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Abstract: The inverse synthetic aperture radar (ISAR) imaging for targets with complex motions
has always been a challenging task due to the time-varying Doppler parameter, especially at the
low signal-to-noise ratio (SNR) condition. In this paper, an efficient ISAR imaging algorithm
for maneuvering targets based on a noise-resistance bilinear coherent integration is developed
without the parameter estimation. First, the received signals of the ISAR in a range bin are
modelled as a multicomponent quadratic frequency-modulated (QFM) signal after the translational
motion compensation. Second, a novel quasi-time-frequency representation noise-resistance bilinear
Radon-cubic phase function (CPF)-Fourier transform (RCFT) is proposed, which is based on the
coherent integration of the energy of auto-terms along the slope line trajectory. In doing so, the RCFT
also effectively suppresses the cross-terms and spurious peaks interference at no expense of the
time-frequency resolution loss. Third, the cross-range positions of target’s scatters in ISAR image
are obtained via a simple maximization projection from the RCFT result to the Doppler centroid
axis, and the final high-resolution ISAR image is thus produced by regrouping all the range-Doppler
frequency centroids. Compared with the existing time-frequency analysis-based and parameter
estimation-based ISAR imaging algorithms, the proposed method presents the following features:
(1) Better cross-term interference suppression at no time-frequency resolution loss; (2) computationally
efficient without estimating the parameters of each scatters; (3) higher signal processing gain because
of 2-D coherent integration realization and its bilinear function feature. The simulation results are
provided to demonstrate the performance of the proposed method.

Keywords: inverse synthetic aperture radar (ISAR); maneuvering targets; radon-CPF-Fourier
transform (RCFT); low SNR environment

1. Introduction

Thanks to the ability to produce high-resolution microwave imagery for the non-cooperative
target nearly regardless of weather condition, the inverse synthetic aperture radar (ISAR) presents a
range of applications in the field of national defense surveillance [1–4]. The range-Doppler (RD) ISAR
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imaging algorithm [5,6] can be an effective means to obtain radar images, provided that the Doppler
frequency shift is constant during the imaging time. However, in the case of non-cooperative and/or
high maneuvering targets, the received signal in a range bin is usually complex, and studies show
that a multicomponent polynomial phase signal (PPS) is an accurate model. Therefore, the Fourier
transform (FT) based RD approach cannot handle this model well and the Doppler spectrum produced
is spread out, and the radar images obtained by those methods are blurry [6].

Recently, a new ISAR strategy termed Range Instantaneous Doppler (RID) algorithm was
proposed to produce ISAR image of a maneuvering target [7–16]. The RID algorithms are usually
divided into two groups. The first group is the parametric approach, where the received signal
in a range bin is modeled by a special signal [7–9], and based on that, the instantaneous Doppler
frequency is estimated and the corresponding ISAR image is obtained by using the estimated Doppler
frequency. However, those approaches require the estimation or extraction of each scatterer in
each range cell, which is computationally demanding and inefficient. In addition, model mismatch
issue is usually present, resulting in unfocused images [9]. The second group is the nonparametric
method [10–16], in which time-frequency distribution (TFD) analysis tool as the substitution of FT
in the azimuth focusing processing, is utilized. The TFD analysis overcomes the model mismatch
issue and can be implemented efficiently, and therefore in this paper the TFD is also considered.
The TFD based imaging methods such as the short-time Fourier transform (STFT) [10], continuous
wavelet transform (CWT) [11], were widely explored. The STFT and CWT are free from the cross-term
interference, but the resolution is low. The Wigner-Ville distribution (WVD) method [12] provides
high-resolution time-frequency analysis. However, its performance deteriorates when the cross-term
interferences are severe for processing multicomponent PPS. To reduce the cross-term interferences, the
smoothed pseudo Wigner-Ville distribution (SPWVD) algorithm [13] and the L-class of fourth-order
complex-lag PWVD algorithm [14] were proposed. However, a compromise must be made between
the capacity to suppress cross-term interference and the time-frequency resolution. It is known
that maximizing cross term suppression without the time-frequency resolution loss is still a major
challenge faced by the TFD analysis community. In [15,16], an efficient range centroid Doppler (RCD)
ISAR imaging algorithm based a new quasi-time-frequency transform named Lv’s distribution was
proposed, where the cross-terms suppression is better achieved with no time-frequency resolution loss.
However, this method is only valid for linear frequency modulated (LFM) signals, and its performance
degrades dramatically in the case of quadratic frequency-modulated (QFM) signal that often is utilized
to model the maneuvering targets. Therefore, the method for maneuvering targets imaging still needs
further investigations.

In this work, after the translational motion compensation, the received signal in a range
bin is modelled as multi-component PPS signals, and then an efficient ISAR imaging method
without estimating parameters for the maneuvering target based on a novel noise-resistance bilinear
Radon-cubic phase function (CPF)-Fourier transform (RCFT) is proposed. The RCFT aims at
performing the coherent integration of the energy of auto-terms along the slope line trajectory in the
time-frequency distribution plane. In the proposed RCFT, the signal-to-noise ratio (SNR) is enhanced
and the troublesome cross-terms and spurious peaks interference are effectively suppressed. Finally,
the cross-range positions of target’s scatters in ISAR image are obtained via a simple maximization
projection from the RCFT result to the Doppler centroid axis, and the high-resolution ISAR image
is thus produced by regrouping all the range-Doppler frequency centroids. Compared with the
time-frequency analysis based ISAR imaging approaches, the proposed RCFT replaces the FT in the
traditional RD algorithm. The main advantages are: (1) the cross-term interferences suppression is
realized at no time-frequency resolution loss; (2) a higher signal processing gain is obtained because of
2-D coherent integration realization and its bilinear function feature. Compared with the parameter
estimation based ISAR imaging approaches, the proposed RCFT enjoys computationally efficiency
since parameter estimation of each scatter is not required.
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The rest of the paper is organized as follows. In Section 2, the characteristic of the received signal
for the maneuvering target is discussed. In Section 3, the RCFT derivation and the ISAR imaging
algorithm of the maneuvering target based on RCFT are presented. The experimental results and
computational complexity analysis are given in Section 4. Section 5 is the conclusion of this paper.

2. ISAR Imaging Model of Maneuvering Target

In this section, we do not consider the motion compensation problem, which means that the
standard range alignment and phase adjustment are implemented beforehand. In Figure 1, the ISAR
geometric configuration of a target with the complex motion is depicted, where XOY is a Cartesian
coordinate and the origin O is the position of target rotating center. In Figure 1, the R0 denotes the
initial distance of origin O to radar platform, and vr, ar, and γr respectively represent the radial velocity,
the acceleration, and the acceleration rate. With those notations, the instantaneous rotation angle
θ(tm) is

θ(tm ) =
∫ tm

0
ω(tm)dtm ≈ θ0 + Ωtm +

1
2

Ω′t2
m +

1
6

Ω′′ t3
m (1)

where tm indicates the slow time variable,ω(tm) is the rotation angular velocity at time tm, and Ω, Ω′ and
Ω′′ respectively denote the initial angular velocity, angular acceleration, and angular acceleration rate.

From (1), Rs(tm) is the slant range of the scatter P with position
(
xp, yp

)
at time tm, given by

Rs(tm ) ≈ R0 + vrtm +
1
2

art2
m +

1
6

γrt3
m + xpcos θ(tm)− ypsin θ(tm) (2)

In practice, the coherent integration time is usually short, and therefore the target rotation angle
during that time is small, i.e., 3–5◦ [8,9]. From that, sin θ(tm) and cos θ(tm) are approximated by θ(tm)

and 1. With also the assumption that motion compensation is completed, the received azimuth signal
in a range bin is

sr(tm ) ≈
K
∑

k=1
Ak exp

[
j 4π fc

c

(
R0 + xk + (vr − ykΩ)tm + 1

2
(
ar − ykΩ′

)
t2
m + 1

6 (γr − ykΩ′′ )t3
m

)]
+ n(tm) (3)

where fc, c, Ak and K respectively represent the carrier frequency, the velocity of the wave propagation,
the magnitude of the kth point scatterer, and the number of point scatterers in one range cell, n(tm) is
additive complex white Gaussian noise with a variance of δ2. From (3), it is seen that the received
signal in a range cell is a multi-component PPS. In a generic form, (3) is rewritten as

sr(tm) ≈
K

∑
k=1

Ak exp[j2πφk(tm)] + n(tm)=
K

∑
k=1

Ak exp
(

j2π
(

bk,0 + bk,1tm + bk,2t2
m ++bk,3t3

m

))
+ n(tm) (4)

where φk(tm) is the phase term, and bk,0, bk,1, bk,2 and bk,3 respectively represent the initial phase,
the centroid frequency, the chirp rate, and the change rate of chirp rate. From (4) again, it is clearer
that the azimuth signal in a range bin is a multicomponent QFM signal. In this case, the conventional
FT is not suitable to process QFM signal, and the second and high-order terms in (4) will deteriorate
the image if they are not properly handled. Therefore, in this work, a novel RCFT is developed as a
substitution of FT in the azimuth focusing.
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Figure 1. Inverse synthetic aperture radar (ISAR) imaging geometric model of a maneuvering target.

3. Proposed Algorithm Description

For radar imaging of non-uniformly rotating target, the radar echo signals in a range cell can
be characterized as multicomponent QFM signals after migration compensation, which has been
illustrated in Section 2. In this section, an efficient ISAR imaging of targets with complex motions
based on a noise-resistance bilinear coherent RCFT is proposed.

3.1. Description of the Proposed RCFT

In the CPF approach proposed in [17,18], instantaneous autocorrelation function of (4) is defined as

RC
s (tm; τm ) = sr(tm + τm)sr(tm − τm)

=
K

∑
k=1

A2
k exp

[
j4πφk(tm) + j2π(bk,2 + 3bk,3tm)τ

2
m

]
+ Rs,c-terms(tm; τm)︸ ︷︷ ︸

cross-terms︸ ︷︷ ︸
auto-terms

+Rs,n-terms (tm; τm)︸ ︷︷ ︸
noise-terms

(5)

where τm is the lag time variable. The Rs,c-terms(tm; τm) and Rs,n-terms(tm; τm) are the cross-terms and
the noise terms, respectively, and detailed expressions can be found in [17].

Taking the Fourier transform (FT) to (5) along the lag time variable τm, one can obtain the CPF

CPF
(

tm, fτ2
m

)
=
∫

RC
s (tm; τm) exp

(
−j2π fτ2

m
τ2

m

)
dτ2

m

=
K

∑
k=1

A2
k exp[j4πφk(tm)]δτ2

m

[
fτ2

m
− (bk,2 + 3bk,3tm)

]
︸ ︷︷ ︸

auto-terms

+ CPFs,c-terms

(
tm; fτ2

m

)
︸ ︷︷ ︸

cross-terms

+CPFs,n-terms

(
tm; fτ2

m

)
︸ ︷︷ ︸

noise-terms

(6)

where fτ2
m

is the frequency variable corresponding to the lag variable τm and δ(·) is the Dirac delta

function. The CPFs,c-terms

(
tm; fτ2

m

)
and CPFs,n-terms

(
tm; fτ2

m

)
are the cross term and the noise term after

the FT.
Note also that from (6), the CPF performs the discrete FT (DFT) in terms of the lag time variable τ2

m
whose sampling grid is non-uniform. As a result, the traditional uniform-sampling based efficient fast
FT (FFT) cannot be directly applied. To calculate the CPF, the non-uniform discrete Fourier transform
(NUDFT) is usually utilized, and the cost of the direct usage of NUDFT is as high as O

(
N2

τm

)
with the

signal length Nτm . To reduce the computational cost of the NUDFT, the non-uniform FFT (NUFFT) [19]
is preferred, and its computational cost of performing the FT along the τm axis is O(2Nτm log2 Nτm)

without the performance loss. For more information, the detailed implementation procedures on
NUFFT can be found in [19].
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Applying the NUFFT in (5) produces the CPF that is the same as in (6) as

CPF
(

tm, fτ2
m

)
= NUFFTτ2

m

[
RC

s (tm; τm)
]

=
K

∑
k=1

A2
k exp[j4πφk(tm)]δτ2

m

[
fτ2

m
− (bk,2 + 3bk,3tm)

]
︸ ︷︷ ︸

auto-terms

+CPFs,c-terms

(
tm; fτ2

m

)
︸ ︷︷ ︸

cross-terms

+ CPFs,n-terms

(
tm; fτ2

m

)
︸ ︷︷ ︸

noise-terms

(7)

where NUFFTτ2
m

is NUFFT operator along the lag time variable τ2
m.

In (6), because of the nonlinear coupling between azimuth slow-time variable tm and the lag time
variable τ2

m, the energy of the auto-terms concentrates along the line of fτ2
m
= bk,2 + 3bk,3tm in the slow

time-Doppler frequency tm − fτ2
m

plane. Utilizing this line, the third- and second-order coefficients
are extracted by the slope and the y-intercept [17]. However, in the case of multi-component QFM
signal, the identifiability of the CPF is of problem because of cross-terms and spurious peaks [17,18].
To visually demonstrate this issue, the CPF of a two-component QFM signal with length N = 2024 with
parameters σ1 = σ2 = 1, b1,1 = −0.1, b1,2 = 5× 10−4 and b1,3 = −1× 10−7 b2,1 = 0.1, b2,2 = −1× 10−3,
and b2,3 = 2× 10−7 is shown in Figure 2. From Figure 2a,b, a sharp spurious peak is of presence,
and the energy of auto-terms is focused along the slope lines (i.e., fτ2

m
= bk,2 + 3bk,3tm, k = 1, 2),

whereas the energy of cross-terms is diffused in the
(

tm, fτ2
m

)
domain since their positions vary

with time tm. Generally speaking, for a K-component QFM signal, there are K2 − K cross-terms and(
K2 − K

)
/2 spurious peaks [17], which pose a serious interference to the estimation and detection of

the auto-terms, unless they are properly reduced.
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Figure 2. Simulation results of the multi-component QFM signal. (a) The results in the tm − fτ2
m

plane
after CPF operation; (b) the slice obtained by the CPF at tm = 512; (c) Contour image of QFM signal
obtained by the proposed RCFT method; (d) mesh image of QFM signal obtained by the proposed
RCFT method.



Sensors 2018, 18, 2814 6 of 19

To overcome the identifiability problem of the CPF, the cross-terms and spurious peaks must be
properly reduced. To this goal, two approaches of the Radon-CPF transform (RCT) in [18] and Hough
generalized high-order ambiguous function (Hough-GHAF) method in [20] have been developed
to suppress the cross-terms, spurious peaks for multicomponent QFM signal. To utilize the energy
of auto-terms, for the RCT, the integration was performed along the slope line defined by the polar
distance ρT (radius) from the origin and polar angle θT formed by the perpendicular to the line in the
radon domain. The RCT method SRCT(ρT ; θT) is given by [16]

SRCT (ρT ; θT) = Ψtm

[
CPF

(
tm, fτ2

m

)]
=
∫ +Ta/2
−Ta/2

∣∣∣CPF
(

tm, fτ2
m

)∣∣∣δ[ρT − tm cos θT − fτ2
m

sin θT

]
dtm

(8)

where Ψtm represents the RCT operator on CPF
(

tm, fτ2
m

)
. From (8), the integral accumulates all the

energy of auto-terms and suppresses the cross-terms and spurious peaks.
The similar idea based on multilinear function of fourth-order GHAF is also adopted by

Hough-GHAF method in [20]. The Hough-GHAF is defined by

SHough−GHAF (ρT ; θT) = Θtm [GHAF(tm, fτm)]

=
∫ +Ta/2
−Ta/2 |GHAF(tm, fτm)|δ

[
ρT − tm cos θT − fτ2

m
sin θT

]
dtm

(9)

where Θtm represents the Hough-GHAF transform operator. The detailed definition of the
GHAF(tm, fτm) can be found in [18]. It is worth mentioning that, the Hough-GHAF is based on
a multilinear function of fourth-order, and thus its SNR threshold is higher than RCT. From both
(8) and (9), although the energy of auto-terms is explored, the operations in RCT and Hough-GHAF are
not coherent, and therefore, the suppression ability of the cross-terms and noise is still not adequate.

To perform coherent integration, the RCFT is developed that fully exploits the energy of the
auto-terms. However, the difficulty of performing coherent integration comes from the fact that the
cubic and quadratic power terms of tm are present in auto-terms of (6). They are must be eliminated
first because the peaks of auto-terms would be unfocused if the direct integration along tm were
utilized. In what follows, a novel RCFT algorithm is proposed to coherently integrate the energy of
auto-terms along slope lines.

First, to eliminate the effect of the quadratic power terms of tm in (6), here, we intelligently exploit
the idea of the sampling property of the Dirac delta function, which is

δ(tm − tc )g(tm) = g(tc)δ(tm − tc) (10)

where g(tm) is a general function of the variable tm, and tc denotes a fixed time index.
According to (10), in order to utilize sampling property of the Dirac delta function, an appropriate

phase term function should be designed to construct a same expression with the delta function.
With this thinking, a modified CPF (MCPF) by utilizing the sampling property of the delta function is
designed as

MCPF
(

tm , f
τ2
m

)
= CPF

(
tm , f

τ2
m

)
exp

[
−j4π f

τ2
m

t2
m

]
=

K

∑
k=1

A2
k exp

[
j4π
(

f
τ2
m
− (bk,2 + 3bk,3tm)t2

m

)]
δ

τ2
m

[
f
τ2
m
− (bk,2 + 3bk,3tm)

]
︸ ︷︷ ︸

auto−terms

×exp
[
j4πbk,1tm − j8πbk,3t3

m
]︸ ︷︷ ︸

auto−terms

+ MCPFcterms

(
tm ; f

τ2
m

)
︸ ︷︷ ︸

cross−terms

=
K

∑
k=1

A2
k g
(

f
τ2
m
= bk,2 + 3bk,3tm

)
δ

τ2
m

[
f
τ2
m
− (bk,2 + 3bk,3tm)

]
︸ ︷︷ ︸

auto−terms

× exp
[
j4πbk,1tm − j8πbk,3t3

m
]︸ ︷︷ ︸

auto−terms

+MCPFcterms

(
tm ; f

τ2
m

)
︸ ︷︷ ︸

cross−terms

(11)
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where g
(

tm, fτ2
m

)
= exp

[
j4π
(

fτ2
m
− (bk,2 + 3bk,3tm)t2

m

)]
. It is now clear from (11) that the negative

effects of the quadratic power of tm in auto-terms are removed by means of the sampling property of
the Dirac delta function. This is the first important step in the proposed RCFT algorithm.

It is also found from (11) that the cubic power term of tm just corresponds to the slope of the
auto-terms energy distribution in the time-frequency plane. Therefore, to eliminate the effect of the
cubic power terms of tm in (5), inspired by the Radon-Fourier-transform (RFT) in [21,22], a novel RCFT
algorithm is defined by

SRCFT ( ftm ; ρT ; θT) = Γtm

[
MCPF

(
tm, fτ2

m

)]
=
∫ +Ta/2
−Ta/2 MCPF

(
tm, fτ2

m

)
HKernel

(
tm, fτ2

m

)
δ
[
ρT − tm cos θT − fτ2

m
sin θT

]
dtm

(12)

where Γtm denotes the RCFT operator. The HKernel

(
tm, fτ2

m

)
in (12) is a novel transform kernel function

that is given by

HKernel

(
tm, fτ2

m

)
= exp

[
j8π

tan(θT)

3
t3
m − j2π ftm tm

]
(13)

where ftm is the frequency variable with respect to tm. Note that in the case of zero cubic term,
i.e., b3 = 0, the proposed RCFT reduces to the coherent integrated CPF (CICPF) approach proposed
in our previous work [9]. Moreover, when both the second- and three-order terms are zeros,
i.e., b3 = b2 = 0, the proposed RCFT becomes the FT, which indicates that FT is a special case of
the RCFT.

Substituting (11) into (12) and after reassigning yields

SRCFT =
K

∑
k=1

σ2
k

∫
δτ2

m

[
fτ2

m
− (bk,2 + 3bk,3tm)

]
exp[−j2π( ftm − 2bk,1)tm]︸ ︷︷ ︸

auto−terms

×δ
[
ρT − tm cos θT − fτ2

m
sin θT

]
exp

[
j8π(bk,3 − tan(θT)/3)t3

m

]
dtm︸ ︷︷ ︸

cross−terms
+RCFTcterms( ftm ; ρT ; θT)︸ ︷︷ ︸

cross−terms

(14)

where σ2
k = A2

k g
(

fτ2
m
= bk,2 + 3bk,3tm

)
. In (14), when the slope of the searching slope

line δ
[
ρT − tm cos θT − fτ2

m
sin θT

]
matches the slope of the auto-terms energy distribution

δτ2
m

[
fτ2

m
− (bk,2 + 3bk,3tm)

]
, namely tan(θT) = 3bk,3, the cubic power of tm in auto-terms is eliminated,

also demonstrated by RFT method [21]. Therefore, the proposed RCFT in (14) is capable of realizing
the coherent integration for auto-terms while suppressing the cross-terms and spurious peaks. This is
the second important step in the proposed RCFT algorithm. Moreover, when the searching slope
line fully overlaps with the energy distribution slope line of the auto-terms, namely tan(θT) = 3bk,3
and ρT = bk,2 cos θT , the proposed RCFT maximizes the output energy of auto-terms and produces a
distinct peak in which the maximal output energy Emax is calculated by

Emax = Γtm

[
MCPF

(
tm, fτ2

m

)]∣∣∣
ρT=bk,2 cos θT ;θT=tan−1 (3bk,3)

= GFT σ2
k δtm( ftm − 2bk,1)δ

[
ρT − tm cos θT − fτ2

m
sin θT

]
+RCFTcterms

(
ftm ; fτ2

m

)∣∣∣
ρT=bk,2 cos θT ;θT=tan−1 (3bk,3)

(15)

where GFT is the FT coherent integration gain. Meanwhile, when tan(θT) 6= 3bk,3 or ρT 6= bk,2 cos θT ,
the energy of the auto-terms integration SRCFT(ρT ; θT) � Emax due to incoherent integration or
the fact that only part of the auto-terms energy is accumulated. Figure 2c,d depicts the coherent
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integration results of the Figure 2a obtained by the proposed RCFT method in the Radon domain,
where only the auto-terms are accumulated into peaks, while the cross-terms and spurious peaks are
almost completely suppressed. Although Figure 2c shows that there also exist the cross-terms on the
RCFT plane, they are much smaller compared to the auto-terms. Unlike the traditional quadratic
time-frequency distributions that usually exploit the smoothing, optimal kernel design or nonlinear
filtering techniques to moderately tradeoff between the cross-terms and resolution, the proposed
RCFT, on its own, can greatly “suppress” the cross-terms without any resolution loss. By “suppress”,
we mean a relative suppression is achieved since the RCFT greatly strengthens the energy of the
auto-terms instead of suppressing the cross-terms directly.

From (12), interestingly, the proposed RCFT has similar operations as RCT and Hough-GHAF,
and they all use the energy of the auto-terms along time-frequency trajectory in tm − fτ2

m
domain.

The main difference is the coherent accumulation developed in the proposed RCFT. Therefore, the RCFT
will definitely outperform the existing methods in complex environments via coherent integration
operation. The detailed procedure of the proposed RCFT is shown in Figure 3.
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Figure 3. Detailed procedure of the proposed RCFT method.

The differences and advantages of RCFT compared with others approaches are briefly summarized
as follows.

Remark 1: The RCFT employs the merits of both RCT and FT, and it not only has the same integration
time as RCT but also works well as a useful tool for nonstationary signals.

Remark 2: The bilinear cubic phase function in (5) utilizes only one time correlation, which is viewed
as a signal energy preservation because each additional one time correlation loses about
4–5 dB in the SNR threshold [17]. In addition to that, the 2-D coherent integration realized in
the proposed RCFT will further enhance the SNR. Therefore, the proposed RCFT algorithm
provides a good performance, especially when the SNR is low, see simulation section.

Remark 3: the NUFFT speeds up the Fourier transform along the non-uniformly spaced lag-time axis,
which is helpful for algorithm real-time realization.

3.2. Numerical Study of RCFT

In this section, a simulation with the same parameters in Figure 2 is provided to demonstrate the
performance comparisons with the RCT, and Hough-GHAF methods under different SNR conditions.
Figures 4a,b depict the comparisons of RCT, Hough-GHAF, and the proposed RCFT with SNR being
5 dB and –5 dB, respectively. In Figure 4a, the cross-terms and spurious peaks are suppressed by all
three approaches. However, both the RCT and Hough-GHAF are sensitive to noise. In Figure 4b,
when SNR is low, say −5 dB, the spectrum of the Hough-GHAF is overwhelmed by the noise due
to the non-coherent integration and multilinear function of fourth-order utilization. On the other
hand, the RCT and the proposed RCFT are able to generate two distinct peaks at true locations.
However, the sidelobes of RCFT are much lower than that of RCT due to the 2-D coherent integration,
which indicates that the RCFT presents better cross-terms and noise suppression ability.
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Figure 4. Comparison results of the three methods. (a) The slice obtained by the Hough-GHAF, RCT,
and the proposed RCFT methods at SNR = 5 dB; (b) the slice obtained by the Hough-GHAF, RCT,
and the proposed RCFT methods at SNR = −5 dB.

3.3. ISAR Imaging for Maneuvering Target Based on the Proposed RCFT Algorithm

In this section, an efficient ISAR imaging algorithm of targets with complex motions is developed,
in which the FT in conventional RD algorithm is replaced by the proposed quasi-time-frequency
analysis bilinear coherent RCFT. The main steps of the ISAR imaging algorithm are listed as follows.

Step 1: Perform the range compression and the translational motion compensation including envelope
alignment and phase autofocus.

Step 2: Characterize the azimuth signal of a range cell after translational compensation as
multi-component QFM signals sr(tm), and perform NUFFT along the lag time variable to
obtain CPF result CPF

(
tm, fτ2

m

)
.

Step 3: Apply the proposed RCFT to the CPF
(

tm, fτ2
m

)
and obtain a three-dimensional data matrix

RCFTcterms( ftm ; ρT ; θT) in the Doppler Centroid ftm -polar radius ρT-polar angle θT domain.
Step 4: Project the three-dimensional data matrix RCFT( ftm ; ρT ; θT) onto the Doppler frequency axis

along the polar radius ρT and polar angle θT , which is obtained by

s( ftm ) = argmax
ρT ;θT

(|RCFT( ftm ; ρT ; θT) ) (16)

It is a common knowledge that the Doppler frequency of each scatterer is proportional to its
cross-range position in the target. Hence, the cross-range ISAR image of the target can be obtained by
its projection onto the Doppler frequency axis. In Figure 5, the projection results of the RCFT shown in
the Figure 2 along the Doppler frequency dimension is presented. It is seen that two distinct peaks
appear along the Doppler frequency axis, which corresponds to two scatterer cross-range positions.
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Figure 5. Maximization projection onto the Doppler frequency dimension.

Step 5: Set a proper extraction threshold or a filter to suppress the residual cross terms and noise in
the Doppler centroid frequency dimension. In practice, the threshold is usually determined by
subtracting −3~−4.5 dB from the maximal energy.

Step 6: Repeat the process of step 1–step 5 for all range cells, and the final high-resolution ISAR
image is thus produced by regrouping all the range-Doppler frequency centroids. Since
the proposed method does not require computations such as parameter estimation for each
scatterer, it is computationally more efficient than the similar parameter estimation based
algorithms. The flowchart of the proposed ISAR imaging algorithm is shown in Figure 6.

Sensors 2018, 18, x FOR PEER REVIEW 10 of 19 

 

 

Figure 6. Flowchart of ISAR imaging based on the proposed RCFT. 

3.4. Components Computational Complexity Analysis 

In this section, we analyze quantitatively the computational complexity of our proposed 

algorithm. For comparison purposes, the RCD method in [15] where the high-resolution ISAR image 

can be obtained based a new quasi-time-frequency transform named Lv’s distribution using the 

second-order phase model under a low SNR environment. Moreover, the cross-terms suppression in 

the RCD method is better achieved with no time-frequency resolution loss. On the other hand, to 

compare with the parameter estimation-based ISAR imaging method, the CIGCPF-CICPF algorithm 

[9] where it is recently proposed for maneuvering target ISAR imaging and parameter estimation 

with third-order motion model in low SNR condition. 

In this comparison, for the illustration conveniences, assume that the range compression and 

translational motion compensation have been completed. The computational complexities of above-

mentioned two methods and our proposed algorithm are quantitatively provided. In general, an N-

point FFT or inverse FFT (IFFT) needs 5�log�(�)floating-point operations (FLOPs) and one-time 

complex multiplication needs 6N FLOPs. In what follows, ��  and ��  are respectively used to 

denote the number of range cells and the number of azimuth pulses, ��  is the target scatterer number 

in the lth range cell, ���
is the signal length ��, and ���

 is used to represent the length of the lag 

variable ��. 

For the RCD method, its implementation steps mainly include performing the quasi-time-

frequency distribution (Lv’s distribution) to each range cell. Take a range cell processing procedure 

for example, the complex multiplication in constructing the symmetric instantaneous autocorrelation 

function matrix with computational complexity of ��6�����
�, the FFT operation along the lag-time 

variable axis with computational cost of ��5�����
log����

� , a keystone transform adopted to 

remove the coupling terms with complexity ��2(2���� − 1)�����
�, where ����  is the length of the 

interpolation operation kernel, the FFT operation along the scaling slow time variable with 

computational cost of ��5�����
log���� , and neglecting other relatively small computational 

complexity operation steps. Therefore, the total computational complexity of the RCD algorithm [15] 

is 

���� = �����6�����
+ 5�����

log����
+ 2(2���� − 1)�����

+ 5�����
log�����  (17) 

Compared with the parameter estimation-based method and our proposed method, which will 

be discussed later, the time-frequency analysis-based RCD method has a great advantage in terms of 

Figure 6. Flowchart of ISAR imaging based on the proposed RCFT.

3.4. Components Computational Complexity Analysis

In this section, we analyze quantitatively the computational complexity of our proposed algorithm.
For comparison purposes, the RCD method in [15] where the high-resolution ISAR image can be
obtained based a new quasi-time-frequency transform named Lv’s distribution using the second-order
phase model under a low SNR environment. Moreover, the cross-terms suppression in the RCD
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method is better achieved with no time-frequency resolution loss. On the other hand, to compare with
the parameter estimation-based ISAR imaging method, the CIGCPF-CICPF algorithm [9] where it is
recently proposed for maneuvering target ISAR imaging and parameter estimation with third-order
motion model in low SNR condition.

In this comparison, for the illustration conveniences, assume that the range compression
and translational motion compensation have been completed. The computational complexities of
above-mentioned two methods and our proposed algorithm are quantitatively provided. In general,
an N-point FFT or inverse FFT (IFFT) needs 5N log2(N) floating-point operations (FLOPs) and one-time
complex multiplication needs 6N FLOPs. In what follows, Nr and Na are respectively used to denote
the number of range cells and the number of azimuth pulses, Kl is the target scatterer number in the
lth range cell, Ntm is the signal length tm, and Nτm is used to represent the length of the lag variable τm.

For the RCD method, its implementation steps mainly include performing the
quasi-time-frequency distribution (Lv’s distribution) to each range cell. Take a range cell processing
procedure for example, the complex multiplication in constructing the symmetric instantaneous
autocorrelation function matrix with computational complexity of O(6NaNτm), the FFT operation
along the lag-time variable axis with computational cost of O(5NaNτm log2 Nτm), a keystone transform
adopted to remove the coupling terms with complexity O(2(2Nker − 1)NaNτm), where Nker is the
length of the interpolation operation kernel, the FFT operation along the scaling slow time variable
with computational cost of O(5NaNτm log2 Na), and neglecting other relatively small computational
complexity operation steps. Therefore, the total computational complexity of the RCD algorithm [15] is

CRCD = O[Nr(6NaNτm + 5NaNτm log2 Nτm + 2(2Nker − 1)NaNτm + 5NaNτm log2 Na)] (17)

Compared with the parameter estimation-based method and our proposed method, which will
be discussed later, the time-frequency analysis-based RCD method has a great advantage in terms
of computational complexity. However, this method suffers from imaging performance degradation
without considering the third-order phase effects.

For the parameter estimation-based CIGCPF-CICPF method where it needs to estimation
each scatterer parameter, the computational load consists of the following steps. Take one
scatterer estimation for example, to estimate the first- and third-order coefficient using the CIGCPF,
the complex multiplication in constructing fourth-order multilinear GCPF function matrix with
computational complexity of O(18NaNτm), the NUFFT operation along the lag-time variable axis
with computational cost of O(40NaNτm log2 Nτm), one time compensation function multiplication with
complexity O(6NaNτm), the FFT operation along the slow time variable with computational cost of
O(5NaNτm log2 Na). Then one Dechirping operation is required, which needs one Na-dimensional
complex multiplication. Second, to obtain second-order coefficient using the CICPF, the computational
complexity requirement is similar to the CIGCPF operation. Finally, one Na-dimensional FFT is needed
to estimate amplitude. Therefore, the total computational complexity of the CIGCPF-CICPF method [9]
for maneuvering target imaging with third-order phase model is

CCIGCPF−CICPF = O

[
Nr

Nr

∑
l=1

Kl(42Na Nτm + 80Na Nτm log2 Nτm + 10Nτm Na log2 Na + 5Na log2 Na)

]
(18)

Similar to the RCD method, the proposed ISAR imaging algorithm is also based the
quasi-time-frequency analysis named RCFT. According to the imaging steps and the flowchart of the
proposed algorithm in Figure 6, the proposed algorithm implementation procedures mainly include
applying the proposed RCFT to each range cell. Take a range cell processing procedure for example, in
constructing bilinear CPF function matrix with computational complexity of O(6NaNτm) the NUFFT
operation along the lag-time variable axis with computational cost of O(40NaNτm log2 Nτm), one time
compensation function multiplication with complexity O(6NaNτm) and the auto-terms trajectory
extraction in 2-D time-frequency tm − fτ2

m
domain and performing a FFT operation to the extracted
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data along slow-time variable with computational cost of O(5NaNτm log2 Na) with searching point
number M. Therefore, the total computational cost of the proposed ISAR imaging method is about

CProposed = O[Nr(12NaNτm + 40NaNτm log2 Nτm + 5Nτm MNa log2 Na)] (19)

According to the above analysis, the computational complexity of the proposed ISAR imaging
is higher than that of the RCD method, but still much lower that of parameter estimation-based
CIGCPF-CICPF approach. In conclusion, the proposed method may well achieve a trade-off between
the computational complexity and the imaging performance, see performance analysis section.

4. Simulation Results and Analysis

To confirm the validity of the proposed algorithm, simulation experiments are conducted now
under two conditions of input SNR = 5 dB and SNR = −3 dB with the simulation parameters of the
radar and the moving target listed in Table 1. The target scatterer model used in the simulation was a
ship with 49 scatterers, shown in Figure 7.

Table 1. Radar parameters and target moving model.

Parameters Name Value

Carrier frequency 10 GHz
Transmit bandwidth 200 MHz

Pulse repetition 300 Hz
Wave length 0.03 m

Range sample frequency 300 MHz
Effective echo pluses 512

Translational coefficients velocity 20 m/s
Translational coefficients acceleration 2 m/s2

Translational coefficients acceleration rate 2 m/s3

Effective rotational motion angular velocity 0.018 rad/s
Effective rotational motion acceleration 0.008 rad/s2

Effective rotational motion acceleration rate 0.002 rad/s3
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Figure 7. Vessel model of the ISAR imaging.

In Figure 8, the range compression and imaging result using RD algorithm without the migration
compensation are presented. It is clear that from Figure 8a the energy for the target disperses several
range bins. In addition, the image produced by the RD algorithm is unclear and blurry. In Figure 9,
the motion compensation including the translational compensation (envelope alignment and phase
adjustment) and the migration through resolution cells (MTRCs) correction [9,23–25], is conducted.
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From Figure 9, it reveals that the range migration is fully rectified and the energy of the target is
now concentrated into one range bin. It is therefore concluded that the migration compensation is
effective must, and this step is always conducted first in the following experiments. In the following,
the comparison results of different approaches are presented.
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Figure 8. Range compression and imaging result without migration compensation. (a) Range
compression; (b) RD imaging result.
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Figure 9. Range compression and imaging result with migration compensation. (a) Range compression;
(b) RD imaging result.

The 2-dimensional (2-D) ISAR image obtained by the RD algorithm under SNR = 5 dB is provided
in Figure 9b. Since the Doppler frequency is time-varying, it is observed that the image is seriously
blurred in the cross range. The images produced by STFT, WVD, and SPWVD are demonstrated in
Figure 10a–c, respectively. Because of the cross-terms interference in WVD, the shape of ship is not
visible. Suffering from low resolutions, the images from STFT and SPWVD are not focused well and
each scatter spreads out in azimuth direction. In Figure 10d, the ISAR imaging result obtained by the
RCD method in [15] is presented. As discussed earlier, since this method is only valid for LFM signal,
the image obtained is seriously blurred in the cross range. To clearly demonstrate the advantages
of the proposed approach over the existing methods, we also compare the proposed method with
the parameter estimation-based algorithms. Figure 10e,f provide the 2-D SAR images obtained by
the IHAF-ICPF method [7], CIGCPF-CICPF method [9] at SNR = 5 dB. It is observed that ship shape
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is generated by those two approaches, but they are not free of residual interference. On another
note, parameter estimation-based algorithms are computationally extensive and suffer from model
mismatch issue, which limit their usages. Figure 10g shows the high-quality ISAR image produced by
the proposed quasi-time-frequency RCFT, where image is well focused in both range and azimuth
directions, which agrees with our theoretical analysis. Figure 11 presents the ISAR images obtained by
the aforementioned methods under SNR = −3 dB. Compared with other methods, under the low SNR
condition, our proposed ISAR imaging algorithm still produces high quality image. This means most
scatterers are relocated correctly with less scatterers loss and less artifact appearances as presented
in Figure 11g. This superior performance obtained is all because the 2-D coherent integrations and
bilinear features utilized in the proposed methods to suppress the cross-terms and spurious peaks,
and at the same time resolution is not sacrificed.

To further evaluate the performance, the entropy of 2-D ISAR images is utilized to measure
the image quality. It is well known that a better quality image indicates a smaller entropy [26–28].
The entropy for an image g(m, n) is

I =
M−1

∑
m=0

N−1

∑
n=0

|g(m, n)|2

S
ln

S

|g(m, n)|2
(20)

where S = ∑M−1
m=0 ∑N−1

n=0 |g(m, n)|2. Entropies obtained by these methods are listed in Table 2, where the
smallest values are obtained by the proposed imaging algorithm. This is in the agreement with the
conclusions obtained in Figures 10 and 11 since the proposed method produces the clearest ship model
free of artifacts, and also demonstrate the effectiveness of the proposed ISAR imaging algorithm under
low SNR condition.

Table 2. Entropies of ISAR Images in Figure 10 and Figure 11.

Methods
SNR = 5 dB SNR = −3 dB

Figure Entropy Figure Entropy

STFT method in [10] Figure 10a 9.905 Figure 11a 11.623
WVD method in [12] Figure 10b 9.170 Figure 11b 11.341

SPWVD method in [13] Figure 10c 7.679 Figure 11c 9.208
RCD method in [15] Figure 10d 7.418 Figure 11d 7.637

IHAF-ICPF method in [7] Figure 10e 4.870 Figure 11e 5.619
CIGCPF-CICPF method in [9] Figure 10f 4.513 Figure 11f 5.037

Our proposed method Figure 10g 4.291 Figure 11g 4.372
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Figure 10. ISAR images of the simulated data under SNR = 5 dB. (a) STFT algorithm in [10]; (b) WVD
algorithm in [12]; (c) SPWVD method in [13]; (d) RCD method in [15]; (e) IHAF-ICPF method in [7];
(f) CIGCPF-CICPF method in [9]; (g) our proposed method.



Sensors 2018, 18, 2814 16 of 19

Sensors 2018, 18, x FOR PEER REVIEW 15 of 19 

 

 
(g) 

Figure 10. ISAR images of the simulated data under SNR = 5 dB. (a) STFT algorithm in [10]; (b) WVD 

algorithm in [12]; (c) SPWVD method in [13]; (d) RCD method in [15]; (e) IHAF-ICPF method in [7]; 

(f) CIGCPF-CICPF method in [9]; (g) our proposed method. 

  
(a) (b) 

  
(c) (d) Sensors 2018, 18, x FOR PEER REVIEW 16 of 19 

 

  
(e) (f) 

 
(g) 

Figure 11. ISAR images of the simulated data under SNR = −3 dB. (a) STFT algorithm in [10]; (b) WVD 

algorithm in [12]; (c) SPWVD method in [13]; (d) RCD method in [15]; (e) IHAF-ICPF method in [7]; 

(f) CIGCPF-CICPF method in [9]; (g) our proposed method. 

In order to imitate the measured data environment, we have added a simulation analysis. In this 

simulation, the amplitudes of scatterers vary randomly from 0.1 to 1, and the corresponding results 

are provided in Figure 12 It clearly shows that the few weak scatterers are not prominent anymore, 

but most scatterers are still present to form the shape of the target. In fact, all the nonlinear time-

frequency analysis approaches are actually challenged by the issue of weak scatterers. 

  
(a) (b) 

Azimuth sample

R
a
n
g
e
 s

a
m

p
le

 

 

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

-10

-8

-6

-4

-2

0

Azimuth sample

R
a
n
g
e
 s

a
m

p
le

 

 

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

-10

-8

-6

-4

-2

0

Figure 11. ISAR images of the simulated data under SNR = −3 dB. (a) STFT algorithm in [10]; (b) WVD
algorithm in [12]; (c) SPWVD method in [13]; (d) RCD method in [15]; (e) IHAF-ICPF method in [7];
(f) CIGCPF-CICPF method in [9]; (g) our proposed method.
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In order to imitate the measured data environment, we have added a simulation analysis. In this
simulation, the amplitudes of scatterers vary randomly from 0.1 to 1, and the corresponding results are
provided in Figure 12 It clearly shows that the few weak scatterers are not prominent anymore, but most
scatterers are still present to form the shape of the target. In fact, all the nonlinear time-frequency
analysis approaches are actually challenged by the issue of weak scatterers.
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Figure 12. ISAR images of the simulated data under SNR = 5 dB in the case of uneven strengths
of scatterers. (a) WVD algorithm in [12]. (b) SPWVD method in [13]. (c) RCD method in [15].
(d) Our proposed method.

The implementation times of different methods are provided in Table 3, which are obtained using
a computer with double core CPU 3.4 GHz and memory of 8 G. From the table, the running times of
time-frequency analysis (STFT, WVD, and SPWVD methods)-based approaches are lowest and the
parameter estimation-based ISAR imaging approaches of IHAF-ICPF method and CIGCPF-CICPF are
highly time consuming. The time cost of proposed RCFT is higher than the time-frequency analysis
based approaches, but much lower than the parameter estimation-based approaches. Taking both the
performance and computation into consideration, to conclude, the proposed method well trades off
them in producing clear image of the maneuvering target at low SNR environment.

Table 3. Computational complexity comparisons.

Methods Runtime

RD algorithm 0.50 m
STFT method 1.24 m
WVD method 1.56 m

SPWVD method 2.73 m
RCD method 5.04 m

IHAF-ICPF method 56.23 m
CIGCPF-CICPF method 41.78 m
Our proposed method 8.35 m
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5. Conclusions

In this paper, the RCFT method is first proposed for the analysis of multiple QFM signals.
Because of 2-D coherent integration realization and the bilinear function feature, the better cross-term
interference suppression is achieved at no loss of time-frequency resolution, and also higher
signal processing gain is obtained. The RCFT is computationally efficient since no expensive
three-dimensional (3-D) parameter search is required. After that, the RCFT is applied to the
ISAR imaging problem for a maneuvering target in producing the clear image. Numerical results
demonstrate that the proposed method outperforms existing ISAR imaging algorithms in terms of
both visual inspections and objective performance measures.
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