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Abstract: A promoter is a small region of a DNA sequence that responds to various transcription
factors, which initiates a particular gene expression. The promoter-engineered biosensor can activate
or repress gene expression through a transcription factor recognizing specific molecules, such as
polyamine, sugars, lactams, amino acids, organic acids, or a redox molecule; however, there are few
reported applications of promoter-enhanced biosensors. This review paper highlights the strategies
of construction of promoter gene-engineered biosensors with human and bacteria genetic promoter
arrays with regard to high-throughput screening (HTS) molecular drugs, the study of the membrane
protein’s localization and nucleocytoplasmic shuttling mechanism of regulating factors, enzyme
activity, detection of the toxicity of intermediate chemicals, and probing bacteria density to improve
value-added product titer. These biosensors’ sensitivity and specificity can be further improved by
the proposed approaches of Mn2+ and Mg2+ added random error-prone PCR that is a technique
used to generate randomized genomic libraries and site-directed mutagenesis approach, which is
applied for the construction of bacteria’s “mutant library”. This is expected to establish a flexible HTS
platform (biosensor array) to large-scale screen transcription factor-acting drugs, reduce the toxicity of
intermediate compounds, and construct a gene-dynamic regulatory system in “push and pull” mode,
in order to effectively regulate the valuable medicinal product production. These proposed novel
promoter-engineered biosensors aiding in synthetic genetic circuit construction will maximize the
efficiency of the bio-synthesis of medicinal compounds, which will greatly promote the development
of microbial metabolic engineering and biomedical science.

Keywords: biosensor; promoter; sensitivity; specificity; high-throughput screening (HTS); genetic
promoter chip; “push and pull” mode; toxicity

1. Introduction

With the development of life sciences and DNA molecular technology, we can discover the key
gene, new enzyme, or protein that controls the main signaling pathway for synthesis of a desired
product. Many genes or enzymes are directly regulated by a transcription factor without effector
binding; however, some genes not only need a transcription factor, but also compound effector binding
for dynamically controlling gene expression [1,2]. Access to large of quantities of these dynamic
regulatory components is critical for the discovery of new biosensors for novel applications [3–5].
Therefore, promoters, transcription factors and molecular effectors collectively contribute to the
discovery of biosensors and significantly draw our attention (Table 1).

Sensors 2018, 18, 2823; doi:10.3390/s18092823 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18092823
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/9/2823?type=check_update&version=2


Sensors 2018, 18, 2823 2 of 13

1.1. Strategies for the Construction of Promoter-Enhanced Biosensor

Because promoters are an important component for initiating gene expression, the strong
promoters can be identified through comparative transcriptional analysis, which has a high gene
expression ratio. The gene expression profile tells us that for up- or down-regulated genes, which strong
or weak promoters can be in response to specific molecules, the strong promoter can be identified
through microarray-based transcriptional analysis [6–8].

Table 1. Promoters, transcription factors, and molecular effectors engineered for the construction
of biosensors.

Engineered Component Approaches Reference

Engineered molecular effectors

(1) Fluorescence of strain HF19 harboring PBAD-gfpuv reporter
plasmid (Ppcc442) and expressing AraC-mev (Ppcc423-mev), in the
presence of the indicated concentration of small molecule inducers
(“effectors”), such as mevalonate, succinic acid, L-arabinose,
Triacetic acid lactone.
(2) MphR inducers are macrolides, such as erythromycin,
oleandomycin, nabomycin, pikromycin, methymycin, josamycin.

[4,5]

Engineered transcription factor
L-arabinose-responsive transcription factor engineered to
specifically respond to the level of D-arabinose, acid lactone,
and mevalonate.

[5]

Engineered promoter
An oleic acid biosensor replacing the native FadR-regulated fadBA
promoter with a synthetic two copies of promoter into the strong
phage T7 pomoter.

[5,9,10]

1.1.1. Synthesizing Promoters to Increase Their Properties

Strong promoters can be selected according to comparative transcriptional analysis, and their
strength can be characterized by fusing an immunofluorescent protein, such as the mCherry or GFP
gene, for fluorescence testing, which enables HTS of transcription factor-acting molecular drugs.
However, most of the time, the activity of a single promoter in response to a compound is so weak and
insufficient that it cannot be effectively characterized; as a result, promoters need to be synthesized to
enhance their performance through certain DNA assemble techniques, like the DNA brick method,
which utilizes isocaudarner ligation for connecting a series of promoters [9,10]. The approach of
synthesizing promoters of Corynebacterium glutamicum from two directions are illustrated in Figure 1.
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1.1.2. Approaches of Mn2+ and Mg2+ Added Random, Error-Prone PCR and Site-Directed
Mutagenesis for Further Improving a Synthesized Promoter’s Performance

The improvement of promoter’s properties is beneficial for construction of sensitive biosensors.
Although we can increase the strength of promoters by synthesizing them, how to further improve their
sensitivity and specificity are needed our more consideration. Given that metal Mn2+ and Mg2+ added
random, error-prone PCR random mutagenesis throughout the entire promoter’s sequence can add
random mutated sites into the promoter PCR fragments, which leads to a change in their performance,
the mutants can be screened by fluorescence-activated cell sorting (FACS) analysis at various drug
concentrations [11]. In addition, the mutation sites can be identified by sequence analysis and validated
by the site-directed mutagenesis approach. Furthermore, site-directed mutagenesis approach could
determine which mutation site contributed to the specificity of promoter. These newly introduced
mutation sites are the promoter’s specific binding sites of the transcription factor–molecular effector
complex (Figure 2A) at the gene level. If the bacteria is infected by a phage, the packaging phage
can cause random mutations to be inserted into the TA sites of the bacterial gene’s promoter [11,12]
(Figure 2B).
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2. Applications of Promoter Gene-Engineered Biosensors

2.1. Construction of High-Throughput Screening Platform for Screening Transcription Factor-Acting Molecules
and Anti-Tumor Drugs with High Pharmacological Activity

In many cases, bacteria trigger signaling cascades through transcription factors, as a response
to a specific compound for coping with the environment. These transcription factors also play
an important role in bacteria’s physiological activities, such as the regulation of salt and cell
envelope stress that counteract extracytoplasmic stresses, NaCl and hormone balance, acting as
a metal transporter protecting against oxidative stress, copper homeostasis, counteracting hydrogen
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peroxide-mediated oxidative stress, and gene expression inhibited by nitric oxide (NO) [13]. All these
exhibited activities of bacteria due to transcription factors are highly effective devices, sensitively
and specifically bind small compounds and trigger allosteric responses to control the transcription
of one or more genes. Because they sense various molecular effectors, transcription factors have
been engineered to enable us to regulate valuable product production, including dicarboxylic acids,
alcohols, phenylpropanoids, lactone etc. [14]. Nevertheless, the promoter still exhibits a binding
saturation effect and the gene expression is not really sufficient, which results in insufficiency of the
drug screening. The strategy of synthesizing promoters, which will promote more transcription factor
(TF)–molecular effectors specifically binding gene promoters, will increase the DNA translation
efficiency, thus leading to the improvement of drug screening. Therefore, promoter-enhanced
biosensors and the construction of a genetic promoter chip of bacteria with synthesizing promoters
could enable us to construct an HTS platform to screen TF-acting compounds; for example, we have
screened up-regulated genes (ratio ≥ 6.0) of mutated Corynebacterium glutamicum (ER6937R42) that
are correlated with high production of L-Ornithine, as well as up-regulated genes (ratio ≥ 7.0) of
mutated Corynebacterium glutamicum (16-17-CPVF-ALE) that are correlated with high production of
putrescine [14,15]. The corresponding promoters can be found, assembled, and fused with mCherry
or EGFP genes for the construction of an HTS platform for detecting the drugs L-Ornithine and
putrescine [15] (Figure 3). We can further improve the sensitivity and specificity of these biosensors
by site-directed mutagenesis approaches, to increase the sensitivity of detection of L-Ornithine and
putrescine in bacteria. The method proposed can be extended to screening of other TF-acting molecular
drugs or anti-tumor compound screening by cell array (Figure 4), especially those drugs associated
with the growth and energy metabolism of bacteria [16] (Figure 3) or tumor growth and invasion [17,18]
(Figure 4).
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YES-associated protein (YAP) transcription of tumor genes, which can be applied for drug HTS.

2.2. Performance-Enhanced Promoter Can Be Applied for Studying the Membrane Protein’s Localization and
Enzyme Activity

Because the quantity of most membrane proteins of bacteria on the cell surface is limited [19],
the performance-enhanced promoter can be cloned before the mCherry or EGFP gene fused with the
membrane protein gene, in order to increase the chimeric protein expression for studying membrane
proteins’ localization and activity (Figure 5). Interestingly, if the mCherry gene and EGFP gene are fused
with nucleocytoplasmic shuttling regulating factor YES, which is associated with the transcription
factor (YAP) that controls tumor growth and invasion, the YAP nucleocytoplasmic behavior of
movement and localization can be observed and controlled [17,18]. Therefore, the investigation of the
nucleocytoplasmic shuttling mechanism of YAP enables us to deeply understand the tumorigenesis
and oncology mechanism, and find more effective tumor therapy (Figure 6). Furthermore, if both
mCherry and EGFP gene are fused with individual interactive proteins or enzymes, we can investigate
the protein–protein interactions and bacteria–host cell interactions associated with the pathogenesis of
infectious diseases and the mechanism of the catalytic reaction of enzymes and their activity in the cell
array [20–23] (Figures 5 and 7).
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nucleocytoplasmic localization and tumorigenesis, which controls tumor growth and invasion.
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Figure 7. A performance-enhanced promoter is applied for studying the enzyme activity. High
concentration of the enzyme will produce high catalytical activity, if the enzyme is not saturated by
a substrate.

2.3. Utilization of a Promoter for Construction of a Sensitive Biosensor for Probing the Density of Bacteria

Due to the strong luminescent properties of immunofluorescent proteins, we could integrate both
low and high bacteria density-responsive promoters into the genetic regulatory circuit for probing
the cell density [24,25] (Figure 8). This biosensor could be in response to N-Acyl-homoserine lactone
(AHL), which is the signal molecule of the quorum sensing system of bacteria and probes the growth
density of bacteria, which in turn provides instructions for how to balance cell growth density, in order
to improve the valuable product production (Figure 9).
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The promoter of the GFP gene (PesaS) respnods to low density of bacteria. The promoter of mCherry
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2.4. Mn2+ and Mg2+ Added Random Error-Prone PCR Mutagenesis Approach for the Construction of the
Biosensor “Library” That Is Regulated by Inhibitory Proteins

Resveratrol and shikimic acid synthesis is inhibited by ttgR and hucR inhibitory proteins,
which respond to resveratrol and shikimic acid [26,27]. Most of the time, the expression of ttgR
or hucR constitutive genes is repressed by an inhibitory protein without binding resveratrol or
shikimic acid; however, the gene expression will be initiated under the condition of the resveratrol or
shikimic acid binding, which triggers the allosteric response that de-repress the inhibitory effect [26].
Because the Mn2+ and Mg2+ added random error-prone PCR mutagenesis approach can introduce
random mutation sites into the DNA sequence, the properties of the gene with the promoter of
inhibitory proteins can be improved for resveratrol and shikimic acid binding, and the strength
of the mutated gene with the promoter could be screened from the “mutant library” (Figure 10).
Therefore, random mutation of a promoter by Mn2+ and Mg2+ added error-prone PCR can increase
a promoter’s sensitivity to the inhibitory protein, which rapidly de-represses the inhibitory effect and
promotes resveratrol and shikimic acid production.

2.5. Integration of Both a Promoter-Based Biosensor and a Bacterium–Host Cell Interactive Mechanism for
High-Throughput Screening of Meningitis Drugs

In our previous studies, we found that in the membrane protein of E. coli, YojI can mediate the
interaction of E. coli and human brain microvascular endothelial cells (HBMECs), by using both the
human and E. coli proteome chips in conjunction with cell labeling techniques for the discovery of
microbial and host factors. We identified that YojI binds to the interferon-alpha receptor (IFNAR2) on
the surface of HBMECs and mediates E. coli adhesion to the host cells, and is an important virulence
factor for E. coli invasion of HBMECs [28]. It is reported that YojI is also a chemically-induced biosensor
for regulating its own expression, a leucine-responsive regulatory protein; Lrp controls the expression
of YojI, which regulates exporting of toxin J25 [28–30]. Therefore, the strong promoter can be identified
and cloned before the chimeric YojI–mCherry gene to highly initiate the gene expression, and to strongly
incorporate the YojI–mCherry chimeric protein onto the cell surface. When the recombinant E. coli
infects HBMECs, the strong promoter initiates the chimeric YojI–mCherry protein expression will
amplify the invasion signaling of E. coli in HBMEC. As a result, the strength of the promoter of YojI
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gene is correlated with the invasion efficiency of E. coli. The bacterium–host cell interactive mechanism,
integrated with high-performance promoter, can be effectively utilized for HTS of meningitis drugs
(Figure 11).Sensors 2018, 18, x 9 of 13 
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2.6. Construction of Promoter-Engineered Genetic Circuit for the Detection of Intermediate Toxic Compounds to
Improve the Synthesis of Value-Added Medicinal Product Yields

The promoters for regulating pathway expression in response to intermediates can create a link
between a cell’s metabolic state and expression of the metabolic pathway. It is reported that the
coupling of synthetic promoters and metabolic engineering can improve the production of valuable
chemicals. We have identified native promoters that respond to L-Ornithine and putrescine in our
previous studies. On the one hand, once the L-Ornithine binds the transcription factors, it will trigger
the allosteric response to activate the expression of L-ornithine carboxylase, which facilitates the
rapid synthesis of L-ornithine and the conversion of L-ornithine to putrescine. This is the “push”
regulatory mode of L-Ornithine that promotes the synthesis of putrescine. On the other hand, excessive
accumulation of putrescine will bind its promoter to activate the expression of N-acetyl glutamic
acid synthetase system ArgCJBD [31,32]. ArgCJBD will promote the conversion of glutamic acid
to synthesis of L-ornithine and supplement the consumption of L-ornithine, which increases the
intracellular level of L-ornithine, and further promote the transformation to putrescine [15,31]. This is
the remote “pull” regulatory mode for the synthesis of putrescine. We expect to integrate both “push”
and “pull” biosensors into an integrated genetic circuit, in order to dynamically regulate the synthesis
of putrescine in Corynebacterium glutamicum. This “push” and “pull” regulatory mode will continuously
promote the synthesis of L-ornithine and conversion of L-ornithine to putrescine, as the ArgCJBD route
can supplement the consumption of L-ornithine, which pushes forward the conversion of L-ornithine
to putrescine (Figure 12). With the above-mentioned approaches, we could synthesize the promoters
in order to increase their responsive strength, and thus increase the product production and apply the
above-mentioned Mn2+ and Mg2+ added random error-prone PCR mutagenesis approach, to further
enhance the promoter’s performance and greatly improve the synthesis of putrescine.
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3. Discussion and Conclusions

In this paper, a range of approaches have been proposed for engineering promoter-gene
components for the construction of sensitive biosensors. Because the fluorescence intensity of
mCherry and EGFP protein expression are correlated with the promoter’s strength, the promoter-gene
component can be engineered for the construction of biosensors with human and bacteria arrays
for diverse applications, such as HTS of transcription factor-acting and anti-tumor drugs, increasing
the abundance of membrane proteins and enzymes to study their activities, observing of movement
and localization of nucleocytoplasmic shuttling factors for tumorigenesis and oncology mechanism
investigation, applying both mCherry and EGFP proteins for probing the density of bacteria to improve
synthesis of high valuable product, and constructing a dynamic genetic circuit for monitoring the
intermediate toxic compound, which can be applied in food and environmentally toxic substance
testing. Interestingly, the YojI regulatory biosensor combined with the E. coli invasion mechanism
of HBMEC can be utilized for HTS of meningitis drugs and the discovery of other infection disease
therapy [33–35]. Although there are many applications of biosensors proposed in this paper for
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human health and the environment, the properties of the promoter-gene component, including the
sensitivity and specificity of the biosensor, are not too hard to handle, because the Mn2+ and Mg2+

added random error-prone PCR mutagenesis approach could introduce random mutation sites to
the promoter-gene component and a corresponding fragment to construct the “mutant library”;
the mutants, with improved properties, can be screened by this “library”. The promoter strength
can be further improved by easily synthesizing the promoter to increase the responsive strength of
biosensors. As this proposed method develops, the new enzyme activity with a designed biosensor
can be discovered. This novel gene switch allow us to stringently control virulent protein expression
and study more new enzyme functions [26,31].

In conclusion, the promoter-gene component engineered strategy has the potential to revolutionize
recent biotechnological development and allow the rapid engineering of required circuits, in order to
increase the particular value-added product production in the bio-medicinal field.
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