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Abstract: A prototype of an electrocardiogram (ECG) signal acquisition system with multiple
unipolar capacitively coupled electrodes is designed and experimentally tested. Capacitively coupled
electrodes made of a standard printed circuit board (PCB) are used as the sensing electrodes.
Different from the conventional measurement schematics, where one single lead ECG signal is
acquired from a pair of sensing electrodes, the sensing electrodes in our approaches operate in a
unipolar mode, i.e., the biopotential signals picked up by each sensing electrodes are amplified and
sampled separately. Four unipolar electrodes are mounted on the backrest of a regular chair and
therefore four channel of signals containing ECG information are sampled and processed. It is found
that the qualities of ECG signal contained in the four channel are different from each other. In order
to pick up the ECG signal, an index for quality evaluation, as well as for aggregation of multiple
signals, is proposed based on phase space reconstruction. Experimental tests are carried out while
subjects sitting on the chair and clothed. The results indicate that the ECG signals can be reliably
obtained in such a unipolar way.

Keywords: unipolar electrode; smart chair; phase space reconstruction; capacitively coupled ECG

1. Introduction

Sensor technologies are widely used in our everyday lives. Wearable devices such as electronic
clothes [1], watches [2], necklaces [3], etc. that can conveniently obtain basic physiological parameters
of the human body have become an important research area [4,5]. However, people are reluctant
to carry and wear these devices all the time. In order to address these limitations of wearable
devices, sensors could be embedded on physical objects or appliances used frequently in daily life [6],
and thus help improve the intelligence of our living environment. Different sensing solutions for the
development of smart environments have been reported. Lee et al. [6] developed a smart bed for
long-term heart rate monitoring. Conductive textiles are embedded on the bed and used as capacitively
coupled electrodes. Braun et al. [7] introduced a CapFloor system for indoor localization and fall
detection. The system is based on a grid array of sensing electrodes placed below a floor covering.
A smart toilet system was developed by La et al. [8]. The toilet is equipped with an Arduino board and
various sensors to measure health conditions such as weight, body temperature, pulse, blood oxygen
and blood pressure.

Office workers, the elderly and students spend most of the day sitting on chairs [9,10].
According to the chair usage research [10], 55% of office workers spend more than 9 h a day siting
on chairs. Therefore, with sensors embedded on a regular chair, there are valuable opportunities to
monitor and analyze daily activities and health parameters of people. For example, Hesse et al. [11]
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developed a chair with integrated force sensitive resistors, radar sensor and actuators. It is able to
improve the subject’s well-being by offering qualified fitness training, relaxation mode and assistive
functions. Kumar et al. [12] constructed a chair with force sensitive resistors to estimate breathing rate
and emotion-based activities.

Heart rate variability (HRV) is highly related to stress, anxiety, diabetes, hypertension, fatigue,
and depression symptoms [13–15]. Devices that can measure electrocardiogram (ECG) signals,
especially the HRV, are becoming powerful tools for self-monitoring in daily life. Baek et al. [16]
developed a chair that can monitor multiple biological signals including ECG, ballistocardiograph
(BCG), and photoplethysmogram (PPG). By simultaneously measuring the signals, blood pressure can be
estimated by the pulse arrival time (PAT) that calculated from the ECG and PPG signals. Similar work can
be found in [17,18]. Singh et al. [19] installed six capacitive ECG electrodes (cECGs) into an automotive
seat. One channel of ECG signal is obtained by differentially amplifying the outputs of a pair of the
cECGs. The ECG signal with the best quality is selected by a frequency domain-based switching logic.
Choi et al. [20] attached four cECGs (EPIC Sensor) on the backrest of a chair. One pair of the cECGs is
used to measure the ECG signal, and another pair is used to obtain the human body motion information.
It is reported that the motion artifacts can be reduced by such an approach. To our knowledge, most of
the reported systems pick up the ECG signal in a differential measurement way, i.e., one ECG signal is
obtained from the outputs of a pair of electrodes. However, for the chair-based ECG signal acquisition
system, the signal quality is related to the individual body shape, sitting posture, the clothing thickness
and so on. Because of the imbalance of the two electrode-skin coupling impedances, signal quality
will fluctuate, and sometimes the ECG signal may even be ruined by the motion artifacts during such
differential measurement procedure. A typical example can be found in [21] (Section 4). The unipolar
measurement, on the other hand, picks up the biopotential signal from one single measurement
electrode [22]. Koichi Mizukami et al. [23] recorded two-channel 24-h Holter ECG with unipolar
leads (V1 and V2) and aimed to estimate the ST segment during the daily life. Gargiulo et al. [22,24–26]
introduced a nine-channel unipolar ECG system. The front-end circuits are designed based on the
voltage supply bootstrap technology. Albert et al. [27] recorded 12-lead unipolar ECG by using only one
limb of the Wilson Central Terminal. The measurement results indicate that unipolar ECG signals are
highly correlated (r > 9) with standard leads. Up to our knowledge, most of the reported works use the
conventional wet Ag/AgCl or dry electrodes in their systems. Their research aims to reduce the signal
redundancy with unipolar measurement.

A unipolar approach for ECG signal acquisition is experimentally tested in this paper.
Different from the conventional differential measurement, the capacitively coupled sensing electrodes
in our approaches operate in the unipolar mode. The outputs of each sensing electrodes are
amplified and sampled separately. Since the unipolar electrodes are independent, the measured
ECG signals will not affect each other, problems caused by impedance imbalance can be overcome.
Four unipolar electrodes are mounted on the backrest of a regular chair to get four-channel ECG
signals. The experimental results indicate that such an approach gives robust performance to sitting
postures and body types of the tested subjects.

2. Materials and Methods

2.1. Experimental Setup

Figure 1a shows the schematic diagram of the sensing electrode. The physical substrate of the
electrode is a standard multilayer printed circuit board (PCB). The electrode layer is the first conductive
layer of the PCB, which is covered by the solder mask for electrical insulation. The electrode layer and
the human skin form an approximately parallel plate capacitor to sense the potential variation on the
skin. The rear side of the electrode layer is surrounded by the active shielding layer. The entire electrode
is covered by a metal shielding case (aluminum). The active shielding layer and the metal shielding
case are used to prevent the electrode from unwanted interference noises. The electrode circuit consists
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of two operation amplifier (Op-Amp), LMP7721 (A1) and OPA2333 (A2). The A1 is configured as
a unity gain voltage buffer. Two anti-parallel diodes (D1,2, IN4148) are used as ultra-high value
resistors (beyond 1 TΩ) to minimize the input noise, and to prevent the static electricity interference.
When the static electricity of the human body is accumulated greater than the built-in potential (0.6 V
for IN4148), one of the diodes will turn on and release it. The A2 is used to amplify the signal to the
appropriate range.
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Figure 1. Sensing electrode: (a) Electrode structure; (b) Circuit model.  
Figure 1. Sensing electrode: (a) Electrode structure; (b) Circuit model.

Figure 1b depicts a simplified, generic circuit model for the sensing electrode. The tested ECG
signal can be thought as an AC voltage source Vs. Zd (Cd//Rd) is the equivalent impedance of D1,2.
CE is the coupling capacitance between the electrode layer and skin:

CE =
ε0εS

d
(1)

where ε0 is the vacuum dielectric constant (ε0 = 8.85 × 10−12 F/m), ε is the dielectric constant of
the coupling medium, S is the effective area of the electrode layer, and d is the effective distance
between the electrode and the human skin. Since the medium between the electrode and the human
skin is the clothes, the dielectric constant of the clothes is approximately the dielectric constant of the
air (ε ≈ 1) [28]. The structure of the sensing electrode can be seen in Figure 2. The effective area is
12.56 cm2. In our experimental cases, the effective distance d is about 0.3 mm according to cotton shirt
thickness. Therefore, the value of CE is about 37 pF by Equation (1). The transfer function of the front
circuit around A1 in Figure 1b is H1:

H1 =
Zd

ZE + Zd
where Zd =

Rd
1 + jωRdCd

(2)

The transfer function of the inverting amplifier A2 is

H2 = −
R f

R1
(3)
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Because the entire circuit is cascade-connected by these two parts, and the transfer function of the
electrode is

H =
VO
VS

= H1·H2 =
jωRdCE

1 + jωRd(CE + Cd)
·(−

R f

R1
) (4)

The equivalent capacitance of the diode is about 1 pF, which is far less than the coupling
capacitance (Cd � CE). Therefore, the transfer function can be simplified as:

H ≈ jωRdCE
1 + jωRdCE

·(−
R f

R1
) (5)
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Figure 2. Picture of the sensing electrode: (a) Structure diagram; (b) The appearance of the electrode.

The prototype of the experimental system is shown in Figure 3. Four sensing electrodes are
attached on a thin pad (0.5 cm) called the electrode-attached pad. A sofa cushion with thickness 10 cm
is inserted between the electrode-attached pad and the backrest of a regular chair (Figure 3a).
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The vertical and the horizontal distance between the sensing electrodes is 10 cm and 12 cm,
respectively. The sensing material of the reference electrode is made of conductive fabric and mounted
on the seat of the chair. The signal acquisition system is shown in Figure 3b. In order to compare
the performance of the two measurement approaches, both the unipolar (solid line) and differential
(dashed line) measurement circuits are implemented. Two channel of the differential measurement are
acquired by the circuits given in the lower portion of Figure 3b. Four channel of the unipolar signals
are directly obtained from the four unipolar electrodes (the upper portion of Figure 3b). The analog
amplifier and filter circuits in Figure 3b are the same, i.e., all the analog signals are sampled after a
high-pass filter (cutoff frequent is 0.3 Hz), a notch filter (center frequency is 50 Hz) and a low-pass
filter (cutoff frequent is 200 Hz). The filtered ECG signals are sampled and converted to digital signal
at 1000 Hz sampling frequency by the data acquisition board (DAQ, USB-6003, National Instruments,
Austin, TX, USA). In order to verify the validity of the unipolar approach, all the six-channel signals in
Figure 3b are sampled simultaneously with one subject (male, 1.75 m and 76 kg) sitting on the chair as
seen in Figure 3c. The subject was wearing a cotton T-shirt (about 0.3 mm thickness). At the beginning of
the test, the subject is asked to sit on the chair and adjust the sitting posture until satisfied ECG signals can
be observed from D1 and/or D2. The posture adjustment is not necessary in practical measurement cases.
It is designed here simply to ensure that clear QRS complexes can be observed from at least one of the
differential ECG signals (D1/D2) at the beginning of the recordings. Then the signals are continuously
recorded while the subject is asked to sit there as still as possible. After about 16 s, the subject is asked to
change his sitting posture slightly. The recorded signals are given in Figure 4. It can be seen that the
ECG signals can be observed clearly from the differential measurement (D1 and D2) before 16 seconds.
After that, D1 and D2 become very noisy because of sitting motions. On the other hand, as shown in the
upper part of Figure 4a,b clear ECG signals can also be observed from one channel of unipolar signals
(E1 and E3). We attribute this phenomenon to the imbalance of the original unipolar signals. As can be
seen in Figure 4b, even within the duration of 0–16 s while satisfied ECG signals can be observed from
D2, the E4 gives relatively noisy signals compared with that of E3. After 16 s, the E4 is ruined by sitting
motions and poor differential measurement results are obtained by D2, even though clear ECG signals
can still be observed from E3. Similar results can be observed from Figure 4a. Just as reported works in
refs [16–20], when the system is working in the differential measurement mode, the signal quality of the
obtained ECG signals may be unstable. Three main reasons could explain this phenomenon as follows:
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(1) The electrodes are fixed on the chair. During the measurement, the subjects may perform slight
changes in sitting postures and do some daily work. The capacitive electrode is hard and can slip
over the clothes, the output signal is therefore susceptible to artifacts because of the poor contact
and charging effects [29]. In addition, since the biopotential is picked up in a capacitive-coupling
way, the electrode placed on different positions will result in different ECG signal quality [30].

(2) Most clothes are soft and flexible. It is easy to produce random cloth folds when subjects are sitting
on the chair with their back leaning on the backrest. The uneven distribution of clothes wrinkles
may cause inconsistent distances between differential measurement electrodes and the skin.

(3) Because the shape of the human back is irregular, during the measurement, the electrodes at
different positions are subjected to different pressures. The pressure on the electrodes affects the
contact conditions and therefore the impedances between the electrodes and the skin. The quality
of the measured ECG signal is then be affected [31].
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and D2.

Based on the abovementioned experiments, it can be concluded that the capacitively coupled
ECG signal acquisition system with unipolar measurement should be more suitable for the chair-based
ECG applications. Compared with the conventional differential measurement, under the same number
of sensing electrodes, the unipolar measurement can obtain more signal channels and can provide
more information. Furthermore, because the sensing electrodes in the unipolar measurement are
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mutually independent, the ECG signals measured by the unipolar electrodes do not affect each other.
These advantages enable the proposed system to accommodate to uneven thickness of clothes and
different kinds of sitting postures.

2.2. Signal Acquisition and Processing

The working principle of the proposed ECG signal acquisition system is shown in Figure 5.
The original ECG signals are measured by the sensing electrodes in a unipolar way. After the analog
filters (see Section 2.1), the signals are sampled and processed locally in the microcontroller unit
(MCU) system. The digital filter is implemented by three filters in series, including a 50 Hz notch filter,
a four-order low-pass filter (cutoff frequency is 40 Hz) and a two-order high-pass filter (cutoff frequency
is 0.3 Hz). The digital filter is used for eliminating power-line interference, low-frequency baseline
wandering and high-frequency electromyographic noise. The quality indexes of the multi-channel are
calculated. Based on the quality indexes, multi-channel ECG signals are synthesized into single-channel
ECG signal. After that, the synthetic signals are transmitted to the PC or a mobile phone wirelessly via
Bluetooth for future processing and displaying.Sensors 2018, 18, x FOR PEER REVIEW  7 of 17 
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As mentioned above, due to the different sitting posture and body size, not all the channels could
get reliable ECG signals. An effective algorithm for evaluating the signal quality is needed. Frequency
domain features of the ECG signals are generally used to evaluate the signal quality [19,32,33].

Figure 6a,b show two segments of ECG signals measured from one subject. The corresponding
frequency domain distribution of these signals are given in Figure 6c,d, respectively. It is obvious
that the ECG features in Figure 6a are clear than that in Figure 6b. More precisely, the measurement
results of Figure 6b is totally disturbed by noise. However, both of the frequency domain distribution
of these signals are concentrated in 5–30 Hz. It is difficult to distinguish between the clear and noisy
ECG signals based on frequency domain features. This is because that the frequency of the QRS
complex ranges between 4 and 20 Hz [34], and most of the low-frequency noise are located within
this range. This phenomenon is common in capacitively coupled ECG signals. Therefore, the ECG
signal evaluation method that based on frequency domain features is not suitable for our system.
An index for evaluating the ECG signal quality is proposed based on phase space reconstruction. For
a one-dimensional time series X, X = (x1, x2, x3, · · · , xN), m-dimensional delay vectors p(i), p(i) =
(xi, xi+τ , xi+2τ , · · · , xi+(m−1)τ) can be obtained by the embedding method [35]. m is the mapping
dimension of the phase space, and τ is the time delay. m = 2 and τ = 20 ms are satisfactory to extract
the feature of the ECG signal [36]. Based on our previous work, the two-dimensional phase space is
partitioned into 2M × 2M, M = 6 grids and each grid is called a box. This gridding procedure can be
done by numerically truncating the high M-bits from the raw digital data. Figure 6e,f show that the
gridded phase portraits of the ECG signals in Figure 6a,b. The gridded phase portraits of the clear
ECG signals (Figure 6e) have a relatively regular distribution and only small parts of the phase space
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are filled. However, the gridded phase portraits of the noisy ECG signals (Figure 6f) is irregular and
almost distributed over the entire phase space. Since the phase portraits of the noisy ECG signals will
fill more area of the phase space, a quality index, which is defined as Rate by Equation (6), is used as a
parameter for signal evaluation:

Rate =
Np

Nt
(6)
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Np is the number of the boxes that visited by the phase portraits of the ECG signals. Nt is the
total number of the boxes in the phase space. A sliding window is applied for processing the recorded
ECG signals. The window length is set to be two seconds in our cases. This setup is based on the
phenomenon that the heart rate of healthy people is generally not slower than 40 beats per minute.
A 2 s-length sliding window is sufficient to contain a complete heartbeat cycle. The sliding step is 1.5 s
with 0.5 s overlapped. The Rate of the ECG signals in the sliding window is calculated.
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In order to evaluate the availability of the above mentioned signal quality index, simulation
is firstly carried out with four segments of ECG signal selected from the MIT-BIH Database [37].
The selected segments (indicated as seg1–seg4 respectively) are shown in Figure 7a. Segment-1
(No. 100) is clear and almost no noise interferences can be observed. In Segment-2 (No. 108), the QRS
complexes are not obvious, and there are noise interferences between R-R peaks. Segment-3 (No. 215)
and Segment-4 (No. 228) give similar performances, that is, the SNR of one-half of the segment is
higher than that of another half of the segment. The calculated Rate values are shown in the bottom
of Figure 7a. Because the SNR of the Segment-2 is lower, its Rate keeps a higher value. As for the
Segment-3, the Rate values of the front part of the ECG signal are lower, and the Rate values increase
with the decreasing signal quality. Similar results can be observed for Segment-4. One experimental
example is given in Figure 7b. The four-channel ECG signals measured from one subject are indicated
as E1–E4 respectively. As can be seen, the signal quality of E1 and E3 is better than that of E2 and E4.
Correspondingly, the Rate values of E1 and E3 are relatively small. These two experimental results
show that the quality index can reflect the quality change of the ECG signals.
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The calculated Rate values are used for signal synthesis shown in Figure 5. Let Xk, Xk =

[xk1, xk2, · · · , xkN ]
T be the signals measured from channel-k (1 ≤ k ≤ K), and K is the total number of

the channels (K = 4 in our cases). For each Xk, the Ratek has been calculated, and the weight value w
for each channel is defined as:

wk = e−(
Ratek

σ )
2

/ ∑K
k=1 e−(

Ratek
σ )

2

(7)

The scaling factor σ modulates the distribution of weights. If σ � Rate, then for all the channels,
the weight is almost equal to 1/K. A very small σ could make a great difference between the weights.
In our cases, the σ is set to 0.3. The weighted data are given by

WX = [w1·X1, w2·X2, · · · , wK·XK] (8)

The synthetic result Xsyn is used as the processed ECG signal as follows.

Xsyn = ∑K
k=1 wk·Xk (9)
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One example of the signal synthesis is given in Figure 8. All the measured unipolar signals are
disturbed by noises (E1–E4). In E4, the QRS features is hard to observe between 0.5 and 2.5 s. As for
the E1 and E3, the abnormal peak between 5.8 and 6.3 s may be treated as the normal heart beat.
The synthetic results Xsyn are indicated as Syn in Figure 8. It can be seen that the missing waveforms
and false R-peaks in E1, E3 and E4 disappeared in Syn. Moreover, the noise between the R-R intervals
are also suppressed, providing a more reliable and clear ECG waveform. As a comparison, the results
calculated by Principal Component Analysis (PCA) [38], that the original four channels data are
reduced to one dimension based on the maximum eigenvalue, are also given in Figure 8. Obviously,
the synthetic method can obtain a similar result compared with that by PCA. Since the singular value
decomposition (SVD) computation in PCA algorithm is avoided, less computation cost is needed by
this synthetic method. In order to evaluate the processing time of the algorithms, the 8 s ECG signals in
Figure 8 are processed on MATLAB (CPU: Intel-i7 6700, Memory size: 16 GB). After a few repetitions,
the average execution time for the PCA algorithm is 1.58 ms. On the other hand, the synthetic method
only takes 0.14 ms.Sensors 2018, 18, x FOR PEER REVIEW  10 of 17 
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3. Evaluation and Results

3.1. Backrest Softness and Electrode Positions

The contact conditions between the sensing electrodes and the human body are the most important
factor for capacitively coupled ECG measurements. Because the sensing electrodes are mounted on
the backrest of the chair, two backrests with different softness are experimentally tested. In the first
case, which is indicated as firm configuration, the electrode-attached pad is placed directly on the chair.
The tested backrest is relatively firm. In the second case, which is indicated as soft configuration, a sofa
cushion with thickness 10 cm is inserted between the electrode—attached pad and the backrest of the
chair as shown in Figure 3a. This configuration makes the tested backrest relatively softer. A subject
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is asked to sit on the chair and keep motionless. The thickness of the subject’s clothes is 0.3 mm.
The measurement results are shown in Figure 9. In the first configuration, although the QRS waveforms
can be observed, the signals are more susceptible to motion artifacts (see the black rectangular frames).
On the other hand, as can be seen from Figure 9b, the obtained ECG signals are clear, and the periodic
QRS waveforms are clearly visible. Under the same thickness of the clothes, the signal quality of the
firm backrest configuration is not as good as that of the soft backrest configuration. This is because
the soft backrest allows the sensing electrodes to better fit the body shape. When there are slightly
motions of the human body, the soft backrest can act as a buffer. Such phenomena may explain why
the reported ECG-chairs are implemented on soft backrests [16,18,21]. Therefore, the soft backrest
configuration is adopted in the followed experiments.
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Figure 9. ECG signals obtained under different backrest: (a) Firm configuration; (b) Soft configuration.

There is no standard location for human back ECG signal measurement [30]. Various unipolar
electrode positions are experimentally tested. With the spine as the center, the human back is divided
into eight different positions, and the eight electrode positions are placed symmetrically on the left and
right sides of the human back. These electrode positions are shown in Figure 10. One-channel unipolar
ECG signals are obtained from five subjects (ages 22–32). One unipolar electrode is used to measure
the ECG signal at these electrode positions. All the subjects wear uniform cotton T-shirt, and the
thickness of the cotton T-shirt between the electrode and the skin is 0.3 mm. Using the amplitude of
the QRS peak as the indicator for the sensitivity, the measurement results are listed in Table 1. It can be
seen that the position I and II produce higher sensitivity than other positions. The position of the four
unipolar electrodes (Figure 3a) is determined according to these experimental results.

Table 1. QRS peak amplitude results.

Left Electrode Position QRS Peak Amplitude
(Mean ± SD mV) Right Electrode Position QRS Peak Amplitude

(Mean ± SD mV)

I 71.58 ± 5.38 I 80.63 ± 4.20
II 68.93 ± 4.51 II 74.97 ± 5.22
III 34.04 ± 3.93 III 37.55 ± 4.71
IV 24.35 ± 3.23 IV 21.54 ± 3.97
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3.2. The Influence of Clothing Thickness

The main advantage of the capacitively coupled electrode is the ability to work through insulation
materials, such as fabric and clothing. In daily life, the subjects may wear clothes of different thickness.
The influences of various clothing thickness on the system performance are evaluated. One subject
(male, 1.75 m 76 Kg) is asked to wear different cotton T-shirt layers, and sit on the proposed ECG signal
acquisition system. The thickness of the single-layer cotton T-shirt is about 0.3 mm. The multi-channel
ECG signals are measured under different layers of cotton T-shirt. Figure 11 shows the measured
multi-channel ECG signals and the synthetic single-channel results. The ECG signals of all channels
are generally clear in case of the single-layer cotton T-shirt (0.3 mm). With the increasing of the clothing
thickness, the ECG signal quality is declined. However, even in the case of 1.48 mm clothing thickness
(four layers of cotton T-shirt), clear QRS complex features can still be observed.

3.3. Performance Tests

A healthy subject (male, 1.70 m, 68 kg, 0.3 mm thickness cotton T-shirt) was experimentally
tested. The subject was asked to sit on the proposed ECG signal acquisition system. To measure the
standard lead-I ECG signals, the LA, RA and LL extremity electrodes of the clinical ECG instrument
(SE-601B, twelve-lead/channel EDAN Instruments, Shenzhen, China) are placed on the subject’s left
arm, right arm and left leg respectively. One minute of ECG signals are simultaneously measured by
our device and the clinical ECG instrument. The ECG signals obtained by the clinical ECG instrument
are used as the reference ECG signals. During the experiment, the subject is asked to change the sitting
posture at the 20 s and 40 s. The recorded ECG signals are shown in Figure 12a. The recorded signals
are processed offline in Matlab to verify the validation of the above-mentioned signal processing
method. The synthetic results are calculated every 10 s. As can be seen from Figure 12a, the changing
in sitting posture has a great influence on the quality of the measured signal. Even for the standard
lead-I ECG signals (Ref) measured by the clinical ECG instrument, motion artifacts still exist around
the 20 s and 40 s. As for the synthetic results (Syn), when the motion artifacts are small (near the 20
s), relatively satisfied results can be obtained. However, the synthetic results are not stable when the
motion artifacts are large and occur in most channels (near the 40 s). Adjusting the scaling factor σ in
Equation (7) (e.g., increasing the weight value of E2) can improve the signal quality of the synthetic
results. One heart beat cycle near 10 s (black rectangular frames in Figure 12a) is shown in Figure 12b.
The QRS complex can be clearly observed by all the three ECG segments, and the T-wave can also be
observed from the synthetic results. However, the P-wave is not obvious in the synthetic results and
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the measured ECG signals of E2. The waveforms of the standard lead-I ECG signals and the synthetic
results are smoother than that of the E2.
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Six subjects were asked to sit on the proposed ECG signal acquisition system and their ECG
signals were measured within three minutes. During the experiment, the slight movements (typing,
talking etc.) are allowed. All of the subjects are different in body shape and wear clothes of different
thickness. The body mass index (BMI) is used to indicate their body shape. In the meantime,
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the standard lead-I ECG signals measured by the clinical ECG instrument are recorded as the reference
ECG signals. One student with moderate training in ECG analysis annotated these measured ECG
signals. The heart beat measurement results are listed in Table 2. Where TB is the total beats, TP
is correctly detected beats (true positive), FN is undetected beats (false negative) and FP is falsely
detected beats (false positive). The overall sensitivity (Se) and predictability (P) are 99.13% and
99.28% respectively.

Table 2. Heart beat measurement results.

Sub. (BMI [kg/m2],
Cloth Thickness [mm])

TB TP FN FP Mean HR ± SD (bpm) Se (%) P (%)

No. 1 (23.60, 0.30) 198 184 4 3 66.0 ± 1.0 97.87 98.40
No. 2 (25.34, 0.35) 222 219 3 0 74.0 ± 3.0 98.65 100.00
No. 3 (24.82, 0.30) 196 194 2 3 65.3 ± 2.3 98.98 98.48
No. 4 (24.80, 0.26) 214 213 1 0 71.33 ± 1.2 99.53 100.00
No. 5 (25.63, 0.55) 217 215 1 2 72.3 ± 0.6 99.54 99.08
No. 6 (19.38, 0.40) 224 224 0 1 74.7 ± 2.5 100.00 99.56

Total 1271 1249 11 9 - 99.13 99.28

4. Conclusions

A prototype of an ECG signal acquisition system with multiple capacitively coupled unipolar
electrodes is described. Compared with those differential measurement approaches, in the proposed
system, the ECG signals are directly obtained from the outputs of each unipolar electrodes. Because the
measured signal from one sensing electrode is affected by the electrode-skin coupling impedance,
the differential ECG signal obtained from outputs of one pair of electrodes may be ruined by the
impedance imbalance. This is especially true when the ECG signal is measured in a capacitive-coupled
way. On the other hand, since the signals are amplified and sampled separately in unipolar approach,
problems caused by such imbalance can be suppressed. Experiments are carried out with four unipolar
electrodes attached on the backrest of a chair. The reference electrode is mounted on the seat of the
chair. The measurement ECG signals are likely to be less affected by its location. One important
phenomenon is that the signal quality is affected by the softness of the backrest. An index for quality
evaluation is proposed based on phase space reconstruction. Using the index as the weight value for
weighted synthesis, a fast signal synthetic method is designed for obtaining a single-channel ECG
signal from the multiple-channel unipolar signals. Although the obtained ECG signal quality is not
higher than that by the differential measurement, the experimental results indicate that available ECG
signals can be obtained in case of slightly human body motions. Future work will be aimed at the
long-term evaluation under real-life conditions and new measurement configurations.
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