sampling [27]:

x̃i
k+1 = xi

k+1 + εi
k+1, εi

k+1 ∼ N(µ, Rεε) (18)

Here, µ and Rεε are determined by considering the move step size to a new set of particles that
use the following random walk model where it was set to 0 and 0.002, respectively, in this study. This
MCMC-step is performed after the resampling step. The corresponding acceptance probability is
expressed as:

A
(

x̃i
k+1, xi

k+1

)
= min

{
p(x̃k+1, x1:k|Yk+1)× q

(
x̃k+1

∣∣xi
k, yk+1

)
p(xk+1, x1:k|Yk+1)× q

(
xk+1

∣∣xi
k, yk+1

) , 1

}
, (19)

x̂i
k+1 =

{
x̃i

k+1 if U(0, 1) < A
(

x̃i
k+1, xi

k+1

)
xi

k+1 otherwise
, (20)

To increase the accuracy of the posterior pdf estimate, the number of particles must increase.
As the dimension of the state variable increases, the amount of computation increases rapidly [28].
To solve this problem, there have been studies that used the marginalization method for efficient
computation in the positioning, navigation, and tracking problems [10,11,29]. This is a method that
separates the state variables into linear and nonlinear parts. It also applies nonlinear parts to PF and
linear parts to construct one KF for each particle. The most general model about RBPF is as follows [9]:

xn
k = f n

k−1
(

xn
k−1
)
+ Fn

k−1
(
xn

k−1
)
xl

k−1 + wn
k−1, (21)

xl
k = f l

k−1
(

xn
k−1
)
+ Fl

k−1
(

xn
k−1
)
xl

k−1 + wl
k−1, (22)

yk = hk(xn
k ) + Hk(xn

k )xl
k + vk, (23)

Here, xk =

[
xn

k
xl

k

]
, wk =

[
wn

k
wl

k

]
∼ N(0, Qk) and Qk =

[
Qn

k Qnl
k

QnlT

k Ql
k

]
∼
[

Qn
k 0

0 Ql
k

]
. The

following includes a general formula that consists of the linear state variables of RBPF, xl
k and nonlinear

state variables, xn
k [9,10]. f n

k−1(xn
k−1) is the dynamic function of the nonlinear state variables and is

equal to xk−1 + uk in Equation (1). Fn
k−1(xn

k−1) is the dynamic function of the nonlinear state variables
and determined by the linear state variable in one previous time. It was set to zero matrix in this
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study. This means that the prediction of the nonlinear state variables is not affected by the linear state
variable [9]. f l

k−1(xn
k−1) is the dynamic model of the linear state variable determined by the nonlinear

state variables. Fl
k−1(xn

k−1) is the dynamic function of the nonlinear state variable by the linear state
variables in one previous time. Hk(xn

k ) is the measurement model determined by the linear state
variable. Assume that xl

k follows the normal distribution in the condition given xn
k in the above model,

the model can be expressed as:

xn
k − f n

k−1
(

xn
k−1
)
= zk−1 = Fn

k−1
(

xn
k−1
)
xl

k−1 + wn
k−1, (24)

xl
k = Fl

k−1
(

xn
k−1
)

xl
k−1 + xl

k−1 + ul
k + wl

k−1, (25)

yk − hk
(

xn
k−1

)
= y′k = Hk(xn

k )xl
k + vk, (26)

That is, (24) and (26) are the measurement models and (25) is the system model from the viewpoint
of xl

k. In Equation (24), xn
k − f n

k−1

(
xn

k−1

)
is equal to xk − xk−1 − uk in Equation (1). Therefore, it is

possible to interpret zk−1 as a measurement and wn
k−1 as the corresponding measurement noise from the

viewpoint of xl
k. From the viewpoint of xn

k , Fn
k−1

(
xn

k−1

)
xl

k−1 of (25) and Hk
(
xn

k
)
xl

k of (26) are regarded

as additional process and measurement noise, respectively. First,
(

xn,[i]
k , w[i]

k|k−1

)
is calculated through

(9) and (10) for xn
k . By Bayes’ rule, the joint pdf xl

k and xn
k in the condition of given Yk = {y1, . . . , yk} is

as follows [9]:
p
(

xl
k, xn

k

∣∣∣Yk

)
= p

(
xl

k

∣∣∣xn
k , Yk

)
p(Xn

k |Yk), (27)

Here, p( xl
k

∣∣∣xn
k , Yk ) is analytically tractable and given by the optimal KF. p( xn

k

∣∣Yk ) can be

estimated by PF. x̂l
k|k−1 is calculated by the time propagation of xl

k−1. Then the conditional pdf

for x̂l
k|k−1 is given by applying two-step measurement updates using zk−1 = xn

k − f n
k−1

(
xn

k−1

)
, where

xn
k is the value in the time propagation step of PF in the condition of given xl

k|k−1 and yk − hk
(

xn
k
)
,

where xn
k is the value in the measurement update step of PF in the condition of given xl

k|k:

p
(

xl
k

∣∣∣xn
k , Yk−1

)
= Nxl

k

(
x̂l

k|k−1, Pl
k|k−1

)
, (28)

(
xn,[i]

k|k , w[i]
k|k

)
is calculated by performing a measurement update through (12) for xn

k . When Ne f f

is smaller than the threshold value, resampling is performed. Afterwards, Equation (28) is calculated
by the measurement update for xl

k. Finally, the posterior pdf is obtained as follows:

p(xn
k |Yk) ∼=

Ns

∑
i=1

w[i]
k|kδ
(

xn
k − xn,[i]

k

)
, (29)

p
(

xl
k, xn

k

∣∣∣Yk

)
∼=

Ns

∑
i=1

w[i]
k|k Nxl

k

(
x̂l

k|k, Pl
k|k

)
, (30)

xl
k is a one-dimensional state vector that is given in terms of altitude error. The time propagation

of the linear component of the states and covariance is as follows:

x̂l
k|k−1 =

Ns

∑
i=1

w[i]
k|k−1xl,[i]

k−1|k−1, (31)

P̂l
k|k−1 = P̂l

k−1|k−1 + Ql
k, (32)
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The likelihood of the nonlinear part of RBPF is compensated by this estimated altitude error state
and covariance:

p(yk|xn
k ) = p

vk+
√

pl
k|k−1

(
yk − hk(xn

k )− xl
k|k−1

)
, (33)

Kalman gain is updated as follows:

Kk =
P̂l

k|k−1

P̂l
k|k−1 + Rk

, (34)

If the measurement is available, the update state and covariance are performed as follows:

xl,[i]
k|k = xl,[i]

k|k−1 + Kk

[
yk − hk

(
xn,[i]

k

)
− xl,[i]

k|k−1

]
, (35)

P̂l
k|k = (1− Kk)P̂l

k|k−1, (36)

x̂l
k|k =

Ns

∑
i=1

w[i]
k|kxl,[i]

k|k−1, (37)

3. Validity Check Logic of Terrain for RBPF Based TAN

In TAN, the validity check technique of measurements by terrain roughness and uniqueness is an
important technique that determines the navigation performance. In this study, the interferometric
radar altimeter (IRA) is used to measure the angle of the direction of flight, the angle perpendicular to
the direction of flight, and the range from the aircraft to the nearest terrain point. It then converts these
measurements to a three-dimensional position information on an earth-centered earth-fixed (ECEF)
coordinate system [30,31]. Moreover, it can acquire precise position estimates and maintains a very
small margin of error, even at high altitudes. Despite these advantages, IRA has many uncertainties,
including environmental factors and IRA inherent measurement errors. Generally, the uncertainties
are large in flat and repetitive terrains. In particular, it is difficult to estimate the ambiguity errors
generated through the signal processing and the glint errors caused by the target fluctuation or clutter,
making it challenging to find appropriate compensation techniques. Accordingly, as the TAN that uses
the raw data of IRA is likely to be diverted due to uncertain measurements, only the measurements that
are useful for TAN should be used selectively. This study describes the RBPF-based TAN, including
the validity check logic of the terrain and IRA measurements, as shown in Figure 1. The difference
between altitude from the aircraft to the mean sea level (MSL) measured by the barometer and distance
from the aircraft to the nearest terrain point measured by IRA was matched with the terrain height on
DEM. If the IRA measurement errors are large, PF may not converge. Therefore, this study designed
a system that only updates RBPF when it decides the measurement is valid, and if not, the system
only conducts time propagation. The INS/TAN integrated navigation uses the estimated position by
RBPF-based TAN as measurement and only updates in terrains that seem to be rough and unique
through a terrain validity check, as in Figure 1. In this study, we designed an RBPF composed of
two-dimensional PF and one-dimensional KF. Two-dimensional PF estimates the latitude and longitude
errors. One-dimensional KF estimates the altitude error and compensates the errors in the likelihood
step, as shown in Figure 1. If the posterior pdf of the RBPF satisfies the IRA validity check conditions,
the IRA measurements are updated. Also, if the posterior pdf is more informative than the prior
pdf, the TAN output is judged as satisfying the TAN validity check condition and can be used as the
measurements of the INS/TAN integrated navigation.
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Figure 1. Schematic diagram of the RBPF-based TAN system, including IRA and terrain validity check 

logic. 

3.1. Measurement Validity Check Logic 

As previously stated, the IRA measurements can be converted into three-dimensional position 

information. As shown in Figure 2., the relative position vector, δ𝑥𝐼𝑅𝐴, of the nearest point from the 

aircraft is given in Equation (42): 

𝛿𝑥𝐼𝑅𝐴 = [

𝛿𝜆𝑟𝑒𝑠
𝛿𝜙𝑟𝑒𝑠
ℎ𝑟𝑒𝑠

] = [

𝜌 cos 𝜉 sin 𝛼 sin 𝛽 + 𝜌 sin 𝜉 cos 𝛽
𝜌 cos 𝜉 sin 𝛼 cos 𝛽 − 𝜌 sin 𝜉 sin 𝛽

𝜌 cos 𝜉 cos 𝛼
], (42) 

Here, 𝜌 and 𝜉 are the range and look angle output of IRA, respectively. The virtual pitch angle, 

α, and azimuth angle, 𝛽, of the zero Doppler line are determined by the velocity of the aircraft as 

follows [30]: 

𝛼 = tan−1
𝑉𝑢

√𝑉𝑒
2+𝑉𝑛

2
, (43) 

𝛽 =

{
 

 
𝜋

2
− tan−1

𝑉𝑛
𝑉𝑒
 |
𝑉𝑒
𝑉𝑛
| > 1

tan−1
𝑉𝑒
𝑉𝑛
 |
𝑉𝑒
𝑉𝑛
| ≤ 1

, (44) 

Here, [𝑉𝑒 𝑉𝑛 𝑉𝑢] is the velocity of the aircraft in the navigation frame. So, the nearest point, 
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Figure 1. Schematic diagram of the RBPF-based TAN system, including IRA and terrain validity
check logic.

We need navigation information, including the position, velocity, and attitude. To acquire all the
information, increasing the dimensions of RBPF causes computation complexity. There have been
studies about the INS/TAN integrated navigation algorithms [32]. In this study, the loosely-coupled
INS/TAN integrated navigation was designed to reduce the computing load. The INS/TAN integrated
navigation is designed with the EKF and uses the 13th state variables composed with the error of
latitude, δφ, longitude, δλ, velocity, { δVe δVn }, attitude, { δΨe δΨn δΨu }, accelerometer bias,
{ δBa

x δBa
y δBa

z }, and gyro bias, { δBw
x δBw

y δBw
z }. Since the TAN filter can be unstable in flat

and repetitive terrains, in this study, a feedforward structure was designed to prevent this problem.
The state variables can be expressed as:

x(k) =
[
δφ δλ δVe δVn δΨe δΨn δΨu δBa

x δBa
y δBa

z δBw
x δBw

y δBw
z

]T
, (38)

The system and measurement matrix of the discretized state equation are as follows. The system
matrix is derived as an error model of INS, and the measurements are acquired from the estimates of
the latitude and longitude of the RBPF-based TAN:

x(k) ∼= (I + A∆t)x(k− 1) + w(k− 1), (39)

z(k) = Hx(k) + v(k), (40)

Φ(k) = I + A∆t, (41)

Here, w(k− 1) ∼ N(0, Qk−1), H =

[
1 0 0[1× 11]
0 1 0[1× 11]

]
, and v(k) ∼ N(0, Rk).

The system matrix, A is described in Appendix A.

3.1. Measurement Validity Check Logic

As previously stated, the IRA measurements can be converted into three-dimensional position
information. As shown in Figure 2., the relative position vector, δxIRA, of the nearest point from the
aircraft is given in Equation (42):

δxIRA =

 δλres

δφres

hres

 =

 ρ cos ξ sin α sin β + ρ sin ξ cos β

ρ cos ξ sin α cos β− ρ sin ξ sin β

ρ cos ξ cos α

, (42)
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Here, ρ and ξ are the range and look angle output of IRA, respectively. The virtual pitch angle,
α, and azimuth angle, β, of the zero Doppler line are determined by the velocity of the aircraft as
follows [30]:

α = tan−1 Vu√
V2

e + V2
n

, (43)

β =


π
2 − tan −1 Vn

Ve

∣∣∣ Ve
Vn

∣∣∣ > 1

tan−1 Ve
Vn

∣∣∣∣∣ Ve

Vn

∣∣∣∣∣ ≤ 1
, (44)

Here, [ Ve Vn Vu ] is the velocity of the aircraft in the navigation frame. So, the nearest point,[
x̂φ x̂λ

]T
, is determined by the summation of the estimated aircraft position calculated by Equation

(13) and the relative position,
[

δφres δλres

]T
. As shown in Figure 2b, the nearest points acquired

by the raw data of IRA measurements without an IRA validity check is very unstable. Therefore, to
implement the robust TAN, we must use the beneficial measurements selectively. We could not find
the references about the IRA validity check logic for the Bayesian filters. So, we developed a validity
check logic through the simulations and captive flight tests.Sensors 2018, 18, 2886 9 of 24 
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Figure 2. (a) Relative position from aircraft to the nearest point and (b) nearest points with or without
satisfaction of the IRA validity check conditions.

In this study, the IRA validity check technology was applied using residual check logic in the
following equations: ∣∣∣ĥ− hres − x̂h − hdem

∣∣∣ < √h2
dem − h

2
dem + R + Ph, (45)

min
[

ĥ− hres − x[i]h − hdem

(
x[i]φ , x[i]λ

)]
< 0.1×

√
R + Ph, (46)

Here, ĥ is the MSL altitude measured by the barometer. hres is the relative height calculated by
the IRA. x̂h is the height error estimated by the KF part of RBPF and is equal to the x̂l

k|k calculated in

Equation (37). x[i]h is equal to w[i]
k|kxl,[i]

k|k−1 in Equation (37) and means the estimate of the height error

state assigned to the i-th particle.
(

x[i]φ , x[i]λ

)
is the estimate of the latitude and longitude of the i-th

particle. hdem is the mean of the terrain DEM data of the particles and h2
dem is the mean of the terrain

DEM data squares of the particles. R is the variance of the measurement noise, and Ph is the covariance
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of the height error state estimated by the KF. ĥ− hres means the terrain height by the measurements,
and x̂h − hdem means the estimate of the terrain height by RBPF. So, the difference between both terms
is the residual. R+ Ph is the acceptable range of the height error square that considers the measurement

noise and height error state covariance. h2
dem − h

2
dem is the additional range of the height error square

that considers the terrain roughness and uniqueness in the distributed area of particles, so the IRA
measurements are valid, but only if the residual is more than one sigma of the acceptable error range,
and the minimum residual among the residuals of all the particles is more than 0.1 sigma of the
estimated error range by RBPF. These logics were designed through simulations and verified by the
captive flight tests.

3.2. Terrain Validity Check

As mentioned above, unlike contour matching or BKF based TAN, we could not find a
well-established terrain validity check logic in PF based TAN. In this study, a technique was performed
that uses mutual information, which is a measure of the mutual dependence between the entropy of a
prior distribution and a posterior distribution [33]. Entropy is an index that displays the uncertainties
of random variables. If the random variables are in a uniform distribution, the value of entropy is
at its maximum. The entropy of the prior pdf, H( xk|Yk−1 ) is expressed in terms of the probability
p( xi

1:k

∣∣Yk−1 ) in Equation (8) so that:

H(xk|Yk−1) = −
Ns

∑
i=1

p
(

xi
1:k

∣∣∣Yk−1

)
log p

(
xi

1:k

∣∣∣Yk−1

)
, (47)

The entropy of the posterior pdf, H( xk|Yk ), is defined as follows [33]:

H(xk|Yk) = −
Ns

∑
i=1

p
(

xi
k

∣∣∣Yk

)
log p

(
xi

1:k

∣∣∣Yk

)
, (48)

Mutual information indicates the amount of entropy of xk reduced by measuring yk. The validity
check index, VIE(k), which uses the mutual information of the estimate, can be determined using
Equations (8) and (12):

VIE(k) = H(xk|Yk−1)− H(xk|Yk), (49)

VIE(k) = −
Ns

∑
i=1

wi
k|k−1 log wi

k|k−1 +
Ns

∑
i=1

wi
k|k log wi

k|k, (50)

VIE(k) is the amount of reduced uncertainty after the measurement update. In other words,
if VIE(k) is positive, the position information estimated by TAN is valid and used as the measurement
of the INS/TAN integrated navigation. To verify the method, this study conducted Monte Carlo
simulation 100 times based on the simulation condition and RBPF design parameter indicated in
Table 1 and Figure 3, respectively.
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Table 1. Simulation conditions and RBPF design parameters.

Parameter Value

Initial covariance in PF part 302
[

1 0
0 1

]
m2

Initial covariance in KF part 152m2

Initial velocity error [0.1, 0.1, 0.1] m/s
Misalignment angle error [0.1, 0.1, 1] mrad

Average flight altitude 1 km
Accelerometer bias 100 µg

Gyro bias 0.01 deg/h
Gyro white noise 0.005 deg/

√
h

Barometer bias 14 m
Barometer scale factor 0.2% of height
Barometer white noise 5 m

DTED resolution 0.1 arcsec (level 3)

Process noise covariance in PF part 52
[

1 0
0 1

]
m2

Process noise covariance in KF part 32 m2

Measurement noise covariance Rk = 302 m2

Update frequency 50 Hz
Number of particles 1000

Move step parameter, Rεε 0.002
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Figure 3. Trajectories for verifying the validity check logic; (a) Trajectory 1 starts from an island
and includes both flat and rough terrains, (b) Trajectory 2 starts from rough terrains and ends at
sea, (c) Trajectory 3 includes only rough terrains, (d) Trajectory 4 starts from flat terrains and ends at
rough terrains.

Figure 3 shows the simulation trajectories used to observe the performance in various terrain
conditions. Figure 3b shows a trajectory that starts from the rough terrain to sea, with Figure 3c
showing a trajectory that includes only rough terrains, Figure 3d showing a trajectory that starts from
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flat land to rough terrain, and Figure 3a showing a trajectory that includes all rough and flat terrains.
Through these simulations in various terrains, we want to draw the most optimal design of the validity
check logic. This study conducted simulations in various trajectories with VIE and without VIE, and
the results are as shown in Table 2. Also, this study compared the navigation error between cases that
are decided by VIE(k) in the current point of view and cases that are decided by VIEs accumulated
from previous times.

Table 2. Simulation results w.r.t. various validity check conditions (unit: mCEP).

Trajectory Value Case 1 Case 2 Case 3 Case 4 Case 5

1
TAN 33.106 22.110 22.438 21.943 21.778

INS/TAN 20.386 15.447 17.058 16.058 15.944

2
TAN 49.514 13.813 17.169 13.346 14.109

INS/TAN 44.733 6.313 10.024 6.286 6.335

3
TAN 8.371 5.437 6.010 5.964 5.959

INS/TAN 6.188 4.276 5.121 4.505 4.501

4
TAN 35.755 14.412 14.017 11.923 12.073

INS/TAN 41.965 13.311 12.998 11.078 11.830

Average TAN 31.687 13.943 14.909 13.294 13.480
INS/TAN 28.318 9.937 11.300 9.482 9.653

The cases in Table 2 are defined as follows:

• Case 1. RBPF based TAN without IRA and terrain validity check
• Case 2. RBPF based TAN only with IRA validity check
• Case 3. RBPF based TAN with IRA and terrain validity check using VIE(k)
• Case 4. RBPF based TAN with IRA and terrain validity check using VIE(k) and VIE(k− 1)
• Case 5. RBPF based TAN with IRA and terrain validity check using VIE(k), VIE(k− 1), and

VIE(k− 2)

As Table 2 indicates, all trajectories had a smaller position error with the IRA and terrain validity
check logics than without the check logics. Even if the validity check logic was used, its performance
was better on average when the measurement update was conducted with either one of the positive
current or one-step previous VIE than if the current VIE was positive, or if either one among the
current VIE and the previous two-step VIEs were positive.

Table 2 indicates that the IRA validity check logic provide great improvement. Although the
terrain validity check logic is not perfect, it is helpful to improve the performance in some ways. As the
IRA validity check logic is a technique to filter out the uncertain IRA measurements caused by the flat
and repetitive terrains, a wide sense of the terrain validity check logic is a must for RBPF based TAN.
Also, Table 2 shows that the previous data pattern rather than the current data must be considered.
Also, these simulation results represent that it is difficult to numerically model the logic helpful to all
the common trajectories. So, this study aimed to suggest a design with more improved performance
than the conventional RBPF based TAN in various terrains by utilizing deep learning techniques that
use time series data, which are called LSTM networks.

4. Design of TAN Using RBPF Trained by LSTM Networks

4.1. The RBPF Trained by LSTM Networks

In the previous section, the two-step validity check logic was designed. The terrain validity
check logic was not robust in all the trajectories and was affected by the previous time data of the
validity check index. Also, although the IRA validity check logic provided great improvement in those
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simulations, the incorrect estimates caused the validity check logic to malfunction as the logic was
based on the residual between the measurement and the estimated position. Therefore, we proposed
the validity check logic using RNN, which is robust in all the terrains and can operate normally in the
incorrected estimates. RNN is an artificial neural network that recognizes patterns from time series
data. It can memorize patterns from time series data that can consider the current and past input
data at the same time. RNN can process various lengths of sequence information, but actually, it only
effectively processes comparatively short sequences and cannot remember the incidences from the far
past. This is due to the vanishing gradient problem, in which the gradient of the output errors cannot
be delivered to the initial layer [34]. In other words, it is inappropriate to make simple RNN to learn
using back propagation through time (BPTT) for dealing with longer time series data [31,34]. Among
the various tricks for solving the vanishing gradient problem, there are advanced RNN designs, such
as the LSTM network, gated recurrent unit (GRU) network and recurrent highway network (RHN) [34].
The LSTM network is composed of cells attached to 3 gates, as in Figure 4, and each gate decides
which input value to apply and how much among the current values to forget or output. As shown in
Figure 5, the cell state update includes the addition operation. The RNNs’ units are only composed
of multiplication operation, but as the LSTM includes addition, it can alleviate the gradient vanish
problem [34].
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Figure 5. Flow chart of the LSTM module to learn the nonlinear measurement model, process noise
covariance, Qk, and measurement noise covariance, Rk.

The LSTM network was used with only one hidden layer. The input gate, it, forget gate, ft, output
gate, ot, cell input, gt, cell state, ct, hidden state, ht, and output state, ŷt, are as follows [24,26]:

it = σ(Wihht−1 + Wixxt + bi), (51)



Sensors 2018, 18, 2886 14 of 25

ft = σ
(

W f h ht−1 + W f xxt + b f

)
, (52)

ot = σ(Woh ht−1 + Woxxt + bo), (53)

gt = tanh
(

Wgh ht−1 + Wgxxt + bg

)
, (54)

ct = ft � ct−1 + it � gt, (55)

ht = ot � tanh(ct ), (56)

ŷt = Wyh ht + by, (57)

Here, [Wih, Wix, W f h, W f x, Woh, Wox, Wgh, Wgx, Wyh, bi, b f , bo, bg, by] represents the model
parameters, including the weighting and bias matrices. σ(·) is an element-wise sigmoid function, and
� denotes the element-wise multiplication of the vectors. The bias of the forget gate was initiated to 1,
and the rest of the bias was initiated to 0. All of the initial values of weights were sampled in Gaussian
distribution, N(0, 0.1). Figure 6 shows a flow chart of the LSTM module composed of the LSTM layer,
rectified linear unit (ReLU) layer, and fully connected linear output layer in Equation (57). ReLU is an
activation function defined as the positive part of its argument in the artificial neural networks and is
as follows:

f (x) =

{
x if x > 0
0 otherwise

, (58)

Here, x is the input to a neuron. As it leads to better training results of deeper networks than the
logistic sigmoid [35], the ReLU is currently the best used activation function for deep neural networks.Sensors 2018, 18, 2886 15 of 24 
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2
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Figure 6. Architecture and detailed block diagram of the proposed TAN using LSTM-RBPF;
(a) Schematic diagram of the proposed LSTM-RBPF based TAN system, including the IRA measurement
availability condition check and LSTM module, (b) Block diagram of the proposed RBPF and
LSTM networks.
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The LSTM module is composed of 4 networks: two LSTMhs, LSTMR, and LSTMQ, as show

in Figure 5. Two LSTMhs, LSTMR, and LSTMQ are the modules to train the xk =
[

δφ δλ
]T

of
the measurement model in Equation (2), the measurement noise covariance of the PF part, and the
process noise covariance of the PF part, respectively. Both LSTMhs have the same structure, which are
separately applied to the latitude and longitude errors. At first, this study tried to directly estimate
the terrain height, hk(xk) in the measurement model of Equation (2), but it was impossible to find the
patterns of the terrain height. As for the layer composition, the architecture of the proposed LSTM
module was designed with the review of Ref. [24], and the number of nodes was tuned by checking the
learning performance. The number following the linear, ReLU, and LSTM layers means the number
of neurons (or node). Dropout is a regularization technique that alleviates the overfitting problem in
various neural networks. The main idea is to randomly drop the connections from the neural network
during training [36]. Fully connect means that all the values of the neurons in the current layer are
calculated by using all the neurons of the previous layer. Also, unlike the pose estimate problem from
images, as the means and variances for normalization the input are unpredictable in the case of the
navigation system, this study used variables through the following equations:

Eig =
√
‖D(1, 1)V(1)‖+ ‖D(2, 2)V(2)‖, (59)

SICj =
∑Ns

i=1 Pi
j U

i√
∑Ns

i=1

(
Pi

j

)2√
∑Ns

i=1

(
Ui
)2

, j = 1, 2, (60)

Here, V and D represent, respectively, the eigen value and vector of the estimate of covariance,
p̂k|k−1 in Equation (7). SICj is a similarity index that uses cosine similarities between the prior
probability, Pi

1, or the posterior probability, Pi
2, and the uniform probability, Ui, of the i-th particle [33].

VIE is the validity check index that uses entropy in Equation (50). When these variables are used
as input, there is no need for the normalization step, and as the scales of all input terms are similar,
it contributes to stable learning. The inputs for each network are as below. The input states of networks
for process and measurement noise covariance were considered for the values of the one previous and
current step. This is because, as shown in Table 2 from the previous section, when the influence of
the validation check logic for RBPF based TAN was considered with the VIEs of the current and one
previous step, it had the best navigation performance. Also, as the input of LSTMh, the values of the
states of PF part from the 7-step previous time to the current time were used. The number for the input
data was determined as the value to maximize the training accuracy. Also, after tuning so that the
output of the network was between 0 to 2, this study scaled the range below for use. In the regression
problem that uses the neural networks, when the range of outputs is between -1 to 1, or 0 to 2, we can
acquire stability and high training accuracy [34]. As for the value over 2 or below 0, this study limited
them to the maximum and minimum value of the noise covariance for the stability of the filter:

• Input of LSTMQ: [Eig(k) SIC1(k) Eig(k− 1) SIC1(k− 1)]
• Input of LSTMR: [VIE(k) SIC2(k) Eig(k− 1) SIC2(k− 1)]
• Input of LSTMh: xn

j|j−1, j = k− 7, . . . , k

• Output of LSTMQ after postprocessing: 1.0 ≤
√

Qn
k ≤ 6.0, 0.5 ≤

√
Ql

k ≤ 4.0

• Output of LSTMR after postprocessing: 10.0 ≤
√

Rk ≤ 40.0

LSTMh consists of 2 stacked LSTM layers with 512 nodes each, followed by 2 fully connected
layers with 512 (ReLU layer) and 1 (linear regression layer) nodes. The input elements of the LSTM
layer were randomly dropped in 0.8 probability. This structure uses the same weights, but as learning
does not depend on certain neurons or connections, it helps to prevent overfitting. LSTMR and LSTMQ
consist of a single layer with 28 hidden states each, followed by 2 fully connected layers with 28 (ReLU
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layer) and 1 (linear regression layer) nodes. The ReLU function is applied to activate a fully connected
layer, except for the last regression layer.

4.2. Design of the LSTM-RBPF Based TAN

In Figure 6a, the LSTM module composed of four networks explained in the previous section
and the IRA usability check module were used instead of the terrain validity check that uses mutual
information and the IRA validity check that uses the residual check method, as shown in Figure 1.

In the IRA usability check module, the conditions are the minimum standards that decide whether
TAN can be performed in the current flight state, and the range and look angles that are the outputs
of the IRA sensor are received normally. Those conditions are also applied to the conventional RBPF
based TAN in the previous section. The usability check conditions are as follows:

• The range output of IRA, ρ > 10 m, and the look angle of IRA, ζ < 10
◦

• The roll angle of aircraft, γ < 10
◦
, and pitch angle of aircraft, ϕ < 5

◦

• The difference in look angles measured from the left and right antenna, |∆ζ| < 1
◦

As shown in Figure 6, the proposed method uses more measurement information than the method
introduced in the previous section by using the LSTM module that learns the process and measurement
noise covariances and the state variation at the measurement update stage. For convenience, the
proposed method will be called LSTM-RBPF hereafter. The INS/TAN integrated navigation was
designed with the same architecture as the 13th feedforward EKF introduced in the previous section.
The block diagram in Figure 6b shows a more detailed flow of the LSTM-RBPF-based TAN. The state
estimated in the propagation step, xk|k−1, and the estimated state in the previous step that was already
stored, xk−1|k−2 are converted to input data for LSTMQ through Equations (59) and (60) in the ‘EIG &
SIC1’ module, as shown in Figure 6b. The outputs of LSTMQ and LSTMR were learned to minimize
the loss function, L1, calculated by the scaled navigation rms error as shown below:

L1 =
1

LN

√
[(δφk|k − δ̂φk|k)Rns]

2
+ [(δλk|k − δ̂λk|k)Rew]

2
, (61)

Here, the estimate of state by LSTM-RBPF is x̂k|k = [ δ̂φk|k δ̂λk|k ]
T

. Rns and Rew represent the
radius of the curvature of the Earth’s ellipsoid in the north-south and east-west, respectively. LN is a
scaling factor that limits the extent of the output layer to a specified range and is set to 50 in this study.
The output of LSTMh is learned to minimize the loss function, L2, as shown below:

L2 =
1

LN

√
[(δφk|k − δ̂φk|k)Rns]

2
+ [(δλk|k − δ̂λk|k)Rew]

2
+ αreg‖xn ′

k|k−1 − xn
k|k−1‖

2, (62)

Here, αreg is the regularization constant and is set to 0.74. ‖·‖ is the Euclidean distance between

the input, xn
k|k−1, and output, xn ′

k|k−1. Here, xn
k|k−1 =

[
δφk|k−1 δλk|k

]T
is the true value of latitude

and longitude that is known. The regularized constant can reduce the overfitting problem. As the
result, the proposed LSTMh can provide stable solutions in not only the training data, but also the new
test data.

For the training process, there is a need for true noise covariances. But as the true data that can
be known represent true position information, it replaced the rms error between the estimated and
true noise covariance. The important thing is to tune the range of loss function in order to limit the
network output within the desired range. This requires a scaling factor, LN , which is set to 50 through
numerical simulations. When LN is set to 50, the highest training accuracy is represented. LSTMR
estimates the measurement noise covariance in a similar manner. It uses the same loss function, but
there is a difference in using VIE and SIC2 calculated through Equations (50) and (60) as input data.
As for the LSTMh, it requires the estimate of state in eight time-steps as the input data, and a buffer was
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added to store this. Also, the LSTMQ added L2 regularization terms that added the squared difference
between the learned state and the estimate of state to loss function.

5. Verification of the LSTM-RBPF-Based TAN

5.1. Training Accuracy of the LSTM-RBPF

This study used trajectory 1 from Figure 3a for the training data. This trajectory starts from an
island and includes sea (flat terrain) and mountains (rough terrain) for 1660 s. We wanted to design a
robust validity check logic for any circumstances. So, we used trajectory 1, including all the rough,
flat, and repetitive terrains, as a training set. It is important to select the training data properly, as it
determines the training and test accuracy. The design and simulation conditions of RBPF were the
same as those shown in Table 1. However, the process and measurement noise covariance were used
as the initial value until the 8th time-step, and then the learned values in the LSTM module were
used. The IRA outputs for the simulation were separate simulator output values, including the signal
processing and error model provided by the developer, which the model verified with its similarity
with the real outputs through several captive flight tests. The learning parameters and conditions
are as shown in Table 3. The maximum epoch was set to 150, and Figure 7a indicates the mean value
of the loss function per epoch. One epoch means the duration that all the training data are used to
train the model parameters of the LSTM module. One iteration means the duration that the model
parameters are updated. In this study, one iteration was performed per 2 Hz. This study used the
adaptive moment estimation (Adam) optimizer. As for the optimizer, there are many methods like
stochastic gradient descent (SGD) with momentum, adaptive gradient (Adagrad), root mean square
propagation (RMSProp), Adam, and more. To speed up the process of training, SGD with momentum
memorizes the previously moved direction to the current gradient. Adagrad controls the step size in
accordance with the variation of model parameters for the same reason. RMSProp can maintain the
difference between the model parameters while preventing the infinite increase of gradient by adding
the squared value of the gradient to Adagrad [37]. Adam is the optimizer that builds on the strengths
of RMSProp and SGD with momentum, which is defined as below [37]:

mt = β1mt−1 + (1− β1)∇θ L(θ), (63)

vt = β2vt−1 + (1− β2)(∇θ L(θ))2, (64)

θt = θt−1 − η
mt√

vt + ε
, (65)

Here, θ is a model parameter such as bias and weight. L(θ) and ∇θ L(θ) are the values of the
loss function, L1 or L2, and their gradients, respectively. β1 is the gradient decay factor, and β2 is the
squared gradient decay factor. η is the learning rate, and ε is the constant for preventing a divide
by zero error and is set to 1× 10−8. Generally, when the Adam optimizer is used, the stable training
accuracy is acquired quickly. When the magnitude of the gradient of loss function exponentially
increase, it is likely that the training becomes instable and diverse in several iterations. The gradient
explosion easily occurs in areas where the uncertainties of the measurement output increase or the flat
terrain continues. To prevent this, this study used the L2 norm-based gradient clipping method. The
gradient threshold was set to 3.4 after considering the error range of the TAN system.

When the epoch is over 120, the value of the loss function of LSTMh becomes rather unstable
due to the L2 regularization term. The graph about the value of loss function per iteration in the
1st, 52nd, and 120th epochs is shown in Figure 7b. The significant error due to the uncertainties of
measurement and flat terrain in the 1st epoch was confirmed to be significantly improved in the 52nd
and 120th epoch. However, when applying the model parameters that passed over 100 epochs to the
new test data, there was no improvement effectiveness, which may have been caused by overfitting.
In other words, the trained model meets with high training accuracy in the current training data, but
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doesn’t help to improve the accuracy in the new test data. To prevent this overfitting problem, we
stopped the training process in the 52nd epoch, as shown in Figure 7b. In all the simulations below, the
learning was performed in an Intel® Xeon®, two of CPU @2.10GHz, 64.0GB DDR3 RAM computing
environment of thinkstation P900 model (Lenovo, Beijing, China).

Table 3. Learning parameters and conditions.

Parameter Value

Maximum epoch 150

Initial bias of LSTM layer 0.0 except for forget bias
Forget bias = 1.0

Initial weights of LSTM layer N(0, 0.1)

Initial bias of fully connected layer 0.0

Initial weights of fully connected layer N(0, 0.01)

Learning rate 0.005

Drop ratio of learning rate 0.9 times per 20 epochs

Gradient clipping Norm-based gradient clipping
Threshold = 3.4

L2 regularization factor 0.002

Optimizer Adam

Gradient decay factor 0.9

Squared Gradient decay factor 0.99
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Figure 7. The value of loss function w.r.t. epoch and iteration; (a) The values of loss function, L1 and
L2 w.r.t. epoch, (b) The values of loss function, L1 w.r.t. iteration in the 1st, 52nd, and 120th epochs.

Figure 8 indicates the results of 100 Monte Carlo simulations where the proposed LSTM-RBPF-
based TAN algorithm was performed in trajectory 1 from Figure 3a. When compared with the results of
the conventional RBPF based TAN, as shown in Figure 8, it was confirmed to have a stable performance,
especially in the sea area.
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5.2. Evaluation Accuracy of the LSTM-RBPF

To verify the design of the learned LSTM-RBPF, this study applied the design to new test data, not
the training data. Figure 9 shows the results of the TAN and INS/TAN integrated navigation errors
when the proposed LSTM-RBPF-based TAN performs the Monte Carlo simulation 100 times. When
compared with the conventional RBPF-based TAN, it was confirmed that its navigation performance
was excellent in all trajectories. In the case of trajectory 2, as it passes to the sea after 350 s, the
RBPF-based TAN rms error was significantly diverse. Of course, when the sea continued, the
LSTM-RBPF-based TAN eventually becomes diverse, as shown in Figure 9b, but its degree was
much less than the RBPF-based TAN. In Table 2, the IRA and terrain validity check logic applied to the
conventional RBPF-based TAN was essential to prevent filter divergence in flat and repetitive terrains,
but it had an inverse effectiveness in trajectory 3, including only rough terrains. On the other hand,
as shown in Figure 9c,d, the performance improved, even in only rough terrain. As for trajectory 4,
which started from the sea and ended in rough terrain, the conventional RBPF-based TAN did not
perfectly converge, but the proposed method converged quickly when it entered the rough terrain,
as shown in Figure 9e,f.
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2 [seed number = 1], (c) INS/TAN error in Trajectory 3 [100 times], (d) Rms error in Trajectory 3
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To understand the characteristics of the learned process and measurement noise covariances, the
standard deviations of the noise covariances per iteration are shown in Figure 10a,c,e,g. The learned
process noise covariance, Qk, was 3-dimensional data composed of two Qn

k and one Ql
k.
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Figure 10. Process and measurement noise covariances of the LSTM-RBPF and difference between
terrain heights of the RBPF and the LSTM-RBPF based TAN w.r.t. iteration in the 52th epoch; (a) Noise
covariances in Trajectory 1, (b) Difference of heights in Trajectory 1, (c) Noise covariances in Trajectory 2,
(d) Difference of heights in Trajectory 2, (e) Noise covariances in Trajectory 3, (f) Difference of heights
in Trajectory 3, (g) Noise covariances in Trajectory 4, (h) Difference of heights in Trajectory 4.

In Figure 10, either of
√

Qn
k is shown as the others represent the same characteristics. The

process noise in the system model means the reliability of the system, and the measurement noise in
the measurement model represents the reliability of the measurement sensor. In the most adaptive
filters, the two terms were generally predicted to be in an inverse proportion. This is shown in
Figure 10e, which is the result of trajectory 2 with only the rough terrain. However, in the rest of
the trajectories, including the sea, there is no similar pattern. As shown in Figure 10a, the process
noise gradually decreases in the sea (1200~1500 s), but the measurement noise is maintained at a small
value. On the other hand, Figure 10c confirms to have a smaller process and measurement noise
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after 350 s. Meanwhile, Figure 10g has a smaller measurement noise in the sea (20~60 s), while the
process noise is maintained in large values. This is the learning result from reducing navigation errors
that cannot be modeled numerically. Also, Figure 10b,d,f,h represent the differences between the
terrain height of the new position learned by LSTM-RBPF-based TAN and the height of the position
estimated by time propagation in the conventional RBPF-based TAN. As we noted in the previous
Section 4, it was impossible to directly estimate the terrain height, hk(xk), in the measurement model

of Equation (2), so two LSTMhs were used to train xk =
[

δφ δλ
]T

in Equation (2). To verify the
measurement model learned by LSTM-RBPF-based TAN, Figure 10b,d,f,h represent how large is the
difference between the terrain height of the conventional RBPF-based TAN and the terrain height at
the state, xk, learned by the LSTMh module. In the rough terrain, there was an overall 2 m difference,
as shown in Figure 10h, but there was also a difference in the maximum 8 m, as shown in Figure 10b,d.
As shown in Figure 10d,h, unlike the prediction, there was no difference in the terrain height between
the RBPF and the LSTM-RBPF-based TAN in the sea, but it was due to a low altitude of sea terrain.
It does not mean there was an insignificant difference between learned and estimated positions. Table 4
below is the result of comparison between the conventional and proposed methods. According to
Table 2, Case 4 shows the most stable performance among the conventional RBPF based TAN with
various validity check logics. But the navigation performance of the proposed LSTM-RBPF based TAN
is better than Case 4 for all trajectories. It was verified that the proposed method showed excellent
navigation performance in all trajectories. As for the analysis of the average navigation result, the
TAN error of the proposed method was about 37.0% of the conventional RBPF based TAN, and the
TAN/INS error of the proposed method was about 47.2% of the RBPF based TAN. The results verified
that the proposed method is robust to flat and repetitive terrains and the uncertainties of measurement
outputs than the conventional RBPF based TAN.

Table 4. Evaluation simulation results of the proposed LSTM-RBPF based TAN.

Trajectory Value Conventional RBPF Proposed LSTM-RBPF

1
TAN 21.943 mCEP 3.804 mCEP

INS/TAN 16.058 mCEP 3.956 mCEP

2
TAN 13.346 mCEP 4.162 mCEP

INS/TAN 6.286 mCEP 2.875 mCEP

3
TAN 5.964 mCEP 2.837 mCEP

INS/TAN 4.505 mCEP 2.772 mCEP

4
TAN 11.923 mCEP 5.784 mCEP

INS/TAN 11.078 mCEP 6.013 mCEP

Average TAN 13.294 mCEP 4.147 mCEP
INS/TAN 9.482 mCEP 3.904 mCEP

6. Conclusions

This study applied a deep learning method based on LSTM network to improve the performance
of TAN that could be replaced in environments where GPS is unavailable. In the case of TAN, it has
advantages as it is not affected by external jamming or climate, but its navigation performance degrades
when the roughness and uniqueness of the terrain are not secured. Thus, for a highly precise TAN
navigation performance, a terrain validity check logic is needed. However, most studies on the
TAN technique focused on rough and unique terrains or introduced the method of avoiding flat and
repetitive terrains by using the path planning and SLAM techniques. In particular, for the PF-based
TAN, there is no verified validity check technique, so, in this study, the terrain and IRA validity
check logic by using MI and the residual check method were designed to improve the conventional
RBPF- based TAN. However, this study demonstrated that the validity check logic of the conventional
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RBPF-based TAN for improving navigation performance in flat or repetitive terrains occasionally has
an inverse effectiveness in rough terrains through Monte Carlo simulations.

Next, this study proposed the LSTM-RBPF-based TAN that trains the measurement model
with strong non-linearity and the process and measurement noise covariances of RBPF to minimize
navigation errors. There have been studies that estimated the process and measurement noise.
However, the method cannot guarantee stable navigation performance in flat and repetitive terrains.
Otherwise, the proposed LSTM-RBPF-based TAN was verified as being able to improve the
performance of TAN and INS/TAN integrated navigation in all trajectories, including rough and flat
terrains, through Monte Carlo simulations.

We will apply the proposed LSTM-RBPF-based TAN on embedded computing boards and conduct
captive flight tests on aircraft in the future. We are currently doing studies about the real-time
implementation of the proposed design.

Author Contributions: Conceptualization, J.L. and H.B.; Methodology & Software & Validation & Writing-
Original Draft Preparation, J.L.; Writing-Review & Supervision, H.B.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The system matrix, A is as follows:

A =

[
F1[7× 7] F2[7× 6]
0[6× 7] 0[6× 6]

]
, (A1)

Here, F2 =

 0[2× 3] 0[2× 3]
Cn

b [2× 3] 0[2× 3]
0[3× 3] Cn

b [3× 3]

. Cn
b is the coordinate transformation matrix from the body

frame to the navigation frame. F1 is as follows:

F1 =



0 F12 F13 0 0 0 0
0 F22 0 F24 0 0 0
0 F32 F33 F34 0 F36 F37

0 F42 F43 F44 F45 0 F47

0 F52 0 F54 0 F56 F57

0 F62 F63 0 F65 F66 0
F71 0 F73 0 F75 F76 0


, (A2)

F12 =
Ve

Rew
tan φ sec φ− Ve

R2
ew

sec φδRew, F13 =
1

Rew
sec φ, (A3)

F22 = − Vn

R2
ns

δRns, F24 =
1

Rns
, (A4)

F32 = 2U0 sin φVu + 2U0 cos φVn −
δRew

Rew

(
VnVu

Rns
+

VeVn

Rew

)
+

VnVe

Rew
sec2 φ, F33 =

tan φVn −Vu

Rew
, (A5)

F34 =
Ve

Rew
tan φ + 2U0 sin φ, F44 = − Vu

Rns
, (A6)

F36 = − fu, F37 = fn, F45 = fu, F47 = − fe, (A7)

F42 = −2U0Ve cos φ− V2
e

Rew
sec2 φ +

VnVu

R2
ns

δRns −
V2

e
R2

ew
tan φδRew, F43 = − 2Ve

Rew
− 2U0 sin φ, (A8)

F52 =
Vn

R2
ns

δRns, F54 = − 1
Rns

, F56 =
U0Ve sin2 φ

Rew cos φ
, F57 = −U0Ve cos φ

Rew
, (A9)
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F62 = − Ve

R2
ew

δRew −U0 sin φ, F63 =
1

Rew
, F65 = −U0

Ve sin2 φ

Rew cos φ
, F66 = − Vn

Rns
, (A10)

F71 =
Ve

Rew
sec2 φ− Ve

R2
ew

cos φδRew, F73 =
tan φ

Rew
, F75 = U0

Ve

Rew
cos φ, F76 =

Vn

Rns
, (A11)

Here, Rew and Rns represent the radius of curvature of the Earth ellipsoid in the east-west and
north-south, respectively. The perturbation of these are δRew and δRns.

[
Ve Vn Vu

]
is the velocity

of the aircraft in the navigation frame. φ and λ is the latitude and longitude of the aircraft, respectively.
U0 is the rotation velocity of the Earth and

[
fe fn fu

]
is the specific force of the accelerometer.
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