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Abstract: This paper presents a high-speed top-illuminated InP-based avalanche photodetector
(APD) fabricated on conductive InP-wafer using planar processes. The proposed device was then
evaluated in terms of DC and dynamic performance characteristics. The design is based on a separate
absorption, grading, charge, and multiplication (SAGCM) epitaxial-structure. An electric field-profile
of the SAGCM layers was derived from the epitaxial structure. The punch-through voltage of the
SAGCM APD was controlled to within 16–17 V, whereas the breakdown voltage (VBR) was controlled
to within 28–29 V. We obtained dark current of 2.99 nA, capacitance of 0.226 pF, and multiplication
gain of 12, when the APD was biased at 0.9 VBR at room temperature. The frequency-response was
characterized by comparing the calculated 3-dB cut-off modulation-frequency (f3-dB) and f3-dB values
measured under various multiplication gains and modulated incident powers. The time-response of
the APD was evaluated by deriving eye-diagrams at 0.9 VBR using pseudorandom non-return to zero
codes with a length of 231-1 at 10–12.5 Gbps. There was a notable absence of intersymbol-interference,
and the signals remained error-free at data-rates of up to 12.5 Gbps. The correlation between the
rise-time and modulated-bandwidth demonstrate the suitability of the proposed SAGCM-APD chip
for applications involving an optical-receiver at data-rates of >10 Gbps.

Keywords: avalanche photodetector (APD); separate absorption; grading; charge and multiplication
(SAGCM); multiplication gain; modulation frequency; eye diagram

1. Introduction

Avalanche photodetectors (APDs) are essential components in optical fiber communication,
featuring high sensitivity [1–4] based on internal current gain. Optical fiber communication systems
are now expected to provide >10 Gb/s to meet the growing demand for bandwidth in local
area networks [5–7], metropolitan areas, and long-haul optical links [8,9]. High-speed InP-based
APDs are preferred over PIN-type photodetectors [10], particularly for conventional long-haul
applications. The preferred solution in these situations is the separate absorption, grading, charge,
and multiplication (SAGCM) structure, due to its low dark current [11–14], high quantum efficiency,
and high gain-bandwidth product [15–17]. The importance of performance and reliability in these
systems [18,19] has prompted research on epitaxy and device processing for the further development
of high-performance and high-speed planar InP based SAGCM-APDs [20–24].
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In this study, we developed a low-cost InP-based APD with SAGCM structure and calculated
the electric field profile based on the characteristics of the epitaxial layers. A two-step zinc-diffusion
was used to control the p-n profile and thickness of the multiplication layer. We used current–voltage
measurements (with and without light illumination) and capacitance–voltage to characterize the DC
performance of the proposed APDs. We compared the predicted cut-off 3-dB frequency (f 3-dB) with
measured values measured under various modulated incident power levels and multiplication gains.
To confirm that this device meets OC-192 requirements, we obtained eye diagrams of the fabricated
APD under 0.9 VBR using pseudorandom non-return to zero (NRZ) code with a length of 231-1 at bit
rates of 10–12.5 Gbps. A correlation was observed between the rise time in the eye patterns and the
modulated 3-dB bandwidth in the modulated frequency response. The DC and AC results demonstrate
the suitability of the proposed SAGCM-APD chip in applications that involve optical receivers at data
rates of >10 Gbps.

2. Experiments

2.1. APD Epitaxial Deposition and Characterization

Figure 1 presents a schematic diagram showing the separate absorption, grading, charge,
and multiplication (SAGCM) epitaxial layer structure of the proposed InP-based APD. The epitaxial
layers were grown on a (100)-oriented n+-InP substrate (S-doped) using metal organic chemical
vapor deposition (MOCVD) under pressure of 100 mbar at a temperature of 600–650 ◦C. Arsine and
phosphine were used as group-V source gases, whereas trimethyl-gallium and trimethyl-indium
were used as group-III precursors. Disilane was used for n-type doping. The epitaxial layers of the
proposed SAGCM-APD included a 1-µm-thick n-InP buffer layer (n ~5 × 1017 cm−3), a 1.2-µm-thick
i-In0.53Ga0.47As absorbing layer (n < 5 × 1015 cm−3), three undoped InGaAsP grading layers (λ = 1.5,
1.3, 1.1 µm, 100 nm/each layer), a 0.15-µm-thick n-InP charge layer, and a 3.5-µm-thick undoped
InP cap layer, and a 0.1-µm-thick undoped InGaAsP contact layer. The lattice mismatch between the
InGaAs/InP and InGaAsP/InGaAs layers was less than 300 ppm (0.03%), as determined by double
crystal X-ray diffraction (DXRD). Electrochemical capacitance–voltage (ECV) measurements indicate
that the carrier concentration in the InP cap layer and middle In0.53Ga0.47As absorption layer were
less than 5 × 1015 cm−3. The density of the InP charge layer was maintained at 3.5 × 1012 cm−2 [25].
The optical properties of the epitaxial layers were assessed using photoluminescence measurements
at room temperature. The thickness measurements of the epitaxial layers and interface between the
layers were confirmed using a scanning electronic microscope.

2.2. APD Device Fabrication and Characterization

Device fabrication began with the deposition of a 150 nm-thick SiNx layer on the surface of the
APD epitaxial-structure substrate via plasma enhanced chemical vapor deposition (PECVD). A guard
ring-window measuring 40 µm (mid-diameter) with 15-µm spacing was opened using reactive ion
etching (RIE) to enable diffusion processing of the guard ring. A p−-InP guard ring was then formed
using a Zn-diffusion process in a diffusion chamber at 530 ◦C for 5 min. After thorough cleaning,
a new SiNx film was deposited on the surface of the sample, whereupon a central active window
(35-µm diameter) covering the inner annulus of the guard ring was opened using RIE. A second Zn
diffusion process was conducted at 570 ◦C for an extended duration to maintain the p+-InP diffusion
front of the central active junction at a distance of 0.35 µm from the surface of n-InP charge layer,
while simultaneously ensuring that the junction depth of the p−-InP guard ring under the SiNx
reached the interface with the InP-cap/InP-charge layer using driven-in processes under constant
source condition. After thorough cleaning, a λ/4-thick SiNx film was deposited on the surface of the
APD device as an anti-reflective (AR) coating. A front-side p-electrode ring-metallization layer (AuZn
(100 nm)/Ti (30 nm)/Au (300 nm)) was applied using photolithography, evaporation, and lift-off
processing followed by rapid thermal annealing (RTA) at 425 ◦C for 60 s to ensure a good p-ohmic
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contact. In this work, evaporated Au-10 wt% Zn is not homogenous in depth, a two-layer structure with
an Au layer lying above a Zn layer. The specific contact resistance of alloyed AuZn that underwent
metallization to p-InGaAsP was approximately 1 × 10−6 Ω·cm2. Next, a metallization layer (Ti
(30 nm)/Au (500 nm)) connecting the bond-pad to the p-electrode ring was deposited on the thick SiO2

layer (1–2 µm) to reduce parasitic capacitance. The sample was then thinned down to 150-µm to reduce
series resistance. After back–side surface polishing and cleaning, AuGe films (100 nm)/Ni (30 nm)/Au
(300 nm) were deposited on the n+-InP and subjected to annealing at 350 ◦C for 2 min to ensure a good
n-ohmic contact. A schematic diagram showing the fabrication of the proposed APD is presented in
Figure 1. Dark current–voltage (I-V), capacitance–voltage (C-V), and photo I-V measurements were
used to characterize the DC performance of the APD. The time response and the frequency response
were examined at the chip level (without packaging and with pre-amplification) using a microwave
probe in conjunction with eye diagrams and 3-dB modulated frequency measurements.
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Figure 1. Schematic diagram showing the epitaxial layer structure of the proposed InP-based avalanche
photodetector (APD) based on separate absorption, grading, charge, and multiplication (SAGCM).

2.3. Electric Field Profile Calculation

In conventional InP-based SAGCM APDs, light absorption and carrier multiplication processes
are kept separate by employing an absorption layer (InGaAs) with a small bandgap (Eg = 0.75 eV) and
a multiplication layer (InP) with a large bandgap (Eg = 1.35 eV). Three InGaAsP grading layers are
used to shift the bandgap from 0.75 eV to 1.35 eV to assist in the transport of carriers generated in the
absorption layer into the multiplication layer. In an SAGCM structure, it is essential that the electric
field distribution is optimized in the absorption and multiplication layers. The role of the charge layer
is to maintain a high electric field for the multiplication layer and a low electric field for the absorption
layer to prevent high-field induced current tunneling. Previous studies have reported maximum
electric field intensities of 7 × 105 V/cm in the n-InP multiplication layer and 2 × 105 V/cm in the
n−-InGaAs absorption layer [26], due to the generation of band-to-band current tunneling beyond
this specific field intensity. Furthermore, the n-InP multiplication layer requires electric field intensity
of >5 × 105 V/cm to achieve carrier multiplication via impact ionization and rapidly sweep out the
carriers generated in the n−-InGaAs absorption layer (i.e., before recombination). The electric field
intensities in the n−-InGaAs absorption layer must exceed 2 × 104 V/cm. Table 1 lists the structural
parameters of the SAGCM-APD proposed in this work. Figure 2 presents the electric field profile,
which was calculated as a function of the distance from p-n junction under various reverse bias
voltages. The electric field intensity profile is well controlled to the required field range for the InP
multiplication layer (5 × 105–7 × 105 V/cm) and the InGaAs absorption layer (2 × 104–2 × 105 V/cm).
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Figure 2. Electric field profile calculated as a function of the distance from the p-n junction under 

various reverse bias voltages. 
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Figure 3. Dark current, photocurrent, and multiplication gain of conventional APD diodes as a 

function of reverse bias voltage. 

Figure 2. Electric field profile calculated as a function of the distance from the p-n junction under
various reverse bias voltages.

Table 1. Structural parameters of separate absorption, grading, charge, and multiplication (SAGCM)
avalanche photodetector (APD) proposed in this work.

Layer Name Epitaxial Layer Thickness (µm) Concentration (cm−3)

Contact n−-InGaAsP 0.1 undoped
Multiplication n−-InP 0.35 undoped

Charge n+-InP 0.15 <5 × 1017

Grading n−-InGaAsP × 3 0.03 × 3 undoped
Absorption n−-InGaAs 1.2 <5 × 1015

Buffer n+-InP 1 5 × 1017

Substrate n+-InP 350 5 × 1018

3. Results and Discussion

Figure 3 presents the dark current, photocurrent, and multiplication gain of conventional APD
diodes as a function of reverse bias voltage. The photocurrent was obtained under 1 µW illumination
using a high-power 1550 nm distributed feedback laser diode (DFB-LD) source through an optical
attenuator. The breakdown voltage (VBR) of 28.5 V is defined as the voltage under dark current (10 µA),
whereas the punch-through voltage (VP) of 16.6 V is defined as the voltage applied to the APD with the
depletion region extending into the InGaAs absorption layer at room temperature. The dark current
(ID) was 2.99 nA at VBR of 90% and 0.21 nA at VP. At a temperature of 300 K and illumination of
1 µW, we achieved responsivity of 9.61 A/W and multiplication gain of 11.9 at 0.9 VBR. In contrast,
we obtained a responsivity of 23.30 A/W and multiplication gain of 28.1 at 0.95 VBR. The maximum
multiplication gain at the VBR was 192.
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Figure 4 presents the capacitance and calculated 3-dB frequency (f 3-dB) of the fabricated APD
(bonded to a ceramic sub-mount for testing) as a function of reverse bias voltage. The total capacitance
of the fabricated APD included the capacitance of the p-n junction (Cp-n), the capacitance of the
bond-pad (Cbp), and the capacitance of the bridge-connection (Cbc), in parallel connection mode.
Cp-n depends on the area of the p-n junction and the applied reverse bias voltage. However,
Cbp and Cbc depend on the area of the metallization electrode and the thickness of the dielectric
film beneath the metallization electrode. The initial total capacitance under zero voltage was 0.726 pF,
which decreased to 0.226 pF following the application of biasing at 0.9 VBR. We observed a kink in the
capacitance–voltage (C-V) curves at 15–17 V, which is in good agreement with the VP in the photo I-V
curves under a punch–voltage of 16.6 V. We sought to predict the 3-dB bandwidth (f 3-dB) frequency
response of the proposed APD using C-V data, using the following equations:

1

( f3−dB)
2 =

1(
f3−dBRC

)2 +
1(

f3−dBTR

)2 (1)

f3−dBRC =
1

2πRC
(2)

f3−dBTR =
0.45v

L
(3)

where R refers to the resistance of the load (50 Ω), C is the diode capacitance (depending on reverse
bias voltage), v is the drift velocity in the InGaAs absorption layer, and L is the thickness of InGaAs
absorption layer. f 3-dB was calculated as 7.09, 9.0, and 10.2 GHz at multiplication gains of 3, 5, and 10,
respectively. f 3-dB was calculated as 10.5, 10.8, and 11.2 GHz under reverse bias voltages of 0.9, 0.95,
and 0.98 VBR, respectively. Calculated f 3-dB values were compared with measured values to further
examine avalanche build-up time.
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Figure 4. Capacitance and 3-dB frequency (f 3-dB) calculated for the proposed APD (bonded on a
ceramic sub-mount for testing) as a function of reverse bias voltage.

Figure 5 presents multiplication gain as a function of incident power from 1 nW to 1 mW under
bias voltages of 0.9 VBR and 0.95 VBR. Multiplication gain was shown to decrease with an increase in
incident power. APD biased at a higher voltage and illuminated using lower incident power resulted in
far higher gain; however, we observed a significant decrease in multiplication gain when the incident
power exceeded 1 µW. This is an indication that suitably low incident power was required for APD
operations in regions of high multiplication gain.
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Figure 6 presents the photocurrent as a function of distance across the active area (diameter) of
the proposed SAGCM-APD. Incident light was delivered using a DFB laser via a fiber coupler lens at
a wavelength of 1550 nm with power of 1 µW. The light-spot of the fiber coupler lens was moved in
steps of 3 µm. Higher photocurrent values were obtained when the APD was operated using higher
multiplication gain. We did not observe a significant spike at the edge of the active region in any of the
photocurrent curves when the multiplication gain was varied between three and 10. This demonstrates
the efficacy of the proposed structure in suppressing edge-breakdowns. Furthermore, the proposed
APD achieved responsivity of 0.82 A/W when operating under multiplication gain of three to 10.
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Figure 6. Photocurrent as a function of the distance that across the active area (the diameter) of the
proposed SAGCM-APD.

Figure 7 presents the measured f 3-dB as a function of multiplication gain (3, 5, and 10) under
incident optical power of 0.5 µW, 1.0 µW, and 5.0 µW, as measured with load resistance of 50 Ω using
an HP 8703A lightwave component analyzer. The response power of the APD increased with an
increase in incident power. The response power of the APD also increased when the APD was operated
under higher multiplication gain. The f 3-dB increased with an increase in multiplication gain from
three to five and then decreased when the multiplication gain exceeded 10, in the cases where the
incident power was 0.5 µW or 1.0 µW, as shown in Figure 7a,b. In contrast, f 3-dB decreased with an
increase in the multiplication gain increased in the cases with an incident power of 5.0 µW, as shown
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in Figure 7c. In this work, we obtained a maximum f 3-dB of 8.91 GHz at an incident power of 1.0 µW
and multiplication gain of five. At an applied incident power of 1.0 µW, the measured f 3-dB values
when using multiplication gains of three and five were 7.04 and 8.91 GHz, respectively. In contrast,
the calculated f 3-dB using the multiplication gains of three and five were 7.09 and 9.0 GHz, respectively.
The measured f 3-dB values are in good agreement with the calculated f 3-dB values. In contrast, at an
applied incident power of 1.0 µW and multiplication gain of 10, the measured f 3-dB was 6.08 GHz
whereas the calculated f 3-dB was 10.2 GHz. The difference between 10.2 GHz and 6.08 GHz can be
attributed to the considerable avalanche build-up time required under high multiplication gain.

Applications that use an optical receiver with high bit rate require that devices be tested by
superimposing a number of pseudorandom binary sequence (PRBS) patterns of ones and zeros.
Figure 8 presents eye diagrams of the SAGCM-APD photodetector chip operated under a multiplication
gain of five using nonreturn-to-zero (NRZ) pseudorandom codes with length of 231-1 at (a) 10, (b) 11,
(c) 12, and (c) 12.5 Gb/s. Note that the diagrams present the shape of an open human eye with the
decision corresponding to the center of the opening. There was a notable absence of intersymbol
interference and noise in the eye diagrams at bit rates of up to 12 Gb/s. As shown in Figure 8a, the rise
time was 42.7 ps, the fall time was 46.0 ps, and the jitter was 3.9 ps when the APD was operated at a bit
rate of 10 Gb/s. The overall quality of PRBS waveform patterns can be assessed simply by comparing
an eye diagram against a predefined mask defining a set of keep-out regions into which the waveform
must not intrude. As shown in Figure 8a, presenting the OC-192 mask in the eye diagram revealed
that the waveform of the PRBS patterns did not intrude into the keep-out region. When the OC-192
mask was aligned to the 12 Gb/s eye diagram, only 0.1% of the waveform intruded into the keep-out
region. This is a clear indication that the proposed SAGCM-APD is operable beyond 10 Gb/s and
ideally suited to OC-192 optical fiber communication applications.
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powers of (a) 0.5 µ W, (b) 1.0 µW, and (c) 5.0 µW.
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4. Conclusions

This paper outlines a 10 Gb/s planar-type top-illuminated InP-based avalanche photodetector
with SAGCM-structure. High-quality epitaxial layers were deposited on a conductive InP substrate
to form an SAGCM-structure. A two-step zinc-diffusion process was used to control the p-n profile
and the thickness of the multiplication layer. Thick oxide was used to reduce bonding capacitance
to enhance the frequency response. We obtained a maximum f 3-dB of 8.91 GHz at an incident power
of 1.0 µW under multiplication gain of five. The proposed SAGCM-APD is ideally suited to OC-192
optical fiber communication applications at data rates exceeding 10 Gb/s. Our lab is currently involved
in the development of a novel 25 Gb/s InP-based avalanche photodetector with SAGCM-structure
based on the techniques demonstrated in the current study.
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