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Abstract: As an emerging type of Internet of Things (IoT), multimedia IoT (MIoT) has been widely
used in the domains of healthcare, smart buildings/homes, transportation and surveillance. In the
mobile surveillance system for vehicle tracking, multiple mobile camera nodes capture and upload
videos to a cloud server to track the target. Due to the random distribution and mobility of camera
nodes, wireless networks are chosen for video transmission. However, the tracking precision can be
decreased because of degradation of video quality caused by limited wireless transmission resources
and transmission errors. In this paper, we propose a joint source and channel rate allocation scheme
to optimize the performance of vehicle tracking in cloud servers. The proposed scheme considers
the video content features that impact tracking precision for optimal rate allocation. To improve the
reliability of data transmission and the real-time video communication, forward error correction is
adopted in the application layer. Extensive experiments are conducted on videos from the Object
Tracking Benchmark using the H.264/AVC standard and a kernelized correlation filter tracking
scheme. The results show that the proposed scheme can allocate rates efficiently and provide high
quality tracking service under the total transmission rate constraints.

Keywords: multimedia IoT; video analysis; vehicle tracking; rate allocation; surveillance system;
forward error correction

1. Introduction

The Internet of Things (IoT) is a global infrastructure for the information society, enabling the
advanced services by interconnecting physical and virtual things based on the existing and evolving
interoperable information and communication technologies [1]. The IoT extends the conventional
concept of the Internet as an infrastructure network reaching out to end-user’s terminals, to a concept
of a pervasive network of interconnected objects. As an emerging type of IoT, Multimedia IoT (MIoT)
refers to IoT with multimedia outputs or/and inputs [2]. MIoT has been widely used in the domains of
healthcare [3,4], smart buildings/homes [5,6], transportation [7,8] and surveillance [9], etc. Particularly,
intelligent surveillance networks are some of the main applications of MIoT. They normally consist
of sensors, a transmission network and server [2]. The sensors and the server carry out the tasks of
capturing and processing the videos, and the transmission network is responsible for the transmission
of all kinds of information. Although a great proportion of videos are captured for human consumption,
more and more videos are transmitted for video analysis rather than being processed manually in
intelligent surveillance networks. In a realistic surveillance MIoT with the purpose of video analysis,
videos are uploaded to a server to meet the computation capability requirement of video processing
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and analysis. When the video sequences are uploaded via a wireless network, multiple camera nodes
compete for the limited transmission resources. Due to the huge amount of video data and the limited
wireless resources, it is challenge to allocate the limited resources efficiently based on the video content
features to achieve high quality intelligent surveillance service for MIoT systems.

A lot of existing research has considered video coding and transmission schemes to improve the
human visual quality [10–15]. The authors in [10] proposed a joint coding and transmission scheme
to provide high quality video for human consumption. First, the video coding and transmission
scheme was modified to get higher structural similarity index (SSIM). Then in a server, the multiple
videos were merged to one video with a wide viewing angle and high resolution, to provide high
quality surveillance video for human consumption. In [11], a background-model-based wireless
video transmission scheme was proposed to provide high quality of experience (QoE) for users.
The foreground (like pedestrians) regions were detected in camera mode. Then they were uploaded to
server instead of full video sequences to avoid the degradation of QoE caused by limited transmission
resources. Considering the channel fading and shadowing, [13–15] employed Gilbert-Elliot model to
estimate the burst-loss prone channel condition and avoid the corrupt decoding caused when bursts of
noises occur. All these schemes were designed to improve the quality of service/experience to provide
better viewing experiences for clients. However, none of them are suitable for a surveillance network
with the purpose of video analysis.

To improve the service quality of video analytics in surveillance networks, plenty of researchers
have worked on improving the performance of video analysis schemes in the computer vision field.
Detection, recognition and tracking of human/vehicles are the main analysis tasks of smart surveillance
systems [16–20]. In [21], an object detection algorithm was proposed based on the discriminatively
trained part models. In [22], an object detection scheme was proposed based on region proposal
networks. Minimum Output Sum of Squared Error filter (MOSSE) is a correlation filter-based tracker,
which firstly uses a correlation filter for object comparison [23]. In [24], a kernel trick was used
to improve correlation filters, which turned the linear classifier into a non-linear ridge regression
classifier. Based on [24], Henriques et al. proposed a kernelized correlation filter (KCF) tracking scheme,
which employed histogram of oriented gradient (HOG) features rather than gray scale features [25].
These works are representative video analysis schemes, which possess in common the characteristic of
high computation complexity. Therefore, it is better to assign these complex video analysis tasks to a
server, which has greater computational capacity than camera nodes.

The main challenges for the schemes which chose to upload videos and analyze videos on a server,
are the limited transmission resources and network state fluctuations. In [26,27], video features rather
than full video sequences were uploaded to the server for analysis to save transmission resources.
However, the full videos are not accessible on the server, which limits the further investigation. In [28],
full video sequences were uploaded to a server for analysis. However, the video analysis performance
degradation caused by compression or transmission errors are not considered.

Only a few researchers have studied the effect of video compression and transmission parameters
on video analysis performance. In [29], a saliency-based rate control scheme was proposed for human
detection with a single camera. A standard-compliant video encoding scheme was proposed to obtain
better object detection performance on compressed video [30]. In [31,32], the effect of quantization
parameter (QP) and transmission conditions on human detection were considered to optimize the
performance of human detection in server. However, due to the lack of the consideration of video
content, which is closely related to the analysis performance, the prediction of human detection
precision is not accurate.

In a realistic surveillance network for vehicle tracking, all surveillance videos are uploaded to
server for video analysis purposes. When video sequences are uploaded via a wireless network,
multiple camera nodes compete for the transmission resources which are limited by the bandwidth.
Therefore, considering the effect of video content and video quality degradation caused by compression
and transmission error, a joint source and channel rate allocation scheme is proposed in this paper to
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optimize performance of KCF tracking scheme in server. The main contributions of this paper can be
summarized as follows:

(1) Content-aware tracking precision prediction model. The features of the video content, which
are not considered in existing prediction models, have a great impact on tracking precision. Based on
the effect of video compression and video content on KCF tracking scheme, we take the bits per pixel,
luminance values and complexity of the video content as key factors in the process of HOG extraction
and object matching in KCF scheme. Then, based on the obtained relationship between these factors
and the tracking precision, we establish a content-aware tracking precision prediction model by using
curve-fitting method.

(2) Tracking-precision-driven joint source and channel rate allocation scheme. Due to the
limited wireless resources and the unreliability of wireless networks, it is important to design a
joint source and channel rate allocation scheme to avoid degradation of tracking precision caused
by video compression or transmission errors. We optimize the rate allocation for camera sensors by
a tracking-precision-driven optimization problem. Based on our content-aware tracking precision
prediction model, the optimization problem is formulated to maximize the product of tracking precision
of each surveillance video in MIoT server under the constraint of the total transmission rate in the
wireless network. To improve the reliability of data transmission and the real-time of the video
communication, we adopt forward error correction (FEC) in the application layer.

The rest of this paper is organized as follows: Section 2 introduces the scenarios and structure
of our MIoT system for vehicle tracking. Section 3 presents a content-aware tracking precision
prediction model. The proposed joint source and channel rate allocation scheme are given in Section 4.
The simulation results are shown in Section 5, followed by the conclusions in Section 6.

2. Scenarios and Structure of MIoT System for Vehicle Tracking

Figure 1 shows the scenario of the MIoT system. In the MIoT system, multiple mobile camera
nodes are distributed and move round randomly. A mobile camera node can be a mobile sensor
device like a car recorder, smart phone or unmanned aerial vehicle, etc. Every mobile camera node
can capture, encode, and upload videos to the MIoT server via a wireless network. The MIoT sever
analyzes the received videos with a tracking algorithm once the tracking tasks are assigned. Due to
the mobility and random distribution of camera nodes, wireless wide area networks (WWANs) are
employed for video transmission. In WWAN, mobile nodes in a large geographic area can establish
radio frequency links with the base station, and the base station establishes global connectivity to the
backbone core network [33].
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Figure 1. Scenario of the MIoT system.

The proposed structure of the MIoT system for vehicle tracking, which consists of three main
components, namely a mobile camera node, wireless network and MIoT server, is shown in Figure 2.

Mobile camera node: This can be a mobile sensor device like a car recorder, smart phone, or
an unmanned aerial vehicle, etc. In every group of picture (GOP) period, the camera node has two
tasks: (1) The camera node calculates and uploads video content features of current uncoded GOP to a
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rate allocation module in the server; (2) the camera node encodes and uploads the GOP according to
the rate allocation policy from the MIoT server. The H.264 encoder and Raptor [34] FEC encoder are
applied for video coding in each camera node.

Wireless Network: A wireless wide area network (WWAN) is chosen for video transmission
due to the random distribution and mobility of camera nodes. When uploading videos to the server
via a WWAN, multiple camera nodes compete for transmission resources which are limited by the
bandwidth. Due to the inherent transmission characteristics of wireless networks, packet loss occurs
in the transmission network. In this paper, we assume that the packet loss rate of each camera node is
perfectly known by the MIoT server.

MIoT server: In the MIoT server, a joint source and channel rate allocation module optimizes the
source and FEC rates for each camera node according to the content features and the current channel
packet loss rates of GOPs in all camera nodes. Then the target source and redundancy rates of all
camera nodes are sent back to each camera node for current GOP encoding. Besides, the MIoP server
stores or performs vehicle tracking on received videos according to the actual demand. Since the
tracking tasks usually are assigned with a delay in realistic scenarios, there is no real-time feedback
about the tracking results in the MIoT server.

The FEC encoder shown in Figure 2 is an application layer FEC encoder. Application layer
forward error correction solutions provide a straightforward and powerful means to overcome packet
loss [35]. At the camera node, for every K source packets of video stream, (N−K) redundant data
packets are produced by the FEC encoder and are sent with source packets of the source block. As long
as the receiver, which is a MIoT server in our structure, receives at least any K of the N packets, it can
recover all the source packets [36].

Sensors 2018, 18, x FOR PEER REVIEW  4 of 21 

 

allocation module in the server; (2) the camera node encodes and uploads the GOP according to the 

rate allocation policy from the MIoT server. The H.264 encoder and Raptor [34] FEC encoder are 

applied for video coding in each camera node. 

Wireless Network: A wireless wide area network (WWAN) is chosen for video transmission 

due to the random distribution and mobility of camera nodes. When uploading videos to the server 

via a WWAN, multiple camera nodes compete for transmission resources which are limited by the 

bandwidth. Due to the inherent transmission characteristics of wireless networks, packet loss occurs 

in the transmission network. In this paper, we assume that the packet loss rate of each camera node 

is perfectly known by the MIoT server. 

MIoT server: In the MIoT server, a joint source and channel rate allocation module optimizes 

the source and FEC rates for each camera node according to the content features and the current 

channel packet loss rates of GOPs in all camera nodes. Then the target source and redundancy rates 

of all camera nodes are sent back to each camera node for current GOP encoding. Besides, the MIoP 

server stores or performs vehicle tracking on received videos according to the actual demand. Since 

the tracking tasks usually are assigned with a delay in realistic scenarios, there is no real-time 

feedback about the tracking results in the MIoT server. 

The FEC encoder shown in Figure 2 is an application layer FEC encoder. Application layer 

forward error correction solutions provide a straightforward and powerful means to overcome 

packet loss [35]. At the camera node, for every K source packets of video stream, (N−K) redundant 

data packets are produced by the FEC encoder and are sent with source packets of the source block. 

As long as the receiver, which is a MIoT server in our structure, receives at least any K of the N 

packets, it can recover all the source packets [36]. 

 

Figure 2. Structure of MIoT system for vehicle tracking. 

3. Content-Aware Tracking Precision Prediction Model 

3.1. Factors Impact on KCF Tracking Scheme 

Figure 2. Structure of MIoT system for vehicle tracking.



Sensors 2018, 18, 2858 5 of 21

3. Content-Aware Tracking Precision Prediction Model

3.1. Factors Impact on KCF Tracking Scheme

The KCF tracking scheme is proposed by Henriques et al. in 2015 [21]. Since KCF is a well-accepted,
robust, and computationally efficient scheme, it is adopted as the vehicle tracking scheme in the
MIoT server.

As shown in Figure 3, The KCF tracking scheme includes two important processes, HOG extraction
and object matching. In HOG extraction module, HOG features of reference frames and current frame
are extracted to represent the shape of objects. The HOG features are calculated by orientation and
magnitude of the intensity gradient of pixels, which can be modified by the compression rate and
video lighting conditions. In the object matching module, the HOG features in the reference frames
are trained to get the kernelized correlation filter. Then the HOG features of the current frame are
correlated with the filter to determine the object position in current frame. The correlation responses
are based on the shapes of target object and its surroundings in the frames, which are determined by
the video content complexity. Therefore, HOG extraction and object matching are the two modules
which are sensitive to video compression and video content.
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3.2. Model Features Extraction and Analysis

3.2.1. Bits per Pixel

Since HOG features can be affected by the artifacts created by video encoder at different
compression rates [29], we employ the bits per pixel to represent the effect of video compression
on HOG computation. Videos with different resolution require different coding rates to provide high
video quality. Due to the variety of resolution of mobile camera devices, bits per pixel instead of bit
rate is employed to maintain the quality of different resolution videos. Bits per pixel (Bpp) can be
calculated as follows:

Bpp =
r

fps · Npx
, (1)

where r, fps and Npx are the coding bit rate, frame rate and the number of pixels in a frame, respectively.

3.2.2. Video Luminance Level

When a camera is capturing video, the luminance value of pixels can be greatly affected by the
lighting conditions at that time. Under the circumstance of weak lighting conditions, cameras are
prone to lose detailed information of objects because of the lack of reflected light from objects and the
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interference of noise, and HOG features are affected consequently. We employ luminance level (L) to
represent the effect of lighting conditions on HOG computation.

We consider two scenarios: the open field and the covered field. The open field frame is the frame
which has scenes of a vehicle driving in an open field, such as Figure 4a,b. In Figure 4a, vehicles are
driving in an open field with strong lighting conditions during daytime, and all frames have similar
and high luminance levels. In Figure 4b, vehicles are driving at night, all frames in this video sequence
maintain a relatively stable low luminance level. In the open field frame, most parts of the frame have
similar luminance levels. The covered field frame is the frame which has scenes of a vehicle driving in
the field covered with a roof or canopy in daytime, such as Figure 4c. In Figure 4c, although the videos
are captured during daytime, the luminance levels of the in tunnel regions and out of tunnel regions
are different. Therefore, in a covered field frame, the largest region has a low luminance level because
of the roof or canopy and the other uncovered field regions have high luminance levels.
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(c) Covered field in daytime.

The open and covered field frames are classified by the statistical results of luminance of the
pixels in a frame. The histogram of luminance values of pixels in a frame is obtained as shown in
Figure 5. The luminance values are sorted into five intervals. The quantitative values of each interval
are denoted as H = [25 75 125 175 225]. The numbers of pixels in all intervals are set as S. Then, as
shown in Figure 5, the histogram is re-ordered by the descending order of the numbers of pixels S̃,
and the corresponding quantitative values are set as H̃. To exclude the singular pixels of a frame, only
first three elements of S̃ and H̃ are used in frame classification method and luminance level calculation
method. The frame f can be classified based on reordered luminance histogram as follows:{

f ∈ C i f H̃1 < TL1 and H̃2 > TL2

f ∈ O otherwise
, (2)

where C and O indicate the set of covered and open field frames, respectively. TL1 is the luminance
threshold for dark regions and TL2 is the luminance threshold for bright regions. The first two intervals
[0,50] and (50,100] are considered as dark, and the last two intervals (150,200] and (200,255] are
considered as bright. Hence, TL1 and TL2 are set to be 100 and 150, respectively. Although fixed
thresholds TL1 and TL2 are employed to improve the operation speed, this method can be improved by
employing dynamic thresholds instead of fixed thresholds. In different scenarios, the division of bright
and dark regions can be different, so dynamic thresholds can better adapt to changes of scenarios and
provide more accurate classification results of bright and dark regions. Hence, the interference regions
can be excluded precisely.
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Then the luminance level of frame can be obtained as follows:

l( f ) =


∑3

i=1 u(S̃i)H̃iS̃i

∑3
i=1 u(S̃i)S̃i

i f f ∈ C

∑3
i=1 H̃iS̃i

∑3
i=1 S̃i

i f f ∈ O
, (3)

where:

u(x) =

{
1 i f x ≤ TL1.

0 i f x > TL1
. (4)

As in Equation (3), in the covered field frames C, the bright regions are excluded for calculating
the luminance level, since the vehicles are actually in the dark region with a low luminance level.
In the open field O, all regions represented by H̃1, H̃2 and H̃3 are considered.

Based on the luminance levels of classified frames, the video scenarios can be detected and the
video luminance level is obtained consequently. According to the previous description about scenarios,
the video that has several consecutive covered field frames is regarded as a covered field scenario.
Therefore, a video with more than five consecutive covered frames is considered a covered field video.
The other videos are considered as open field videos.

Due to the error propagation caused by the tracking scheme, different luminance level calculation
methods are designed for different scenarios. In the tracking scheme, once a wrong target is determined
in a frame due to the loss of HOG information caused by a low luminance level, the right target is
hard to choose in all following frames even when the following frames have high luminance levels.
Therefore, the open field frames are excluded when calculating the luminance level of video that has
daytime covered field scenarios, as shown in Equation (5):

L =
1

Nc
∑
f∈C

(ω( f ) · l( f )). (5)

The other videos, which have open field scenarios in daytime or at night have a different
luminance level calculation method, that is:

L =
1
N ∑

f∈C∪O
(ω( f ) · l( f )), (6)
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where l( f ) is the luminance level of the f -th frame, N is the total frames in the video sequence. Nc is
the total covered field frames in the video sequence. Hence, ω( f ) is the weight of the luminance level
of f -th frame in video which can be obtained by Equation (7):

ω( f ) =
N − f + 1

N
, (7)

here ω( f ) is determined by the number of frames influenced by the f -th frame. In other words, ω( f )
is determined by the number of frames following the current frame.

3.2.3. Video Adjacent Block Difference

In the KCF tracking scheme, the correlation results from kernelized correlation filter depend on
the shapes of objects in the frame. In a video with complex content, the target object is surrounded
by other background objects and the target object is hard to separate from the surroundings, which
decreases the matching precision. We employ the video adjacent block difference (V) to represent the
effect of video content complexity on tracking precision.

The adjacent block difference of a video sequence is defined as the maximum frame adjacent
block difference just as follows:

V = max(v( f )), (8)

where v( f ) represents the frame adjacent block difference of the f -th frame, defined as:

v( f ) =
Nclst( f )
N f mb( f )

, (9)

where Nfmb(f ) is the total number of foreground MBs in the f -th frame, and Nclst(f ) is the total cluster
number of the f -th frame, which can be obtained based on the cluster results of foreground macroblocks
(MBs) in the f -th frame. Here, the foreground MBs refers to the MBs which have more edges than other
MBs in the frame. As the analysis in Section 3.1 shows, the target is tracked based on the correlation
results of the HOG features of the target and its surroundings. Complex HOG features have a higher
probability to affect the tracking precision. Therefore, the MBs with relatively complex HOG are
detected by gradients of pixels in the following. Since these complex HOG are almost caused by edges
of objects, we call the corresponding MBs foreground MBs. The foreground MBs are detected based
on magnitudes of the intensity gradients of all pixels in an image. The frame is divided into lots of
non-overlapping 16× 16 MBs. Let G(x, y) be the average magnitudes of intensity gradients of all pixels
in MB(x, y). The Gmin is the minimum of G(x, y), and the Gmean is the mean magnitudes of intensity
gradients in a frame. Then foreground MBs are detected based on the gradients magnitudes in the
frame. Objects, such as vehicles, trees and pedestrians, always have more edges than background like
road and sky. Then, we define the foreground set Ω as:{

MB(x, y) ∈ Ω i f G(x, y) > Tm

MB(x, y) /∈ Ω otherwise
, (10)

where:
Tm = (Gmean + Gmin)/2. (11)

Then, Nfmb is defined as the total number of MBs in Ω. A sample frame and its foreground is
shown in Figure 6, the white block is foreground MB and the black block is background MB.
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Figure 6. Sample of foreground detection result: (a) Sample frame; (b) Foreground detection result of
sample frame.

The total cluster number Nclst is then obtained based on clustering of foreground MBs. As shown
in Figure 7, each foreground MB is compared with its clustered adjacent foreground MBs based on
the average block luminance values. MBs that have similar average luminance level are clustered.
Due to the clustering routine shown in Figure 7, only top or left foreground MB may be available for
clustering the current MB. Let c(x, y) and I(x, y) be the cluster number and average luminance value
of MB(x, y), respectively. The cluster number of the first foreground MB in frame is set to 1. Then the
cluster number of foreground MB(x, y) is obtained as follows:

c(x, y) =


c(x− 1, y) i f ∆1 < T∆ and ∆1 ≤ ∆2

c(x, y− 1) i f ∆2 < T∆ and ∆2 < ∆1

max(c) + 1 otherwise
, (12)

where max(c) is the maximum cluster number when the MB(x, y) is being clustered, and max(c) + 1
indicates that the MB(x, y) is considered as a new cluster. The parameter T∆ is threshold of similar
adjacent MBs, which is set as 20 in this paper. ∆1, ∆2 are defined as:{

∆1 = |I(x, y)− I(x− 1, y)|
∆2 = |I(x, y)− I(x, y− 1)|

. (13)
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Then, Nclst is defined as the maximum c in the frame. In one cluster, magnitudes of gradients
between adjacent MBs are prone to be small, which makes object matching difficult. Thus a smaller
Nclst indicates more complex content.

3.3. Model Establishment

We select six videos which take vehicles as the target objects from the Online Object Tracking
Benchmark (OOTB) [37]. Among them, BlurCar1 is divided into two video sequences. BlurCar(1) is a
video sequence which is clipped from 1-st frame to 320-th frame in BlurCar1, and BlurCar(2) has the
390-th frame to 709-th frame in BlurCar1. Each video is coded at different bit rates using the H.264
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coder as shown in Table 1. The target bit rate of each frame within the GOP is assigned using the basic
variable bit rate mechanism in the H.264 coder. The frame rate is 30 fps, and the Group of Picture
(GOP) structure and size are IPPP and 16, respectively. The tracking precision of each coded video
sequence is obtained by KCF tracking scheme and is shown in Figure 8. Tracking results are compared
with the ground truth. In each frame if the distance between center of tracking result and center of
ground truth is less than 20, then the tracking result is considered as correct [25]. The tracking precision
is the number of correct frames divided by number of all frames.

Table 1. The encoded bitrate of videos.

Video Resolution Bitrate(kb/s)

BlurCar1(1) 640 × 480 32 64 128 256 512 768
BlurCar3 640 × 480 32 64 128 256 512 768
BlurCar4 640 × 480 32 64 128 256 512 768

Car2 320 × 240 16 32 64 128 256 512
Car4 360 × 240 16 32 64 128 256 512

CarDark 320 × 240 16 32 64 128 256 512

We use Bpp to be our main tracking precision prediction parameter. According to the relationship
between tracking precision and Bpp shown in Figure 8, the tracking precision can be formulated as:

P(Bpp) =
1

1 + αe−β·
√

Bpp
, (14)

where P is the tracking precision, and α, β are empirical parameters. We can determine the shape of
the prediction function according to α and β. As interpreted in Figure 8, the shape of the prediction
function varies according to different video content. Therefore, α and β are estimated by L and V of
the video as follows:

α = a1 · La2 ·Va3

β = min
{

a4 · (a5 · L + a6 ·V)a7 , a8
} . (15)

The finally obtained model coefficients are shown in Table 2.

Sensors 2018, 18, x FOR PEER REVIEW  10 of 21 

 

Picture (GOP) structure and size are IPPP and 16, respectively. The tracking precision of each coded 

video sequence is obtained by KCF tracking scheme and is shown in Figure 8. Tracking results are 

compared with the ground truth. In each frame if the distance between center of tracking result and 

center of ground truth is less than 20, then the tracking result is considered as correct [25]. The 

tracking precision is the number of correct frames divided by number of all frames. 

Table 1. The encoded bitrate of videos. 

Video Resolution Bitrate(kb/s) 

BlurCar1(1) 640 × 480 32 64 128 256 512 768 

BlurCar3 640 × 480 32 64 128 256 512 768 

BlurCar4 640 × 480 32 64 128 256 512 768 

Car2 320 × 240 16 32 64 128 256 512 

Car4 360 × 240 16 32 64 128 256 512 

CarDark 320 × 240 16 32 64 128 256 512 

We use Bpp to be our main tracking precision prediction parameter. According to the 

relationship between tracking precision and Bpp shown in Figure 8, the tracking precision can be 

formulated as: 

 




1
( )

1 pp
pp β B

P B
αe

, (14) 

where P is the tracking precision, and α , β  are empirical parameters. We can determine the shape 

of the prediction function according to α  and β . As interpreted in Figure 8, the shape of the 

prediction function varies according to different video content. Therefore, α  and β  are estimated 

by L and V of the video as follows: 

 

    

32

7

1

4 5 6 8

=

min{ ( ) , }

aa

a

α a L V

β a a L a V a
.   (15) 

The finally obtained model coefficients are shown in Table 2. 

 
(a) 

 
(b) 

 
(c) 

 

 
(d) 

 
(e) 

 
(f) 

 

Figure 8. Tracking precision of each video sequences: (a) BlurCar1(1); (b) BlurCar3; (c) BlurCar4; (d) 

Car2; (e) Car4; (f) CarDark. Figure 8. Tracking precision of each video sequences: (a) BlurCar1(1); (b) BlurCar3; (c) BlurCar4;
(d) Car2; (e) Car4; (f) CarDark.



Sensors 2018, 18, 2858 11 of 21

Table 2. Model coefficients.

a1 a2 a3 a4

1.049× 10−15 12.661 7.034 200.560

a5 a6 a7 a8

0.010 0.900 6.150 137.000

4. Proposed Joint Source and Channel Rate Allocation Scheme

In the MIoT system, multiple mobile camera nodes have to compete for the limited wireless
transmission data rate. Due to the packet loss in the wireless network transmission, FEC needs to
be used for source data protection. Therefore, we develop a joint source and channel rate allocation
scheme for both video and FEC rate allocation with the objective to maximize the product of tracking
precision of each uploaded GOP. Let M be the number of mobile camera nodes in system, and k and
n are the M×1 vectors. The element km in k represents the source packets of mobile camera node
m. The element nm in n represents the FEC packets of mobile camera node m, which contains the
source packets and the protect packets. The proposed scheme allocates the appropriate source and
FEC packets for GOP in each camera node, such that the product of the tracking precision of all GOPs
is maximized. The joint source and channel rate allocation scheme can be formulated as follows:

max
n,k

M
∏

m=1
Pm

(
km ·S

NGOP ·Npx

)
· f (km, nm; pm)

s.t.
M
∑

m=1
nm · S · fps/NGOP ≤ Rtotal

Pm

(
km ·S

NGOP ·Npx

)
≥ Pmin ∀m

nm ≥ km ∀m

, (16)

where pm is the packet loss rate of the camera node m. S is the packet size and NGOP is the GOP
size, Rtotal is the total available rate, and Pmin is minimum acceptable precision. Pm(·) is the tracking
precision prediction model established in Section 3, and f (·) is the FEC packets correction rate of the
camera node m in application layer [32]:

f (k, n; p) = Φ

(
n− k− np√

np(1− p)

)
=

1√
2π

∫ n−k−np√
np(1−p)

−∞
e−t2/2dt, (17)

where Φ(·) is the cumulative distribution function of the standard normal distribution.
The first constraint indicates that the sum of the uploaded data in a GOP time period is limited

by the total data rate. The second constraint implies that the tracking precision of each camera node
should meet the predefined minimum requirement. The last constraint means that the number of
source packets of camera node m cannot be greater than FEC packets of that camera node. To solve
the optimization problem, the logarithm of objective function is employed, and the km and nm are
substituted by k̃m =

√
km, ñm =

√
nm. Then the original problem can be formulated as:

max
n,k

M
∑

m=1

(
log
(

Pm

(
k̃2

m ·S
NGOP ·Npx

))
+ log

(
f (k̃2

m, ñ2
m; pm)

))
s.t.

M
∑

m=1
ñ2

m · S · fps/NGOP ≤ Rtotal

Pm

(
k̃2

m ·S
NGOP ·Npx

)
≥ Pmin ∀m

ñm ≥ k̃m ∀m

. (18)
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The reformulated problem is a convex optimization problem and can be solved by convex
optimization tools like CVX toolbox [38]. The optimized resolution k* and n* are the source packets
and the FEC packets for each camera node. Although packets number should be integer in the reality,
the elements in k* and n* are not required to be integer when solving the problem. The reason for this
is that the target source coding rate and FEC coding rate of GOP which are converted from k* and n*
are allowed to be slightly differ from the actual coding rate.

5. Simulation and Performance Comparison

5.1. Simulation Settings

We simulate a scenario where six mobile camera nodes capture different scenes and upload
videos to a server via lossy wireless networks. The six mobile camera nodes have to compete for
the limited transmission resource which in our simulation is represented by the total transmission
bitrates. The channel condition of each camera node is represented by its packet loss rate. Each camera
node extracts the two content features (L and V) of the current raw GOP and sends these features
to the server. The server jointly optimizes the source coding rate and FEC rate for all camera nodes
based on these features and packet loss rates of all camera nodes. Then the optimal source coding
rates and FEC rates are fed back to each camera node for current GOP coding. The encoded GOPs
of six camera node are uploaded to the server. Next GOPs are also processed like this. Finally, we
evaluate the tracking performance on the uploaded GOPs. In our simulation, we selected six video
sequences from OOTB [37] and visual object tracking (VOT) [39] data set as captured videos of six
camera nodes, the video information is shown in Table 3. Here, BlurCar(2) has the 390th to 709th frames
in BlurCar1, Car1(1) has the 1st to 320th frames in Car1, and Car1(2) has the 410th to 729th frames in
Car1. The sample frames of the six test videos are shown in Figure 9. The FFMPEG implementation
is employed as H.264 video encoder. The frame rate and GOP size are 30 fps and 16, respectively.
The rate that assigned to a GOP by the different mechanisms is then allocated to frames within the
GOP using basic variable bit rate mechanism in the H.264 coder. The GOP structure is IPPP. Each test
video has 19 GOPs. The total transmission bit rates change from 400 kb/s to 1400 kb/s, and the change
step is 200 kb/s. The content information of each video is shown in Table 3. The packet loss rate is
set as 1% or 3% for different videos, and the packet loss rates of GOPs within the video are fixed for
comparison purposes.
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here ( )
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R  is the minimum data rate and is set to be 32 

kb/s. min
p  is minimum packet correct rate which is set to be 0.995.  

5.2. Simulation Results and Discussion 

We set a fixed total data rate of 800 kb/s for the proposed tracking-precision-driven scheme 

(TP-driven scheme), MSE-driven scheme, QoE-driven scheme and CBR scheme. The packet loss 

rates of all camera nodes are set to be 1%. Figure 10 shows the source data rate of each GOP. The 

proposed TP-driven scheme allocates less data rate to the GOPs which have high luminance level 

and adjacent block difference (like GOPs in Car1(2) and Car24) to save bit rates. For the GOPs with 

low luminance level or adjacent block difference, the proposed TP-driven scheme allocates more 

data rates to these GOPs to increase video quality for vehicle tracking purpose (5th to 12th GOPs in 

Wiper, 15th to 18th in BlurCar1(2)). The MSE-driven scheme allocates more data rates to the GOPs 

with more objects or details. For example, the Car1(1) and Car1(2) are allocated more rates than 

Car24 by MSE-driven scheme. However, the MSE-driven cannot distinguish the GOPs by video 

content, and therefore GOPs in BlurCar1(2) and Car1(2) are allocated similar date rate even these 

Figure 9. Sample frames of test video sequences: (a) BlurCar1(2); (b) Wiper; (c) Tunnel; (d) Car1(1);
(e) Car1(2); (f) Car24.



Sensors 2018, 18, 2858 13 of 21

Table 3. Test video sequences.

Video Resolution Lighting Condition Content Complexity

BlurCar1(2) 640 × 480 Medium Medium
Wiper 640 × 480 Low High
Tunnel 640 × 360 Low Medium
Car1(1) 320 × 240 High Medium
Car1(2) 320 × 240 High Low
Car24 320 × 240 High Low

We compare our proposed scheme with three schemes: the mean square error (MSE) driven
rate allocation scheme, QoE driven rate allocation scheme and constant bitrate control (CBR) scheme.
In CBR scheme, the total transmission rate is equally allocated to each camera node, and the packet
correct rate of each node is set to be 0.995. For the MSE-driven and QoE-driven schemes, we adopt
a classical rate-distortion model in [40] and a QoE model in [41]. The corresponding rate allocation
problem is expressed as:

min
n,k

M
∑

m=1
Qm

(
km ·S

NGOP ·Npx

)
s.t.

M
∑

m=1
nm · S · fps/NGOP ≤ Rtotal

km ·S
NGOP ·Npx

≥ Rmin ∀m

f (km, nm; pm) ≥ pmin ∀m
nm ≥ km ∀m

, (19)

here Qm(·) is the MSE/QoE of camera node m. Rmin is the minimum data rate and is set to be 32 kb/s.
pmin is minimum packet correct rate which is set to be 0.995.

5.2. Simulation Results and Discussion

We set a fixed total data rate of 800 kb/s for the proposed tracking-precision-driven scheme
(TP-driven scheme), MSE-driven scheme, QoE-driven scheme and CBR scheme. The packet loss rates
of all camera nodes are set to be 1%. Figure 10 shows the source data rate of each GOP. The proposed
TP-driven scheme allocates less data rate to the GOPs which have high luminance level and adjacent
block difference (like GOPs in Car1(2) and Car24) to save bit rates. For the GOPs with low luminance
level or adjacent block difference, the proposed TP-driven scheme allocates more data rates to these
GOPs to increase video quality for vehicle tracking purpose (5th to 12th GOPs in Wiper, 15th to 18th
in BlurCar1(2)). The MSE-driven scheme allocates more data rates to the GOPs with more objects
or details. For example, the Car1(1) and Car1(2) are allocated more rates than Car24 by MSE-driven
scheme. However, the MSE-driven cannot distinguish the GOPs by video content, and therefore GOPs
in BlurCar1(2) and Car1(2) are allocated similar date rate even these GOPs have different degrees of
tracking difficulty. The QoE model classifies GOPs into three different content type, ’slight movement’,
‘gentle walking’ and ‘rapid movement’, then the QoE-driven scheme allocates more data rates to GOPs
with ‘rapid movement’ content type and less data rates to GOPs with ‘slight movement’ content type.
Therefore, compared with MSE-driven and TP-driven scheme, QoE-driven scheme allocates more data
rates to BlurCar1(2) because it is ‘rapid movement’.
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Next, we conduct tracking on these video sequences by KCF scheme. The number of correct
tracking frames in each GOP is illustrated in Figure 11.
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Figure 11. Tracking results of all GOPs in each video under 800 kb/s total rate constraint. The packet
loss rate of each video is 1%: (a) BlurCar1(2); (b) Wiper; (c) Tunnel; (d) Car1(1); (e) Car1(2); (f) Car24.

Here, we assume that the ground truth of the first frame in each video sequence is assigned by
the server. From Figure 11, we can see that our proposed TP-driven scheme allocates the bit rates
more efficiently. For instance, in the Wiper video sequence, the KCF tracks the right target in GOPs
from the proposed scheme while it loses the target in GOPs encoded by the MSE-driven, QoE-driven
and CBR schemes. In the BlurCar1(2) video, the proposed scheme achieves higher tracking precision
than the MSE-driven and CBR schemes. This is because the proposed scheme considers content the
impacts on tracking and allocates more data rates to these GOPs to provide high tracking precision.
For Car24, all schemes get the same tracking precision, but the proposed TP-driven scheme saves
more bit rates. Although the proposed scheme allocates less rates to the Car1(1) and sacrifices tracking
performance in its GOPs, the overall performance in the six test video is better than the MSE-driven
scheme, QoE-driven scheme and CBR scheme.

The performance of the proposed TP-driven scheme, MSE-driven scheme, QoE-driven scheme
and CBR scheme is tested under different total rate constraints. Figure 12 shows the product of
tracking precisions of all video sequences under different total rate constraints. Figure 13 illustrates
the detailed tracking precision of each video under different total rate constraints. The packet loss
rates are set to be 1% for all mobile cameras. The proposed TP-driven scheme gets better performance
when the total rate is limited and deficient. For example, as shown in Figure 13, when the total
rate is 800 kb/s, the proposed scheme achieves higher tracking precision for BlurCar1(2) and Wiper.
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For Tunnel, Car1(2) and Car24, the four schemes show little tracking precision differences. For Car1(1),
the proposed scheme gets lower tracking precision than the other schemes. However, the products
of tracking precision of all video sequences under the proposed TP-drive, MSE-driven, QoE-driven
and CBR scheme are 0.92, 0.28 0.29 and 0.31, respectively. It is obvious that the tracking precision
of the MSE-driven, QoE-driven and CBR schemes is lower than that of the proposed scheme as
shown in Figure 12. Therefore, the proposed TP-driven scheme achieves better overall performance in
vehicle tracking.
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Figure 13. Tracking precision of each video under different total rate constraints. The packet loss of
each video is 1%: (a) Total rate = 400 kb/s; (b) Total rate = 600 kb/s; (c) Total rate = 800 kb/s; (d) Total
rate = 1000 kb/s; (e) Total rate = 1200 kb/s; (f) Total rate = 1400 kb/s.

We test the FEC rate allocation by setting different packet loss rates for each video. Since in the
CBR scheme, the source data rates of all camera nodes are equally allocated to all videos, only the
TP-driven, MSE-driven and QoE-driven schemes are tested. In the first case, the packet loss of each
video is 1%. Figure 14 shows the average source data rate and average FEC redundancy rate under
different total rate constraints in this case. We can see that videos are allocated more redundancy rates
with the increase of the total rate. The proposed TP-driven scheme allocates more redundancy rates to
the videos with low luminance level and adjacent block differences to avoid packet losses. Meanwhile
the MSE-driven and QoE-driven schemes are prone to protect the video with more details and rapid
movement, respectively. Then the packet loss rates of Tunnel and Car1(1) are set as 3%, the packet loss
rates of other videos are set as 1%. Figure 15 shows the percentage of redundancy rates in the total
coding rates of Tunnel and Car1(1) in the two cases. As shown in Figure 15, all schemes allocate more
data to videos with 3% packet loss rates to protect the data packets. From Figure 15 we can see that
although the redundancy rates increase when the total constraint rates increase as shown in Figure 14,
the percentage of redundancy rates decrease with the increase of total bit rates. This is because the
increase of the redundancy rates is lower than the increase of the source data rates. The product of
tracking precision of each video in this case is shown in Figure 16, which is almost the same as the
product in the first case. It is because the changes of source data rates and FEC packets correction rates
that caused by packet loss rate changes are very slight.
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Figure 14. Average source data rates and FEC redundancy rates of each video under different total rate
constraints. The packet loss rate of each video is 1%: (a) Average source data rates of proposed scheme;
(b) Average FEC redundancy rates of proposed scheme; (c) Average source data rates of MSE-driven
scheme; (d) Average FEC redundancy rates of MSE-driven scheme; (e) Average source data rates of
QoE-driven scheme; (f) Average FEC redundancy rates of QoE-driven scheme.
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Figure 15. Percentage of FEC redundancy rates in total coding rates of Tunnel and Car1(1) under
different rate constraints. In the fisrt case (solid lines), packet loss rate of each videos is 1%. In the
second case (broken lines), packet loss rates of Tunnel and Car1(1) are 3%, and packet loss rates of other
videos are 1%: (a) Percentage of FEC redundancy rates in total coding rates of Tunnel; (b) Percentage
of FEC redundancy rates in total coding rates of Car1(1).
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Figure 16. Product of tracking precision of each video under different total rate constraints. The packet
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In our simulation, the GOP structure is IPPP. In fact, several B frames are allowed in the GOP,
GOP structure like IBBPBBP can provide similar performance like IPPP. However, the GOP structures
which have a lot of consecutive B frames (IBB . . . BP structure for example) are not suitable for our
scheme. Due to the blurring and fast movement in the video, a lot of consecutive B frames can cause
obvious video quality degradation. Consequently, tracking precision decreases. Therefore, I or P
frames are needed to be inserted every several B frames in the GOP for high quality service.

6. Conclusions

In this paper, we have proposed a joint source and channel coding algorithm for vehicle tracking
in MIoT systems. Our algorithm aims to provide better tracking performance in MIoT servers, which is
different with previous QoS/QoE-driven schemes which aim to improve the human visual experience.
We first study the effect of video content and compression on the KCF tracking scheme and establish
a content-aware tracking precision prediction model, which can estimate the tracking precision of
videos with different content features and coding rates. In this model, video luminance level and
adjacent block difference are extracted to represent the effect of lighting conditions and video content
complexity on tracking precision, respectively. Then, based on the precision prediction model, the
optimization problem is formulated to maximize the product of tracking precision of each surveillance
video under the constraint of the total transmission rate in the wireless network. Considered the
transmission error in wireless network, FEC is adopted to improve the reliability of data transmission.
Compared with the traditional QoS/QoE-driven algorithm and CBR algorithm, our joint source and
channel rate allocation algorithm more efficiently allocates the bit rates under the constraint total
transmission rate and achieve better tracking performance.
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Fernández, G.; et al. The visual object tracking vot2016 challenge results. In Proceedings of the European
Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 191–217.

40. Huang, Y.-H.; Ou, T.-S.; Su, P.-Y. Perceptual rate-distortion optimization using structural similarity index as
quality metric. IEEE Trans. Circuits Syst. Video Technol. 2010, 20, 1614–1624. [CrossRef]

41. Khan, A.; Sun, L.; Ifeachor, E. QoE Prediction Model and its Application in Video Quality Adaptation Over
UMTS Networks. IEEE Trans. Multimedia 2012, 14, 431–442. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MSP.2011.940881
http://dx.doi.org/10.1109/TMM.2015.2455418
http://dx.doi.org/10.1109/MMUL.2017.29
http://dx.doi.org/10.1109/TCSVT.2016.2539758
http://dx.doi.org/10.1109/MWC.2004.1295734
http://dx.doi.org/10.1109/TIT.2006.874390
http://dx.doi.org/10.1109/MCOM.2008.4511655
http://dx.doi.org/10.1186/1687-1499-2013-283
http://cvxr.com/cvx
http://dx.doi.org/10.1109/TCSVT.2010.2087472
http://dx.doi.org/10.1109/TMM.2011.2176324
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Scenarios and Structure of MIoT System for Vehicle Tracking 
	Content-Aware Tracking Precision Prediction Model 
	Factors Impact on KCF Tracking Scheme 
	Model Features Extraction and Analysis 
	Bits per Pixel 
	Video Luminance Level 
	Video Adjacent Block Difference 

	Model Establishment 

	Proposed Joint Source and Channel Rate Allocation Scheme 
	Simulation and Performance Comparison 
	Simulation Settings 
	Simulation Results and Discussion 

	Conclusions 
	References

