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Abstract: To be of commercial interest, gas sensors must optimise, among others, sensitivity,
selectivity, longevity, cost and measurement speed. Using the example of ammonia, we establish
that integrated optical sensors provide means to maintain the benefits of optical detection set-ups
at, in principle, a lower cost and smaller footprint than currently available commercial products.
Photonic integrated circuits (PICs) can be used in environmental and agricultural monitoring.
The small footprint and great cost scaling of PICs allow for sensor networks with multiple devices.
We show, that Indium Phosphide based commercial foundries reached the technological maturity
to enable ammonia detection levels at less than 100 ppb. The current unavailability of portable,
low cost ammonia sensors with such detection levels prevents emission monitoring, for example,
in pig farms. The feasibility of these sensors is investigated by applying the common noise
figures of the multiproject wafer platforms operating around 1550 nm to a model for an absorption
measurement. The analysis is extended to other relevant gas species with absorption features near
telecom-wavelengths.
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1. Introduction

There is a growing need for gas sensors in modern society. Not only are they needed for
agricultural process control and climate monitoring, but measuring fine concentrations of gasses
has medical applications. The analysis of human breath is a non-invasive method to detect diseases [1].
In particular in the case of ammonia (NHj3) detection, different sensor concepts reached commercial
maturity. None of those solutions has found wide application as NH3 emission monitoring devices for
agricultural applications. Sensors to determine ammonia concentrations in the ~10 ppm sensitivity
regime are commercially available [2,3]. While these sensitivity levels are useful to reduce the impact
of ammonia on the life stock, emission monitoring, i.e., monitoring ammonia concentrations after the
air cleaner, requires more accurate detection systems.

For these applications sensors need to detect NHj concentrations in the sub-ppm level [4].
Electrochemical sensors approach these sensitivity levels, but suffer from a lack of selectivity and
reproducibility. In addition, the poor scalability and longevity prevent widespread application
for emission monitoring. Rack-sized laboratory optical spectrometers reach the required detection
properties, but are too expensive and not portable, and hence difficult to use for on-site monitoring [5].
Commercial products exceed tens of thousands of Euros per device. Low cost alternatives to
laboratory optical spectrometers could consist of tunable single-mode telecom lasers, interaction cells,
and photodetectors. The reduced cost of such a device comes at the expense of small tuning ranges,
typically of the order of a few nm when considering temperature tuning, and fractions of nm when
considering current tuning. The absorption linewidths of gases at room temperature might span
more than the tuning range that current tuning can achieve. Thermal tuning can achieve a sufficient
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wavelength span, but uses a slower tuning mechanism. In any case thermal control is required to
ensure that an absorption line is targeted, adding to the device cost. In addition, in environments
with many spurious absorption signals a single absorption line might not suffice to identify a gas.
Widely tunable telecom lasers, such as Sampled Grating Distributed Bragg Reflector (SG-DBR) lasers,
can overcome those problems, but are far more expensive.

An improvement to such a set-up can be made when considering Photonic Integrated Circuits
(PICs), which provide an intermediate solution between the two discussed optical devices (diode
based and rack sized equipment). PICs can have a wider tuning range than single mode telecom lasers,
and the monolithic integration of laser sources, detectors, and modulators allows for advanced noise
reduction methods. PICs could provide a substantial improvement in terms of cost and device size
when compared to laboratory equipment, while still being able to span wavelength tuning ranges far
in excess of typical absorption linewidths. This work investigates whether PICs achieve the sensitivity
levels required for agricultural emission monitoring. The monolithic integration can also increase the
stability of the device and make it independent of ambient fluctuations, which is an important feature
when operating the sensor outside of laboratories. PICs are scalable for mass production, allowing for
sensor networks for distributed gas measurements. Lastly, multiple lasers can be combined on a
single PIC, which provides the opportunity for multi-species gas sensors and a very selective readout.
Multiple laser sources also open the path to heterodyne detection schemes and provide means to
wavelength tracking on chip. Figure 1a shows an example for a PIC with six laser on a 4.7 x 4.1 mm?
sized device [6].
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Figure 1. (a) Photonic Integrated Circuit (PIC) containing six tunable laser sources. The chip has been
attached to a submount and the electrical contacts have been wire-bonded to a printed circuit board.
Fibers would approach the light output ports from the left or right side of the chip. These connections
can be fixed, e.g., with glue, to provide a packaged device. (©2015 IEEE. Reprinted, with permission,
from Latkowski et al.; Novel Widely Tunable Monolithically Integrated Laser Source. IEEE Photonics
Journal 2015, 7, 1-9 [6]; (b) Schematic for a compact gas sensor using PICs and a hollow-core fibre
(HCF). A HCF can be spliced to lensed or tapered single-mode fibres (SMF), which are typically used
for fibre chip coupling on indium phosphide (InP) based, butt coupled PICs. A PIC can contain light
sources as well as photodectors (PD 1 and PD 2).

Molecular absorption spectroscopy is commonly undertaken at infra-red wavelengths of 2 ym and
beyond [7]. Solid state lasers and quantum cascade lasers are able to reach mid-infrared wavelengths,
but PICs typically do not reach those wavelengths. Extending the wavelength range PICs can access
is still on-going research [8,9]. While a tunable, indium phosphide (InP) based laser operating at
2 pm wavelength has been demonstrated, the tuning range, emission power, and stability does
not reach the level of the corresponding circuits at shorter wavelengths [10]. For those shorter
wavelengths, the overtones of the optical transitions in the gas need to be measured, leading to
much lower absorption coefficients. While spectroscopy using photonic technology at 1.55 pm seems
to be unattractive from that perspective, we will show that the performance this technology can
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compensate for the caveats. Demonstrations of spectroscopy at the ppm level in this wavelength
region have already been shown in 2001, but no commercial product has been developed to exploit this
research [11]. We will show theoretically by simulations that PICs can reach the same detection levels.
While measuring higher concentrations of ammonia might require a redesign of the sensor when using
chemical detection methods, e.g., due to saturation effects, optical detection can detect concentrations
spanning multiple orders of magnitude [12]. This makes PICs flexible regarding the target market.

The fabrication of PICs requires a clean room, which is a prohibiting factor for many companies,
as it is associated to a high entry cost for the technology. While those devices scale very well,
i.e., the price per unit reduces when increasing the number of units, initial expenses prevent the
development of PICs. This initial barrier can be overcome when facilitating generic technologies
and multi project wafer (MPW) foundries [13]. In this framework optical designers can submit a
mask layout with predetermined building blocks (BBs) to achieve the desired functionality. The MPW
foundries manufacture the chip, allowing PICs to be used without operating a clean room. The chips
can be packaged to allow for turnkey operation, further reducing the demands on the measurement
set-up. Several foundry, design and packaging services are brokered by JePPIX [14].

This work is dedicated to the study of feasibility of PICs for ammonia sensing, but can be extended
to other gas species in the PIC wavelength range. This includes N,O, CO,, CO, H,S, C,H;, and CHy.
Several of those gasses are climate relevant and could be included in emission tests. Additionally,
CO, is monitored to determine ventilation requirements in animal farms to ensure the health of the life
stock. The strongest absorption lines of those gases in the accessible wavelength range are outlined in
Figure 3. As the Figure shows, e.g., CHy concentrations of 100 ppm can be detected in the same fashion.

2. Absorption Strength and Signal Levels

The requirements on the detection system depend on the signal strengths of the gas sample.
For a direct absorption measurement, the signal corresponds to the amount of light that is absorbed
when passing through the medium. We used the values obtained from the HITRAN database to
link concentrations to absorption line strength [15,16]. We specifically targeted absorption lines in
the C-band of optical telecommuncations (1.53-1.565 um), as PICs have reached a high maturity in
this region. Several other absorption lines can be found in the long-wavelength end of the S-band
(1.46-1.53 pm). The strongest absorption signals were found at the wavelengths of 1.512, 1.514, 1.522,
1.527, and 1.531 um. All of the investigated lines suffer from overlapping absorption lines with
other gases present in the atmosphere, with water vapour providing the strongest spurious signals.
The presented absorption values are for gas mixtures with a pressure of 1 atm, a temperature of 296 K
and a propagation length of 1 m. The exact gas composition is listed as USA model, mean latitude,
summer, H = 0 in [16]. These values only provide approximations for the gas composition, which can
differ depending on where and when measurements are taken. Several constituents of the atmosphere
have changed their respective concentration, such as in the case CO,, whose increased concentration
over the last years and is linked to climate change [17].

For a proper gas detection we require the contribution of NHj to be at least 50% of the total
absorbance at the peak wavelength. Concentrations of 10 ppm can be detected without the removal of
water vapour at 1.531 pm. The absorption strength can be linked to the NH3 concentration by

A~10"8m lppb?, (1)

for all the mentioned absorption lines. The exact absorption value for the individual lines differs by
not more than a factor of 5, which allows for this approximation. At lower concentrations of NHj,
water vapour will provide the dominant absorption signal. If water can be removed, e.g., by cooling
the gas below the condensation point of water, lower concentrations can be measured, before other
gases, e.g., CO,, dominate the absorption signal. The impact of water vapour absorption and hence the
importance of removing water from the gas mixture is enhanced for the shorter wavelengths that we
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investigated. It is worth mentioning that water vapour also affects the performance of other available
highly sensitive gas sensors and is not a problem unique to the optical detection. Figure 2 shows the
signal strengths for the different absorption lines. Five lines in the spectrum have been selected due
to their strong absorption in comparison the other lines. The figure also shows the corresponding
lineshapes and the absorption background caused by other gases in the atmosphere. Figure 3a shows
the resulting concentrations for each line that can be reached before those spurious signals impede
the analysis. All of the lines can in principle be used to measure concentrations higher than 100 ppb,
with a few lines allowing for concentrations as low as 1 ppb. A similar analysis can be done for
other gases, which feature absorption lines in the investigated wavelength range. An estimate for
the concentrations corresponding to a relative absorption of 107 for several such gases is shown
in Figure 3b. The limits in Figure 3b are not given by spurious signals, unlike in Figure 3a, but by
the absorption strength. Figure 3 assumed 1 m light propagation in the medium, and total overlap
of the light field with the analyte gas. Such conditions can be reached with HCFs. On-chip gas cells
for evanescent sensing in InP can be estimated to confine between 1% and 10% of the light power in
the gas interaction region, and reach propagation lengths of ~10 cm, resulting in 100 to 1000 times
weaker signals [18,19]. The detectable gas concentrations increase correspondingly by the same factor.
Complex structures, such as pillar based photonic crystal waveguides, can potentially improve the
in-gas confinement factor, but are not manufactured in a standardised process for mass production [20].

The analysis above assumes a single mode laser, i.e., light is emitted at a singular wavelength.
Real laser systems have a finite bandwidth, as well as sidebands in their emission profile. Single-mode
lasers are typically evaluated regarding their linewidth in full width at half maximum (FHWM),
the side mode suppression ratio (SMSR), and their tuning range. With typical linewidths around
1 MHz, semiconductor lasers are suitable, as the absorption lines have linewidths of multiple GHz.
The finite linewidth of the laser is consequently expected to be of negligible impact. Empirically, it has
been found that an SMSR of 30 dB is required for spectroscopic measurements [21]. It can be reasoned,
that a similar requirement needs to be reached here. In dry air, the strongest spurious absorption signals
can be found at wavelengths of 1530 and 1570 nm, with signal strengths of ~7 x 107¢ and ~6 x 107>
respectively. The relevant ammonia absorption lines are at wavelengths of 1531 nm, or shorter. As such
it can be stated, that for an absorption line with a strength of ~10~7 (corresponding to 10 ppb of
NH3), the close neighbour SMSR has to be greater than 20 dB, and for lines further away greater than
30dB. This, of course, only holds when considering a single side mode polluting the signal, at the
worst possible wavelength. Performance levels exceeding those requirements have been reported in
numerous publications [6,10,21,22]. The requirements are further relaxed when dealing with higher
concentrations and stronger signals. This is, in many aspects, a worst case estimation, as the strongest
laser side mode does not necessarily overlap with the strongest spurious absorption line. Similarly
the typical tuning ranges do not pose a limit, as in theory a measurement over a single absorption
line suffices. In the same platform that is used here, tuning ranges of more than 70 nm have been
reported [6]. The same publication also showed that fine tuning over an absorption line is possible.
A wider tuning range allows for spectroscopy over multiple absorption lines. Such a detector can show
improved selectivity, as lines overlapping with other gases in the mixture can be ignored, and enables
multi-species gas spectroscopy [23].
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Figure 2. Absorption spectra for ambient air mixed with NHj. (a) Overview of the available absorption
lines. The red line shows the contribution of the 100 ppm added NHj to the total absorption spectrum,
which itself is shown in blue. The majority of the interfering signal is caused by water vapour.
(b—e) After the removal of water, different absorption lines can be exploited for spectroscopic purposes.
While the strength of all the lines is comparable, the overlap with other lines as well as the distance to
the design wavelength of the on-chip laser can make certain lines more favourable compared to others.
The sensitivity limits due to line overlap are shown in Figure 3.
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Figure 3. (a) Absorbance values for different concentrations of NHjz in atmosphere for the investigated
absorption lines and a propagation length of 1 m. The lower concentration limit is given by the
absorption profiles of other gases in the atmosphere that overlap with the NHj lines. The limiting
gases have been linked to the corresponding ammonia absorption lines with a dashed line. For this plot
water vapour has been removed from the ambient air. (b) Detectable concentrations and wavelength
ranges of different climate relevant gas species, assuming absorption signals of ~107°. Lines in the
diagram represent a close set of multiple usable lines, whereas dots refer to single absorption lines.

3. Optical Detection Methods

A minimal detection system for absorption spectroscopy consists of a light source, an interaction
cell, and a photodetector. When choosing a broadband light source, the detection system needs to
contain a spectrometer to extract spectral data. Alternatively a tunable single mode laser can be paired
with a regular, broadband photodetector. Sweeping the laser wavelength over an absorption line yields
the spectral information. As the output power can fluctuate when tuning the wavelength, a second
photodetector is typically used to normalise the transmission with respect to the laser output power.
A two detector system scheme also allows for balanced detection, which only measures the signal
differences between two detectors.

For PICs in InP, tuning a laser and using a broadband detector is the more attractive option.
The requirements on the wavelength selectivity of the filter are reduced, as the filter is effectively
passed through multiple times when placed inside the laser cavity. In addition, there has already been
substantial work in laser design, making the design process very well understood. Silicon (Si) photonics
features potentially lower waveguide losses and a more mature clean room processing, but lacks the
active elements, such as optical amplifiers [19]. On-chip spectrometers have been demonstrated,
which can be used for spectroscopic purposes [24,25]. An advantage of using this approach would be
the accessibility of different wavelength regions with possibly stronger absorption lines. With hybrid
or heterogeneous integration, Si circuits can have access to compact optical amplifiers on the same
chip [26].

With an increasing number of devices, the advantages of PICs in comparison to systems consisting
of discrete components are more and more visible, as most of the functionalities can be implemented
in the same monolithically integrated circuit.

In contrast to detector and light source, the interaction cell cannot easily be integrated on the same
chip. The interaction cell contains the volume of the gas sample that can interact with light, here to
measure the absorption profile. Low concentrations, whose detection is the aim of the spectrometer,
result in few absorbing molecules in a given volume. In set-ups with discrete components resonant
cells and multi-pass cells found applications to increase the optical path length in the gas and hence the
interaction. The alignment of resonant and multi-pass cells is more complex than for single path cells
and can lead to beam steering instabilities and added noise. The low quantity of absorbers requires
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long optical path lengths through the gas sample, which is typically difficult to achieve on-chip.
Measurements for concentrations in the sub-100 ppm regime in Methane have been demonstrated
recently, using a silicon photonic chip, operating at 1650 nm [27]. Evanescent sensing with on-chip gas
cells requires low-loss waveguides and large confinement of light in the cladding area, i.e., outside of
the waveguide [26]. In InP, propagation lengths are limited to a few centimetres, due to the waveguide
losses (~1 dB/cm) [19]. Si PICs can feature propagation losses of less than 1dB/m, but still suffer from
a low confinement of light in the gas. Lastly, chip sizes in the mm regime are geometrically unable
to reach waveguide lengths of multiple meters. When relying on resonant structures, the effective
interaction lengths can be stretched, at the expense of the stability regarding ambient fluctuations.
Both effects, lower light confinement in the gas volume and short propagation lengths, impede the
absorption signal strength and hence the detection levels. On-chip interaction cells in InP have to our
knowledge only been used for fluid sensing, and not for highly sensitive gas spectroscopy [18].

In InP PICs, light is typically emitted from the facet of the laser chip can be coupled to a fibre,
which allows for using fibre-based gas cells instead of on-chip gas cells. Fibre-coupled gas flow cells
with propagation lengths of up to 80 cm are commercially available, with fibre-to-fibre throughputs of
roughly 35% [28]. In those cells light is coupled into free space in the gas cell and coupled back into the
fiver at the other end of the cell. Hollow-core fibres (HCFs) and hollow-core waveguides are already
commercially available [29]. Off-the-shelf HCFs can confine ~98% of the light in the target gas while
maintaining an attenuation of less than 20dB/km at 1550 nm, and as such provide similar performance
as propagation in free space at a much reduced footprint. Filling and light coupling complicate the
creation of HCF based flow cells. Filling the HCF requires openings for the gas to enter the fibre,
which are typically found at the end of the fibres. When splicing the HCF to a single-mode fibre (SMF),
an open ended fibre is not an option any longer. Holes can be placed at the fibre splice, or placed
along the HCF. Both methods are part of on-going research and reduce the overall performance of
the fibre, e.g., due to back reflections or leaky modes [30,31]. Light coupling on the other hand is
complicated due to possibly mode mismatch between HCF and SMF. Even if both fibres are single
moded, mode field mismatch can cause reflections or coupling losses. Nevertheless, NH3 spectroscopy
in HCFs has already been demonstrated, although not for trace gas detection [32]. In this case light
has not directly been coupled from fibre to fibre, but used free space optical components in between.
When directly a single mode fibre to a hollow core fibre, no free space element is required, which is
expected to increase the stability of the setup, assuming aforementioned caveats can be mitigated.
A schematic for such a setup is shown in Figure 1b.

Hodgkinson and Tatam provided an extensive review for optical gas sensing methods [12]. Out of
the many techniques discussed in their review, we focus on the tunable laser absorption spectroscopy,
and the different methods to obtain the signal within this scheme. Other promising techniques, e.g.,
photo-acoustic spectroscopy, would increase the complexity of the circuit and will not be discussed
here. This does not mean that those techniques cannot benefit from photonic integration. Acoustic
sensors have already been demonstrated on chip, which could be co-integrated with a tunable laser
source [33].

The first method is the direct absorption spectroscopy (DAS). Light that is sent through
the interaction cell experiences absorption, which will be extracted by monitoring the change in
transmission directly with a photodetector. The signal is kept at one wavelength while the detector
takes the value, before the wavelength is changed. Conceptually, this is a simple and straight-forward
detection scheme, and consequentially comparatively simple to optimise. When scanning over an
absorption line, this method is also calibration-free, i.e., no calibration with a known sample is required.

The laser light can also be modulated during the measurement, resulting in a more complex
data treatment, but with the potential to eliminate some noise signals. A sinusoidal wavelength
modulation centered at the absorption peak can be used for wavelength modulation spectroscopy
(WMS), the second method discussed here. The modulated signal is read out with a lock-in amplifier
with a matching frequency. Alternatively higher harmonics can be looked at leading to a weaker signal,
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but to a better background removal. The added complexity of the setup is rewarded with suppression
of low frequency noise, such as 1/f noise. Low frequency noise prevents improving the signal to noise
ratio when averaging and is a bottleneck for measurements at lower bandwidths. WMS and Frequency
Modulation Spectroscopy (FMS) are closely related and differ in regards to their modulation strength,
i.e., the wavelength range that is tuned, and the modulation bandwidth, i.e., how fast a tuning cycle
over the wavelength span is done [34]. FMS typically describes a very fast modulation with low
modulation strength, which can be done on-chip with phase modulators. WMS describes a stronger,
but slower modulation, by scanning the emission of the laser over the absorption line. This can be done
using phase modulators within the laser cavity, or by increasing the current of the laser diode driver,
which also has an impact on the emission wavelength. The strength of the noise suppression depends
on the details of the experimental setup and is discussed by Silver [35]. As the required modulation
bandwidths scale with measured absorption linewidth, FMS would require a modulation of several
tens of GHz (see Figure 3). As this can be challenging for the measurement electronics, only WMS has
been considered here. However, it is worth mentioning that FMS can also obtain the dispersion of the
gas sample, which could provide a stronger effect than the absorption in some cases. The details of
the noise suppression are system dependent, we simplified the evaluation by assuming the best case
condition, i.e., full suppression of the 1/f noise of the laser source.

As a third method a balanced detection scheme can be applied. In this case the difference signal
between the reference and measurement photodetector is read out. A balanced detection setup with
distributed devices can detect ammonia concentrations as low as 0.7 ppm, as has been shown by
Claps et al. in 2001 [11]. Those measurements were taken at a low pressure, 100 Torr, with an optical
path length of 36 m. The seven-fold increase of pressure when measuring gasses in ambient air results
in line broadening, which distributes the optical power over a wider wavelength range, but leads
to a higher absorber density and hence to a stronger absorption. Balanced detection potentially
eliminates laser noise, but distributes light over two detectors reducing the signal strength. A tunable
attenuator or modulator is required to ensure optimal performance, as signal and reference detector
need to receive the same optical power for optimum performance. A time delay between both
detector parts in the balanced detection provides a bandwidth limit for the suppressed noise. In PICs,
detectors, modulators, and attenuators can be integrated on the same chip, which allows for a compact
detector system and reduces the distance between components, e.g., detectors for balanced detection.
Balanced detection is especially attractive, as the reference detector does not need to couple light
out of the chip, which is a major cause for losses in the measurement. Coupling losses from fibre
to chip and vice versa can reach 3 dB, or 50%. In balanced detection two detectors are used to read
out the signals of both arms. Interfering both signals on the same detector, results in homodyne
detection. Changing the optical phase in one arm tunes the interference. When tuning over a full
period, maximum and minimum intensities of the interfering light can be obtained (Imax and Inin).
The minimum intensity I, rises with increasing absorption according to Iin ~ (5211—%, similar to
balanced detection with Ipajanced = (5170. Here, a weak relative absorption 6 << 1 has been assumed,
where I denotes the laser power, which is in both cases equally split into signal and reference (I; and
I>). When comparing the signal strength of balanced detection and tracking the minimum interference
power, balanced detection has a stronger effect, which can also be seen in Figure 4. The figure has
been made without approximation regarding the absorption strength, which takes the minimum and
maximum values of the equation I = (I; + I + 2 cos A¢) /2, where A¢ is the phase difference between
both arms. Since homodyne detection provides a weaker signal while simultaneously increasing the
complexity of the PIC as a phase tuning element is required, it has not been further investigated in this
work. Nevertheless, PICs do allow for on-chip phase tuning elements and interferometric detectors,
and can be used in this configuration if wanted.
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Figure 4. (a) The minimum intensity signal, shown in blue, from the homodyne detection is always
lower than the signal that could be obtained from the balanced detection scheme, shown dashed and
in black. In that regard direct homodyne measurements do not improve the sensitivity of the gas
detection. The maximum intensity is plotted in red. (b) Schematic for a balanced detection system.
The difference signal between both detectors (PD1 and PD2) is read out. (¢) Schematic for a homodyne
detection system. The interference of both arms is measured to obtain the absorption. With the phase
modulator (¢) the phase can be tuned to obtain the minimum power on the photodetector (PD).

4. Noise in the Detection Systems

Noise can be defined as “unwanted disturbances superposed upon a useful signal that tend to
obscure its information content” [36]. While a weak signal can be amplified to be detectable, interfering
noise will be amplified as well. A signal needs to be reasonably strong in relation to its noise to allow
for accurate measurements. We consider a signal-to-noise ration (SNR) of 1 to define our detection
limit. That means that the absorption strength has to be at least as strong as the noise strength,
which determines the NHj3 concentrations that can be measured.

Noise can be classified according to its source, which would entail the laser source, the interaction
cell, and the photodetector. As the interaction cell cannot be part of the PIC, it is not included in our
calculations. If the interaction cell is the limiting component, then it is so for all optical spectroscopes;
integrated or not. Laser source and photodetector on the other hand, can and should be part of the
PIC. We used the parameters provided by the MPW foundry SMART Photonics to assess the noise
performance for the different methods [37].

We limit our measurement bandwidth éf to frequencies much lower than the typical relaxation
oscillations in InP lasers. In this case, it is reasonable to consider shot noise and electronic noise from
the laser diode driver as the remaining laser noise sources. The laser shot noise current as seen by the
photodetector can be calculated with

ilaser,shot =y 2hv P laseréf : (2)

where hv corresponds to the energy per photon, and P, to the output power of the laser. This noise
is attributed to the quantisation of the light, which emits energy quanta corresponding to the energy of
a single photon. In accordance with the values specified by SMART Photonics we assumed a laser
output power of 20 mW. This is not at the top end of possible output powers, as commercial products
can reach output powers of ~100 mW [38]. Dedicated circuits should be able to reach competitive
levels, even when relying on MPW designs. The factor a in Equation (2) contains the responsivity
of the photodiode (0.85 A/W), which links the light emission to a measured photocurrent, as well
as losses due to fibre-chip coupling and propagation in the fibre. Noise from the current source that
drives the optical amplifier section has a large contribution to the laser noise. This is technical noise
and linked to the quality of the used current source. For our calculations we used the noise figures
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from the Koheron DRV200 (Orsay, France). With a cost of <275 $ this is in line with the goal of cheap
and compact sensor [39]. Laser diode driver noise is frequency dependent, in contrast to the white
noise emitted from the other investigated noise sources. Lower frequencies contribute stronger to the
total noise current than higher frequencies, which is the reason why WMS can be used to reduce its
impact. Multiple vendors offer ultra-low noise laser diode drivers, which will reduce the impact of the
current source to the overall noise. Unfortunately most vendors do not provide detailed data about
the frequency dependence of the noise current, but only the integrated noise from DC to 10 kHz; e.g.,
less than 70 nA for the LDX-3620B (Irvine, USA) from Newport [40].

The detector suffers from a noise associated to the quantisation of charges. The corresponding

ipd,shot = 26[pd5f/ 3)

with [,; as the current measured by the photodetector, here 3.4 mA, and e as the electron charge.
Since the noise increases with the square root of the photo current, while the signal strength increases
linearly, a higher laser output power would result in a better signal-to-noise ratio. For very high laser
intensities the photodetector saturates, and close to saturation nonlinear behaviour can be expected.
Here this is not assumed to be limiting, as the saturation point can be increased by design, such as
increasing the cross section of the photodiode. Photodetectors typically exhibit a dark current, which is
also subject to quantisation noise. With a dark current of I3, of 20 nA it can be calculated with

idark =V 2EIdarkfsf . (4)

While increasing the cross section of the photodiode is expected to extend the linear operation
regime of the detector, it is accompanied by a higher dark current. In the configuration investigated in
this study, dark noise can be neglected, Iyark << Ipg-

The Brownian motion of the electrons in a conducting material causes thermal noise. This noise
strongly depends on the temperature T and the load resistance R, as can be seen from

. | kgT
Ithermal = 4%5]( . 5)

Here, kg is the Boltzmann constant. The thermal noise was calculated for a load resistance
of 50 kQ). The load resistance has an impact on the bandwidth of the detector, and for a very fast
acquisition speeds exceeding 10 kHz, a lower load resistance can be required. The used parameters
have been summarised in Table 1.

detector shot noise is described by

Table 1. Parameter list used in the simulations.

Parameter Value Remarks
Laser power 20mW on-chip
fibre coupling losses 50% -
additional fibre losses 20% e.g., splices, propagation losses
total losses 80% 2 x coupl. losses + add. losses
Responsivity of PD 0.85A/W -
Resulting photo current 3.4mW -
dark current 20nA -
load resistance 50 kQ) -
Temperature 296K -
laser driver noise - see [39]
Slope efficiency ~0.15W/A -

We calculated the expected noise values for three different methods: DAS, balanced detection,
and WMS. In DAS, all noise sources contribute with their full strength. Similarly the full output
power can be used to gain the absorption signal. In balanced detection, only one half of the light
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contains an absorption signal, but noise originating from the laser is removed. WMS suppresses the
noise contributions that fall off with higher bandwidth, such as 1/f-noise. The outcome of all three
calculations and the respective sensitivity levels are shown in Figure 5.

—— DAS
— WMS
—— Balanced

10-¢

| |
101.5 102 102.5

| | L L T |
102 103 10*
Bandwidth [Hz]

Noise to Signal ratio

Figure 5. Relative noise levels for different bandwidths for the three investigated methods. While direct
absorption spectroscopy (DAS, shown in black) has the hightest noise contributions at lower
bandwidths due to the 1/f noise of the laser diode driver, it approaches the level of WMS (blue)
for higher bandwidths, which compensates for this noise contribution. The balanced detection scheme
(red) compensates for all the laser noise, and shows a similar trendline as wavelength modulation
spectroscopy (WMS). The inset shows a zoom in of the plot and highlights, that at bandwidths of
100 Hz all the methods show a similar performance. Line markers are added to indicate the expected
sensitivity levels for a SNR of unity and a propagation length of 1 m.

5. Results

Assuming a signal strength matching the overall noise of the system, Figure 5 and Equation (1)
allow to determine which concentrations of ammonia can be detected.As can be seen, all the
investigated methods are capable of detection levels below 100 ppb for bandwidths of 1 kHz, that means
one thousand data points per second. All the methods show a similar performance, especially at higher
bandwidths where the disadvantage of DAS due to the 1/f-noise is mitigated. For bandwidths of less
than 100 Hz balanced detection and WMS show a superior performance. While WMS needs a lock-in
amplifier, balanced detection can be implemented with almost no additional costs. This allows for
ammonia sensor with sensitivities of 10 ppb or better, surpassing the requirements for agricultural
applications. Very short acquisition times might be pointless, as the fill time of the gas cell can be
multiple seconds long, if not minutes. The similar performance of all methods is an indicator, that there
are multiple noise contributions of comparable strength. While DAS is limited by the noise originating
from the laser diode driver, shot noise on the photodetector is the limiting factor for the balanced
detection scheme. The former can be reduced when employing a low noise laser diode driver, the latter
by improving the output power of the laser system, or by minimising losses in the gas-filled fibre.
This results confirm the thermal noise as main noise source for low laser power, and shot noise at
higher power levels, assuming that the laser driver noise has been eliminated [35]. Noise contributions
from the gas cell, such as coupling or beam steering instabilities, have not been investigated.

Depending on the selected wavelength window, concentrations down to the ppb level can be
measured before spurious signals from other air constituents pollute the signal. To reach those limits,
water needs to be removed from the ambient air. This is fairly standard for ammonia detection in air,
and optical sensors are not the only systems suffering from it. Water vapour can effect the performance
of chemical sensors. Optical sensors, on the other hand, can still take meaningful measurements, if a
proper wavelength calibration is undertaken. Most of the investigated absorption lines have water
lines very close to the absorption line, but not directly on top of them. While water vapour might
provide the strongest signal when scanning over wide wavelength ranges, if limiting the system to
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only the targeted absorption line, data can still be obtained. Life wavelength calibrations can be done
when including wavelength reference cells in the overall detection system. This option has not been
explored in this work.

6. Discussion and Conclusions

The current need for ammonia sensors for emission monitoring in agricultural cannot be answered
with currently commercially available devices, as they are either not sensitive enough, or too expensive
to allow the deployment of sensor networks. With the possibility of detecting NHj3 at concentrations
of less than 100 ppb in ambient air, PICs can be the solution. Not only do they scale with higher device
numbers enabling whole sensor arrays, but also is the underlying optical absorption spectroscopy
adaptable to different gas species and sensitivities. All of the investigated detection methods reach
the sensitivity needed for emission monitoring. Numerical methods for noise reduction can further
improve the sensitivity [41].

PICs allow for complex optical circuits on a single chip. Balanced detection and the application of
modulation techniques have a negligible impact on the costs or footprint of the PIC. The true increase
in complexity originates from the electrical processing of the data, as each detector needs an electrical
readout, while balanced detection or WMS require complex electrical circuitry. This bottleneck has
already been identified by the scientific community, and current research regarding flip chip technology,
which allows for integration of complex electrical and optical circuits, is expected to remove this
obstacle in the near future. Independent of this development, PICs can already provide an access to
affordable gas sensors for emission monitoring, such as highlighted here on the example of ammonia
detection. While particular focus in the analysis was given to ammonia sensing, a selection of other
relevant gases has been presented, that can also benefit from photonic integration. To move the PIC
based gas sensor development to industry, the scientific community needs to develop demonstrators,
e.g., using MPW technology, and address difficulties with packaging or light coupling to the interaction
cell. Current progress on chip based interaction cells paves the way for completely integrated gas
sensors in the near future [27].
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