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Abstract: Redundancy in cable-driven parallel robots provides additional degrees of freedom that
can be used to achieve different objectives. In this robot, this degree of freedom is used to act on a
reconfigurable end effector with one degree of freedom. A compliant actuator actuated by one motor
exerts force on both bodies of the platform. Due to the high tension that appears in this cable in
comparison with the rest of the cables, an elastic model was developed for solving the kinestostatic
and wrench analysis. A linear sensor was used in one branch of this cable mechanism to provide
the needed intermediate values. The position of one link of the platform was fixed in order to focus
this analysis on the relationship between the cables and the platform’s internal movement. Position
values of the reconfigurable end effector were calculated and measured as well as the tension at
different regions of the compliant actuator. The theoretical values were compared with dynamic
simulations and real prototype results.

Keywords: cable robot; reconfigurable platform; kinematic redundancy; parallel manipulator

1. Introduction

Cable-Driven Parallel Robots (CDPRs) are parallel mechanisms whose end effector (EE) is
manipulated by using flexible cables coiled in pulleys and winches attached to the rigid frame. Cables
can only exert traction and do not resist compression efforts, so it is necessary to provide an opposite
force for each cable to maintain its stiffness.

Using cables instead of rigid links with prismatic actuators, such as usual parallel robots,
has several advantages due to their wrench-to-weight ratio and simplicity. For example, the
Five-hundred-meter Aperture Spherical Telescope (FAST) [1] and the three-dimension moveable
camera, SpiderCam [2], have huge workspaces. Further examples are the Robocrane in its six-meter
version [3], the Marionet-Crane with sides of 15 m [4], and the assembler of solar panels with a plant
size of 15 × 8 m [5]. High speeds and accelerations have been achieved with the configurations
provided by using a rigid spine [6–8] or without using it as in [9]. Prototypes such as those in [10–13]
have high dexterity due to their parallel configuration and some of them are used in haptic and tele
manipulation. This dexterity is used in rehabilitation [14–16] and minimally invasive surgeries [17,18].
Additional advantages of using cables in parallel configuration are robots with lower costs, ease of
manufacturing, and fast assembly and deployment [19].

As a cable bends without resistance when it is under compressing forces, to maintain the tensile
force in a cable, it is needed, whenever possible, to pull the load with the cables located at the opposite
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side of the end effector. In the case of suspended cable robots, in general, all their cables pull against the
gravity force, which acts as a virtual opposite cable. The required number of cables to fully constrain
one of those mechanisms with n degrees of freedom (dof) is n + 1 [20]. This is needed as the additional
degree of redundancy allows for a tension configuration to be set in the cables where all of them are
under traction effort. However, in CDPRs with a suspended configuration, the gravity force acts as a
virtual cable so in those cases, only n cables are necessary to fully constrain the robot [21].

In this article, a cable-driven parallel robot with a reconfigurable platform was analyzed. These
robots have a parallel structure and their end effector is a passive mechanism instead of a rigid body.
In [22], Lambert et al. described the fundamental aspects of parallel robots with a reconfigurable
platform. In [23], a generalized analysis of this kind of robot was performed by using screws algebra
considering the EE as a closed-loop chain.

Knowing the advantages of cable-driven parallel robots, such as their huge translational
workspace and their very low inertia, few examples of CDPRs with a reconfigurable end effector
have appeared. In [24], a cable-driven robot with reconfigurable end effector was presented. This
was a planar haptic device with four dof that provided planar motion. In that study, a geometric
and static analysis was developed. In [25], an optimized shape for the reconfigurable end effector for
cable-driven suspended robots was proposed with the objective of avoiding obstacles situated on the
ground. Some applications of the reconfigured platforms include grasping objects of irregular shape
or large volume, such as the first reconfigurable platform robot presented in [26], micro-positioning
and haptic devices [23], or end effectors able to avoid singular postures within their workspace [27].

This article focuses on the behavior of those cables actuated by one single actuator that acts on
two different bodies. This type of cable, which is able to exert its tension over two bodies at the same
time, can be used in CDPRs with a reconfigurable end effector in order to use one degree of actuation
over the one degree of freedom of the reconfigurable end effector. This is useful when there is a desire
to use one or several degrees of actuation of a redundant CDPR to impose internal motion in the
reconfigurable end effector. It can be used in any CDPR in whose end effectors it is desired to add
additional degrees of freedom that want to be controlled by using the current degree of actuation. For
instance, one robot with eight degrees of actuation and an end effector with seven degrees of freedom
(six dof for the rigid body of one body and one dof for the degree of freedom of the second body)
used to be controlled by attaching some cables to one body and the rest of the cables to the second
body. This method cannot control the six dof of each body; only the dof of the whole reconfigurable
end effector can be controlled. This method, already used in [24,25], is interesting because it exerts
an equivalent quantity of effort to both end effectors; however, in some poses and orientations, their
internal degree of freedom restricts the desired movement of one of the bodies of the end effector due
to the appearance of undesired internal movements in the entire platform.

As seen in the example shown in Figure 1, a planar suspended CDPR with a reconfigurable end
effector was actuated by using four independent cables. The second body could only slide along the
first body. Two of the cables controlled two dof of the first body while the other two cables controlled
the second end effector. As each body had three dof in this planar case, they were under-actuated
when they were considered individually. The entire end effector that was composed by the two bodies
had four degrees of freedom (three dof of one rigid body and one dof of the available movement of the
second body) and four degrees of actuation. However, the movements of the entire end effector were
influenced by the internal movement between the two bodies. In the example of Figure 1, there was a
desire to obtain a torque in the x-axis of the entire end effector; however, it appeared as an internal
force between the two bodies because the cable that is attached to B4 has to exert tension to impose the
desired torque.
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Figure 1. Schematic description of a planar suspended cable-driven parallel robot (CDPR) with 
reconfigurable end effector (EE) actuated by simple cables. It is seen that when a torque is imposed 
on the entire end effector, it appears as an internal force in the second body of the end effector, making 
the control of all degrees of freedom (dof) of one of the bodies difficult. 

In this article, a mechanical device was proposed together with a method for controlling all the 
degrees of freedom of one body while the second body is controlled as a secondary task only when 
the first body is totally controlled. This method was based on the use of a cable that was able to 
actuate over the two bodies of the end effector at the same time as being actuated by one single 
actuator. If the elasticity of the cables is neglected by attaching the two branches of the cable directly 
to both end effectors, it is only possible to set the tension value exerted to one body and the 
corresponding tension value in the other body. In Figure 2b, the proposed method for controlling all 
the degrees of freedom of the first body of the end effector without the influence of the internal 
degrees of freedom of the reconfigurable platform is shown. The second body of the end effector can 
be controlled with more or less priority with respect to the control of the first body. For instance, if 
the first body has high priority on its control, the cable that acts on the second body can be tensed 
with the values allowed by the tension distribution needed by the first body, where the tension 
boundaries can be set at the value of  𝜏𝜏𝐴𝐴. However, if the second body needs high priority, it is set at 
the desired tension value of 𝜏𝜏𝐵𝐵 without considering whether the cables can provide an appropriate 
tension distribution in the first body. 

By controlling the first body of the end effector, it is possible to apply the well-known control 
algorithms intended for CDPRs with rigid bodies without the perturbation of the internal movement 
of the platform as in [28–31]. However, as seen in Figure 2b, an elastic component needs to be added 
to the first branch of the cable in order to have an elongation that imposes a motion in the second 
body. Due to this elongation, an elastic analysis of the cables and springs must be performed. 

A usual CDPR with a rigid EE has to determine the tensions applied to the end effector in order 
to know the wrench applied to it. In the case of this kind of cable, the tension and elongation are 
considered at the same time, so they need an appropriate sensor system to acquire both signals at the 
same time. This sensor system is based on a linear position encoder that is able to detect the 
elongation of the spring of the cable. In this way, by knowing the stiffness of this spring, it is possible 
to measure the elongation of the first branch of the cable directly and the tension imposed on the first 
body by the cable in an indirect way. 

In addition, the elastic behavior imposed on the robot with the use of springs provides a 
compliant mechanism in the EE that creates a more secure environment for the interaction between 
humans and cable-driven robots. As explained in [32], “a compliant actuator will allow deviations 
from its own equilibrium position depending on the applied external force”. These elastic 
mechanisms can be upgraded to act as tensegrity manipulators as in [33,34]. 

Figure 1. Schematic description of a planar suspended cable-driven parallel robot (CDPR) with
reconfigurable end effector (EE) actuated by simple cables. It is seen that when a torque is imposed on
the entire end effector, it appears as an internal force in the second body of the end effector, making the
control of all degrees of freedom (dof) of one of the bodies difficult.

In this article, a mechanical device was proposed together with a method for controlling all the
degrees of freedom of one body while the second body is controlled as a secondary task only when the
first body is totally controlled. This method was based on the use of a cable that was able to actuate
over the two bodies of the end effector at the same time as being actuated by one single actuator. If the
elasticity of the cables is neglected by attaching the two branches of the cable directly to both end
effectors, it is only possible to set the tension value exerted to one body and the corresponding tension
value in the other body. In Figure 2b, the proposed method for controlling all the degrees of freedom
of the first body of the end effector without the influence of the internal degrees of freedom of the
reconfigurable platform is shown. The second body of the end effector can be controlled with more or
less priority with respect to the control of the first body. For instance, if the first body has high priority
on its control, the cable that acts on the second body can be tensed with the values allowed by the
tension distribution needed by the first body, where the tension boundaries can be set at the value of
τA. However, if the second body needs high priority, it is set at the desired tension value of τB without
considering whether the cables can provide an appropriate tension distribution in the first body.

By controlling the first body of the end effector, it is possible to apply the well-known control
algorithms intended for CDPRs with rigid bodies without the perturbation of the internal movement
of the platform as in [28–31]. However, as seen in Figure 2b, an elastic component needs to be added
to the first branch of the cable in order to have an elongation that imposes a motion in the second body.
Due to this elongation, an elastic analysis of the cables and springs must be performed.

A usual CDPR with a rigid EE has to determine the tensions applied to the end effector in order
to know the wrench applied to it. In the case of this kind of cable, the tension and elongation are
considered at the same time, so they need an appropriate sensor system to acquire both signals at the
same time. This sensor system is based on a linear position encoder that is able to detect the elongation
of the spring of the cable. In this way, by knowing the stiffness of this spring, it is possible to measure
the elongation of the first branch of the cable directly and the tension imposed on the first body by the
cable in an indirect way.

In addition, the elastic behavior imposed on the robot with the use of springs provides a compliant
mechanism in the EE that creates a more secure environment for the interaction between humans
and cable-driven robots. As explained in [32], “a compliant actuator will allow deviations from its
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own equilibrium position depending on the applied external force”. These elastic mechanisms can be
upgraded to act as tensegrity manipulators as in [33,34].Sensors 2018, 18, x FOR PEER REVIEW  4 of 28 

 

 
Figure 2. (a) Example of a cable acting on the two bodies of the end effector directly. In this case, the 
first body can be controlled in its three dof by using the four actuated cables. However, if the cable is 
not elastic, the second body cannot have its movement controlled as it is dependent on the position 
of the first body with respect to the anchor 𝐵𝐵4; (b) Example of a cable acting on the two bodies of the 
end effector. The elongation of the first branch of the cable can modified by using a spring (𝑘𝑘1). In this 
way, the relative position of the second body with respect to the first one can be controlled with the 
tension 𝜏𝜏2. The value of 𝜏𝜏𝐴𝐴 depends on the position desired for the second body but is compensated 
for by the three cables that can act on the first end effector in order to have control of the three dof of 
the first body and the control of the relative position of the second body. 

1.1. Contribution 

The contribution of this paper is the analysis of a cable-driven robot with a reconfigurable 
platform with one of its cables acting in two bodies of the EE at the same time. This is the compliant 
actuator that acts on two different bodies of the same end effector by considering its position and 
modifying its tension. Although the first robot with a reconfigurable end effector appeared in 2002 [26], 
the first robot with this configuration that was actuated by tensed cables appeared in 2017 [25]. Until 
now, only two references can be found in the literature regarding this last type of cable robot [24,25]. 
Considering the field of this novel configuration, the main contribution of this article is the 
consideration of a special cable mechanism that can exert force in two different bodies of the 
reconfigurable end effector, which is what we call a compliant actuator. 

This compliant actuator needs a linear sensor in one of its branches to obtain intermediate 
information for solving the kinematics and statics of the whole robot. Indeed, the tension of the cable 
has to be considered to solve the redundancy of the system. For this reason, springs are added in the 
sensorized branch of the compliant actuator to provide more accurate elongation measures by using 
a linear sensor. By using the elastic model, it is possible to relate the linear deformation given by the 
linear sensor with the tension that the sensorized cable exerts to the end effector. Due to the elastic 
consideration, the compliant actuator can be considered as a tensegrity-based compliant mechanism 
defined as in [35]. 

The length value imposed in the actuated part of the compliant actuator is directly used to 
control the internal dof of the platform by exerting effort in both bodies of the platform. The 
redundancy of the system is used to compensate for the perturbation added by the sensorized part 
of the compliant actuator when tension is applied to the compliant actuator by its winch. With this 
cable mechanism, it is possible to control one degree of freedom while the rest of the cables 
compensate for the perturbation added by its tension. It is possible to use this mechanism for 
developing a CDPR with reconfigurable platforms of more than one degree of freedom by using as 
many compliant actuators as the dof of the end effector. 

Figure 2. (a) Example of a cable acting on the two bodies of the end effector directly. In this case, the
first body can be controlled in its three dof by using the four actuated cables. However, if the cable is
not elastic, the second body cannot have its movement controlled as it is dependent on the position of
the first body with respect to the anchor B4; (b) Example of a cable acting on the two bodies of the end
effector. The elongation of the first branch of the cable can modified by using a spring (k1). In this way,
the relative position of the second body with respect to the first one can be controlled with the tension
τ2. The value of τA depends on the position desired for the second body but is compensated for by the
three cables that can act on the first end effector in order to have control of the three dof of the first
body and the control of the relative position of the second body.

1.1. Contribution

The contribution of this paper is the analysis of a cable-driven robot with a reconfigurable platform
with one of its cables acting in two bodies of the EE at the same time. This is the compliant actuator
that acts on two different bodies of the same end effector by considering its position and modifying its
tension. Although the first robot with a reconfigurable end effector appeared in 2002 [26], the first robot
with this configuration that was actuated by tensed cables appeared in 2017 [25]. Until now, only two
references can be found in the literature regarding this last type of cable robot [24,25]. Considering the
field of this novel configuration, the main contribution of this article is the consideration of a special
cable mechanism that can exert force in two different bodies of the reconfigurable end effector, which
is what we call a compliant actuator.

This compliant actuator needs a linear sensor in one of its branches to obtain intermediate
information for solving the kinematics and statics of the whole robot. Indeed, the tension of the cable
has to be considered to solve the redundancy of the system. For this reason, springs are added in the
sensorized branch of the compliant actuator to provide more accurate elongation measures by using a
linear sensor. By using the elastic model, it is possible to relate the linear deformation given by the
linear sensor with the tension that the sensorized cable exerts to the end effector. Due to the elastic
consideration, the compliant actuator can be considered as a tensegrity-based compliant mechanism
defined as in [35].

The length value imposed in the actuated part of the compliant actuator is directly used to control
the internal dof of the platform by exerting effort in both bodies of the platform. The redundancy of
the system is used to compensate for the perturbation added by the sensorized part of the compliant
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actuator when tension is applied to the compliant actuator by its winch. With this cable mechanism, it
is possible to control one degree of freedom while the rest of the cables compensate for the perturbation
added by its tension. It is possible to use this mechanism for developing a CDPR with reconfigurable
platforms of more than one degree of freedom by using as many compliant actuators as the dof of the
end effector.

As can be seen in Figure 2b, by using the sensorized spring it is possible to measure the force
applied to the first body by the compliant actuator and also it provides the elongation of this spring
with the accuracy of the sensor. However, the position and force in the compliant actuator remain
coupled due to the relation between the cable tension and their elongation. This means that, for each
geometric configuration of the compliant actuator, there will be a different set of forces that elongate
the cables. For this analysis, it is needed to take into account the stiffness of the cables and the forces
applied in each of them in order to consider this elongation in the geometric model. Several studies
about the stiffness of the mechanism can be found, such as the numerical and experimental estimation
of the stiffness model with lumped parameters [36]. When an elasto-geometrical analysis is performed
in a cable system, several sources of error appear due to geometric and mechanical uncertainties as
demonstrated in [37].

In this article, due to this relation between position and forces, both analyses are made for each
sample in the path planning of the movement of the second body of the end effector. The relation
between geometry and cable forces is double: on the one hand, it is needed to close the force loop
considering the linear elongation and on the other hand it is needed to apply those forces in the
line of the cable because their axis lines are the only direction they can exert wrenches. Due to the
geometry of this mechanism, an iterative model can be used to achieve the equilibrium of forces in
the center of the compliant mechanism considering the information given by the sensorized spring.
One iteration calculates the geometry without considering elasticity (geometric resolution), while
the wrenches are analyzed in the second part of the iteration considering the stiffness of the cables
and the direction of the forces (wrench resolution). The next iteration obtains the geometric position
considering the previous equilibrium of forces and elongations. In those experiments, a kinetostatic
analysis is performed, so the speed of the movement of the system is slow enough to have time to
solve this iteration problem.

1.2. Objectives

The objective of this article was to define the kinetostatic analysis of a cable-driven parallel robot
with a reconfigurable platform with one degree of freedom considered as the end effector. The analysis
was made by fixing one body of this platform to the ground to focus on one compliant actuator. It parts
from a winch situated on the upper side of the robot and is split into two different cables. One of these
split cables is directly attached to one body of the reconfigurable platform while the other is attached
to a spring. This spring connects the terminal of the cable with the other body of the platform. This last
side of the compliant actuator with the spring is sensorized by using a linear transducer to measure
the length of that spring. This sensor is fixed to the body and its thread goes through the inside of
the spring that attaches to the cable as described in Section 3. In this way, the length can be directly
measured and the tension of the spring can be obtained through indirect measurements by knowing
the stiffness value of the spring and the transducer thread.

A tension study of the cables was also required to have better accuracy in this kinetostatic analysis.
This was due to the inner relationship between the cable positions and their forces in mechanisms
with elastic cables. A comparison between the theoretical results and simulated and real results are
provided in Sections 7 and 8. We also analyzed the influence of the considered simplifications in the
mathematic model in comparison with the simulated and real model to compare the position errors.

As can be seen, to achieve the proposed goals, the use of a linear sensor was considered to obtain
intermediate information of the mechanism. Linear sensors have been already used to solve the direct
kinetostatics problem in cable-driven parallel robots, such as that in [38], and in rigid links parallel
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robots, such as that seen in [39]. The use of this linear sensor combined with a spring can provide a
measurement of length and tension in one of the branches of the compliant actuators when the spring
is modeled with accuracy. This way of measuring provides the necessary information to solve both
problems: kinetostatic and tension configuration.

The main advantage of the use of compliant actuators is the possibility of controlling the main
end effector with all the actuated cables with all the wrench capability the sole end effector has as a
rigid body. The control of the dof of the second body of the reconfigurable end effector can be done by
using only one branch of this special cable. When no control is needed in the second body, the first
end effector can regain the full control provided by all the actuators. This property is useful if the
second body acts, for instance, as a gripper that is only actuated on certain occasions while the main
end effector can have all its capabilities the rest of the time.

This cable-driven mechanism with a reconfigurable end effector is being developed on a small
scale to analyze the behavior of the compliant actuator controlling the inner dof of the platform. The
final objective was to bring those results to a large-scale cable-driven robot that is able to simulate
environmental dynamic conditions in humans and humanoid robots. In this way, it is possible to
simulate underwater, low-gravity, or other dynamic conditions. The CDPR with a reconfigurable
platform is desired for adding one additional degree of freedom in the underwater humanoid that
is being tested in the simulator. In this way, the EE1 provides six dof in the trunk of the robot while
the additional dof can provide dynamics in its hips to simulate underwater torque. Additionally,
non-gravity or outer space dynamic simulations can be performed. With the use of the compliant
actuator, all of the actuators are situated far from the humanoid to reduce risks.

Other applications that are being developed for this robot include grasping large and irregular
objects in very large workspaces by using the advantage of the cables instead of rigid links in the robot
structure. Furthermore, the compliant behavior of this compliant actuator allows for this kind of robot
to direct human–robot interaction.

2. Redundancy Resolution

Cable robots are usually redundantly actuated to increase their workspace to make them robust
under faults or for increasing their dexterity [40]. The degree of redundancy of a robot is defined as:

r = m− n (1)

where n is the degree of freedom of the mechanism; m is the number of actuators; and r is the degree of
redundancy. When r > 0, for a given wrench applied at the EE, there exists infinite solutions for the
values of tension in the m cables. Those solutions are the different tension configurations of the CDPR.
This tension distribution can be defined in the following way [41]:

τ = −(A)†W + Nλ (2)

where τ is the m-dimension vector of the tension of the cables; (A)† is the Moore–Penrose
pseudoinverse of the non-square wrench matrix of the mechanism; W is the vector of external wrench
applied in the EE; N is the (m × r) matrix that defines the null space basis of A; and λ = [λ1, . . . λr]

is an arbitrary vector in the null space basis. This vector allows for the selection of any tension
distribution in cables (τ) that fulfils the constraints of maximum [42] and minimum [43] tension in
each cable.

The left side of Equation (2) is the particular solution of the tension distribution that has a
minimum 2-norm. The right side is the homogeneous solution that spans all possible tension
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configurations. Applying the principle of virtual work and screw theory, a wrench matrix (A) is
defined as the transpose of the Jacobian matrix of the mechanism [44]:

A =

[
u1

p1 × u1
. . .

un

pn × un

]
(3)

where ui is the unitary vector with the same direction of the force that the i-cable exerts to EE and pi is
the vector of the point of the EE where that force is applied. Using the concept of Screw Theory [45]
for simplicity of calculus, the origin of vector pi is considered to be the EE’s center of mass [45].

In [46], a kinestostatic analysis was made of a spatial mechanism of rigid links defined as
tensegrity-based with compliant connectors. It had seven actuators and six dof. Moon et al. established
the internal energy value for the springs to constrain the r = 1 redundant degree of freedom. In this
article, redundant dof were not constrained by energy assumptions as in [47], but by the tension of
one specific cable related to its linear deformation. This length variation due to cable tension was
amplified by using springs with less stiffness than the cable. Those springs were situated in serial
between the cables and EE. The tension value of one of these springs can be set to a desired value if
the system has available degrees of redundancy to do so. One degree of redundancy must be left free
to fulfill the restriction of tension boundaries in each cable as stated in [20]. With this assumption,
this analysis can be done for any cable-driven, full-constraint robot with r > 2 or a suspended kind of
r > 1 [20,21]. Experiments conducted in this article considered a generic eight cable prototype with
an end effector of six degrees of freedom, so r = 2 degrees of redundancy were available where one
of them was used to ensure that all cables were tensioned, and the other was set to control the cable
tension and its related elongation.

This tension value was imposed in the redundancy analysis to obtain a feasible tension
configuration. The value of this tension is the force that the compliant actuator exerts on the end
effector when the second body of the reconfigurable platform is being controlled.

The elongation of the controlled springs is proportional to the tension force measured in the
springs attached to the EE (τ∗j ) (j = n + 1, . . . , m− 1):

τ∗j = k j
(
lj − l0 j

)
= k jδlj (4)

where k j is the stiffness of j spring and l0 j is its equilibrium length. The value of
δlj (j = n + 1, . . . , m− 1) is set as the necessary condition to obtain the tension configuration of
the m cables. This tension configuration can be obtained using Equation (2), imposing the values of
τ∗j of the r − 1 springs whose elongation is set and solving the m − 1 equations for the r − 1 values
of λ and the n values of τi (i = 1, . . . , n). As mentioned before, we let λr be unconstrained in order
to fulfill the restriction of making every cable pull. So, there were m equations and m + 1 unknown
values. This expression, derived from Equation (2), has the form:

τ1
...

τn

τ∗n+1
...

τ∗m−1
τm


= −(A)†W + N

 λ1
...

λr

. (5)

In Equation (2), there were m independent variables from the tension provided by cables plus
r independent variables from the degrees of redundancy with m equations. In Equation (5), as the
r − 1 values of τ∗j are set to a desired value, there are only m − (r − 1) independent variables from the
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cable tension and r for redundancy. Letting there be one degree of redundancy in order to have some
freedom of choice in the cable tension configuration avoids configurations where a cable tries to push.

Equation (4) provides lj as the independent variable so that the end effector can be substituted by
a mechanism with (r − 1) dof. The range of possible values of lj increases with the range of τ∗j /k j as
seen in Equation (4).

The m actuators of the CDPR, situated in the fixed base, can fully control the (m − 1) degrees of
freedom of the EE considered as a reconfigurable platform. Although some links of the reconfigurable
EE are under high cable tension for maintaining the imposed equilibrium of Equation (2), there are
some links whose tension comes only from the values of the desired lj. That tension depends on the
stiffness of the closed-loop mechanism of the EE.

3. Mechanism Description

The mechanism is a cable-driven parallel robot with a reconfigurable end effector of one dof. As
seen in Figure 3, all cables parted from fixed points where m actuated winches released or collected
the cables. Those winches were situated at generic fixed points. In this way, the motors that act on the
winches could control the length of all the cables. The analysis of this article focuses on the modeling
of a special cable that was able to control both bodies of the end effector, which was the compliant
actuator. The compliant actuator parted from Bi to Ai and D and was controlled by the motorized
winch situated in Bi; however, in Ci, this cable was divided into two cables that provided mechanical
tension to EE1 and EE2.Sensors 2018, 18, x FOR PEER REVIEW  8 of 28 
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Figure 3. Schematic description of a cable-driven robot with a reconfigurable platform of two bodies
(EE1 and EE2). The compliant actuator that parted from Bi to Ai and D could control both bodies of
the reconfigurable end effector at the same time.

A priori, the compliant actuator had one controlled input but two outputs in each body of the
platform, which is why a linear sensor was situated between Ci and Ai. This linear sensor provided
the elongation of that part of the compliant actuator, which was related to its mechanical tension. In
order to amplify the elongation/tension value, a spring was added in series in that cable. The linear
sensor passed through the inside of the spring to provide the elongation of the section Ci Ai and so its
tension value. This value was obtained by using Equation (4). The length between Bi and Ci is lB, lD is
the length from Ci to D, and lA is the length measured by the linear sensor from Ci to Ai. The value of
lB is controlled by a winch, lD is a section of cable with a defined length (when no forces are applied),
and lA is the value measured with the linear sensor.
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The mechanism designed to be the EE of the robot had one dof. The two links of this mechanism
were designated as EE1 and EE2. The body EE2 had a cylindrical articulation (D) that could move
freely through a linear guide. This linear rod was solidary to EE1 with direction z’ and passed through
E. {M} : O′ − x′, y′, z′ is the frame linked in the center of the top face of EE1.

The cable BiCi had a spring attached at its end with stiffness ki. This spring defined the line
AiCi, whose length was measured by using the linear position encoder. These types of encoders
add a tension in Ci with direction to Ci Ai that was characterized in order to be considered in the
model. It also needed to measure the values of the spring stiffness considering them in the function of
elongation Ci Ai. This model ki(‖Ci Ai‖) can be obtained from a traction test of the spring.

The segment of cables that did not have a spring is modeled as a linear spring in order to consider
variations of length due to cable deformation; in addition, the cable was considered without mass.

Hypothesis 1. Cables have negligible mass. Tension force in cable BiCi is exerted due to the weight of the body
EE2. To maintain this tension, Di has to be at a lower height than Ci in the fixed frame {F} : O− xF, yF, zF:

(
→

Ci Ai +
→

AiO′)
F
·k̂F < (

→
DiEi +

→
EiO′)

F
·k̂F. (6)

Using Graph Theory and Screw Theory [22], it is possible to represent, after simplification, this
mechanism as that seen in Figure 4.Sensors 2018, 18, x FOR PEER REVIEW  9 of 28 
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Figure 4. Graphical simplified representation of robot topology. The red line is the lB cable with
imposed tension exerted by the actuator; the green line is lD that transmits effort to the second end
effector and the blue line lA represents the linear sensor link.

As seen in Figure 4, all parallel legs Base− Bi − EE1 can be reduced to a unique wrench obtained
from the linear combination of all the wrenches of the legs. The (r − 1) legs that have an additional
end effector are analyzed in the following section.

4. Definition of the Problem

This article aimed to find the relation between the length of lB and the distance between the two
bodies of the end effector along its degree of freedom restricted by the rod. The compliant actuator
length (lB) was controlled by a motorized winch fixed in Bi. Therefore, this problem focuses on the
behavior of the compliant actuator. In Section 2, we defined how it is possible to exert tension in the
compliant actuator without interference from the resultant wrench applied in EE1. Considering that
all cables can compensate for the effect of the compliant actuator as seen in Equation (5), it is possible
to impose forces and torques values on EE1 with independence on the value of tension provided by
the compliant actuator. However, in order to set the desired wrench in EE1, it is necessary to know
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the tension value of the compliant actuator. The linear sensor according to Equation (4) provides that
measure indirectly. For this analysis, the EE1 was considered fixed in space in order to perform a
specific analysis of the compliant actuator. This assumption was made by imposing null resultant
wrenches in EE1.

In order to reach the proposed objectives, a direct kinetostatic problem was formulated in this

section. The objective of the analysis was to calculate the length ‖
→

ED‖, designated with lE, that is the
distance between the two bodies of the end effector. The known values are the position of the points in
the fixed base Bi and the position and orientation of EE1. That attitude of EE1 can be specified with
Euler angles or quaternions. The homogeneous transformation matrix from {M} to {F} is:

TF
M =

[
RF

M

→
OO′

0 1

]
(7)

where RF
M is the rotation matrix between the two reference frames. The location of the attachment

point of the cable to EE1: (
→

AiO′)
M

is also known, which can be seen from the fixed frame by using

(
→

AiO′)
F
= RF

M(
→

AiO′)
M

. (8)

In the kinetostatic analysis, dynamic efforts are neglected by performing low accelerated
movements. Only the weight of EE is considered as an external wrench W to be substituted in
Equation (2). That wrench is measured from {M}. The value of lE is one of the independent variables
and its value will be one of the (m − 1) reference values for commanding the robot (n values for

positioning EE1 and one value for setting lE). The length ‖
→

AiCi‖ is known by using a linear encoder so
the tension in AiCi can be obtained using Equation (4).

The objective of the process was to obtain the direct kinetostatic resolution. The value of lE was
obtained for each value of lB, which is the length from B to C. Due to the longitudinal deformation of
the cable when tension is exerted and the uncertainty of how the tension of the BC cable is exerted in
the AC cable and the CD cable, it is necessary to add a linear sensor to obtain additional information
of the length and tension in cable AC.

Cable tension is related to geometric configuration. This is because tension in the cables is exerted
only along their axis so they reconfigure themselves to align their geometric axis with the force vectors.
This issue demands an iterative resolution that combines the kinetostatic resolution with stability in
the tension values in order to converge to the precise solution for each sample of the position of the
robot. In Figure 5, the scheme for the resolution of the kinestatic of the compliant actuator of the robot
can be seen. A priori, the known values are l I

B defined by the actuator and the winch that releases the
cable. The value of lA is also known and is directly provided by the linear sensor. Geometric resolution
assumes that cables are inextensible and the desired l I

E value is obtained as seen in Section 5. However,
because we considered deformable cables, we needed to know the tension in each cable to obtain their
elongation. This relation is the same as Equation (4) because the cable has been modeled as a linear
spring. This resolution is developed in Section 6. Once the updated values of cable length have been
obtained, another iteration can be performed to reach more accurate results.

In this analysis, the velocities of the robot were small enough to neglect the dynamic effects and
the position and tension changes were very small. Therefore, only one geometric and wrench iteration
is solved in each sample, aiming to converge to more precise solutions in the following samples. If the
system moves faster or if a more precise solution is needed, more iterations can be done for each value
of lB.
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5. Geometric Resolution

The first step of the analysis was to define the geometric place where point Ci could be situated.

Considering the lengths lB and ‖
→

Ci Ai‖, Ci was situated at the intersection of the two spheres with
those radiuses and centered in Bi and Ai, respectively. This region is a circumference centered in:

(C∗i )
F = BF

i +
(
→

Bi Ai)
F

‖
→

Bi Ai‖
‖
→

BiC∗i ‖. (9)

The distance between the point where the cable begins (Bi) and the center of the circumference is:

‖
→

BiC∗i ‖ =
(‖
→

Bi Ai‖
2
− ‖

→
AiCi‖

2
+ l2

B)

2‖
→

Bi Ai‖
. (10)

The cable has two deviation angles from the theoretical straight line between Bi and Ai due to
cable tension τC: angle β in the pulley or winch Bi and α in the anchor point of EE. These angles are
measured in the plane that contains the triangle BiCi Ai and are obtained with:

β = cos−1

‖ →BiC∗i ‖
lB

 (11)

α = cos−1

‖ →Bi Ai‖ − ‖
→

BiC∗i ‖

‖
→

AiC∗i ‖

. (12)

Knowing this, the radius of the circumference is:

h = lB sin β = lB sin

cos −1

‖ →BiC∗i ‖
lB

 (13)

h = lB

√√√√√1−

‖ →
BiC∗i ‖

lB

2

. (14)

The radius is strictly bigger than zero (h > 0). This circumference has high relevance in this
analysis so a reference frame {C} : C∗ − xC, yC, zC was defined in order to clarify the analysis. xC has
the direction of the line between Bi and Ai; yC is perpendicular to this line and perpendicular to zF.
The direction and orientation of this frame is defined in Figure 3.
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Point C is situated at a point of that circumference. That position depends on the wrench exerted

by EE2 in the system and in the length of ‖
→

CD‖. The position of CC =
[
CC

X , CC
y , CC

Z

]T
with respect to

{C} is:
CC

x = 0 (15)

CC
y = h cos θ (16)

CC
z = h sin θ. (17)

Point C expressed in {F} is:
CF

i = TF
C CC + C∗.F (18)

With TF
C the transformation matrix from {C} to {F}:

TF
C =

[
RF

C

→
OC∗i

0 1

]
. (19)

In Equations (16) and (17), the value of θ is not known. Additional information related to EE2

is needed to have closed-loop equations. The position of D has to be along the line ED and it is a
function of lE:

DF = DF(lE) = O′F + TF
M

(
→

O′E)
M
− lE

→
ED

‖
→

ED‖

M. (20)

Matrix TF
M is defined in Equation (7) and the vertical rod has the direction of

→
z

M
. The unknown

value of θ defines infinite planes Π = Π(θ) defined by the points BF
i , AF

i , CF
i and also C∗

F

i . Formulating
it in the Hessian normal form, its normal vector is:

n̂C = −1
h

∂CC

∂θ
= [0, sin θ, − cos θ]T (21)

n̂F = TF
Cnc. (22)

Hypothesis 2. The mass of Ci can be neglected. With this consideration, it is possible to analyze the equilibrium
of forces applied in Ci as coplanar vectors as is shown in Figure 6.Sensors 2018, 18, x FOR PEER REVIEW  12 of 28 
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The relation between θ and lE is obtained from the intersection between Π and lE k̂M:

DF·n̂F = 0. (23)
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To obtain the isolated value of lE, Equation (22) can be rewritten as:

DF = EF − lEVF. (24)

Combining Equations (23) and (24) and applying a distributive property, we can obtain:

EFn̂F − lEVFn̂F = 0 (25)

lE =
EFn̂F

VFn̂F
. (26)

The operation of Equation (24) needs the vector n̂F that defines Π, which depends on the unknown
angle θ. In order to obtain this, it is necessary to impose the known value of lD on the distance between
Ci and D.

DF − CF
i = EF − EFn̂F

VFn̂F
VF − CF

i (27)

‖DF − CF
i ‖ = lD (28)

Regarding the position of the linear rod
→

EiDi, solutions of the direct kinetostatic problem are
shown in Figure 7. It is known that Ci is situated in a semi-circumference (black line in Figure 7) and
point D is in plane Π, which contains points CF

i , C∗
F

i , DF, so the geometrical shape of the possible

positions of D is a torus of R = ‖
→

CiC∗‖ and r = ‖
→

CiD‖. If we impose conditions of positive traction in
all of the cables, it can be seen that point Ci has to be lower than the horizontal plane that contains
C∗

F

i to maintain the tensions τA and τB as was already proposed in Equation (4). In addition, the
interior face of the torus corresponded to configurations where Ci has to exert effort against the
three cables, which is impossible with this mechanical design (unless punctual high dynamics effects
are considered).
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With the previous boundaries considered as represented in Figure 7, apparently there exists one
or two solutions for the direct kinetostatic problem depending on the position and orientation of the

vertical rod. However, a third condition is based on the projection of the weight of E2, −m2
→
g

F
on

→
ED

F
.

This projected tension has to provide a positive value of τD. A mathematic way to see this condition is:

(
→

ED )
F
·(
→

CiD)
F
> 0. (29)

EE1 is not able to turn more than π/2 rad in xF or in yF, so the vector of weight projection on
the vertical rod is always from E to D, and Equation (27) is always valid. Considering these three
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additional restrictions based on the imposition of positive traction, we passed from the consideration
of four solutions to have a unique one.

6. Wrench Resolution

Once the direct kinetostatic problem is solved by obtaining the value of lD in the function of lB,
it is possible to obtain the wrenches in the three cables that make up the compliant actuator. Values
of tension in each cable are needed to calculate the linear elongation of cables, check if the system is
between the tension limits, and calculate the torque required by the actuator.

A priori, the only known value is τA, which is provided by the relation defined in Equation (4) by
the linear sensor. Figure 7 represents the triangle of equilibrium of tensions, which can be deduced
from the equilibrium of forces shown in Figure 6 by imposing the wrench closure in point Ci. As it
was assumed that point C is massless, all tensions are coplanar in the plane Π. This equilibrium is
expressed (considering unitary vectors) as:

τB
( ˆCiB

)F
+ τC

( ˆCiD
)F

+ τA
( ˆCi A

)F
= 0. (30)

Angles α and β are calculated once the value of θ is obtained. The direction and sense of τB is
known because it is coincident with the lB direction, so it only needs one more value, which can be the
value of τB, the value of τC, or the direction of τC in plane Π. This last value was used in this analysis.

In order to obtain the direction of τC in plane Π, ϕ is obtained from geometric relations as:

ϕ = cos−1

 →
DC·(−

→
BA)

‖
→

DC‖‖
→

BA‖

. (31)

Knowing the direction of the tension τC, all cable tensions can be obtained by imposing the
equilibrium of wrenches as seen in Figure 8. The stiffness of each cable is:

ki =
EA
Li

(32)

where E is Young’s Modulus; A: is the section of the cable; and Li is the length of the cable. With the
stiffness and cable tension, the longitudinal deformation can be obtained by using Equation (4).
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In order to use Equation (2), the value of the external wrenches needs to be defined, which are
responsible for the tension of the cables. Considering the separated wrench of EE1 and EE2, W is
defined as:

WF =

[
F

Mo

]
= WF

EE1
+ WF

EE2
. (33)
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Wrenches applied on both end effectors are considered from the geometric center of EE1.
The symmetry and constant density along its volume is considered in order to set the following
external wrench:

WF
EE1

=

[
−(m1)gF

0

]
. (34)

As this is a kinetostatic analysis, EE2 is static, so:

GL = τCL . (35)

Wrenches applied on EE2 have to be applied in a perpendicular direction of the rod:

WF
EE2

=

 GF
T − τF

CT

RF
M(

→
O′D)

M
× (GF

T − τF
CT
)

. (36)

The value of the wrench exerted in EE1 is due to the mass of EE1. The wrench exerted on EE2 is
due to the components of the mass of EE2 perpendicular to the rod as no friction is considered between
the cylindrical joint of D and the rod. The projection of EE2’s weight over the rod is:

GF
L = TF

M

(
GF·kM

)
. (37)

The perpendicular projection of this weight is:

GF
T = GF −GF

L = mgF −GF
L. (38)

The last step is to find the components of τC over the rod. The direction of τC is given by
→

CiD and

the rod direction is given by
→

ED. The angle between
→

CiD and
→

ED is:

cos
( ˆ→

CiD,
→

ED
)
=

(
→

CiD·
→

ED)

‖
→

CiD‖‖
→

ED‖
τC =

τCL

cos
( ˆ→

CiD,
→

ED
) (39)

where τCL = GL due to the neglecting friction and dynamic effects as seen in Figure 9.
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7. Theoretical Results

A model of a robot with the compliant actuator was developed in the multi-body dynamic
simulator MSC ADAMS. This software can obtain values that are difficult to measure, such as tension
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in cables, forces and reactions in all joints and bodies, and friction and elongation in pulleys and cables.
In addition, multiple kinds of motions can be imposed in the actuators.

In this model, linear and vertical motion were imposed on the end of the white cable shown in
Figure 10. This cable passed along a pulley whose parameters are listed in Table 1. The cable was
attached to point C, which was modeled with a negligible mass of 10−2 kg. Properties of the nylon
cable modeled are shown in Table 2.

The EE1 has been modeled as a rigid body fixed in space. As shown in Section 2, redundancy
can provide this position even when the perturbation of the compliant actuator is exerted. The join
between Ai and C is the spring that adds the needed flexibility to make the linear sensor measurement
more sensible to small tension variations in that branch of the cable. In D is the EE2, which was
modeled as a body with cylindrical restriction with the vertical rod fixed to EE1. The cable between
D and C was modeled with a spring of 222 mm to analyze its elastic behavior. Spring stiffness was
obtained by using Equation (32) and the values from Table 2. The spring stiffness for this cable was
4.83 N/m.

Point C is a solid sphere of 10−2 kg. In Bi, it is situated in a pulley with a radius of 2.5× 10−3 m
that was able to rotate around the axis of its hole and on its vertical axis. In this model, the force
was applied by exerting position control on the final part of the cable (the red ball in Figure 10).
The proposed algorithm allowed us to find the position of D for each length of the cable. The cable
was modeled with the parameters shown in Table 2.

The actuated cable was modeled with the values in Table 2. Elastic behavior and friction with the
pulley was modeled; however, mass and inertia were neglected due to the reduced section of the cable.
The modeling of the cable was a linear spring.
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Table 1. Pulley parameters.

Parameters Values

Diameter (mm) 5
Width (mm) 4
Depth (mm) 0.5
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Table 2. Cable parameters.

Parameters Values

Diameter (mm) 0.6
Young 1 (Pa) 3.9 × 109

Density (kg/m3) 1150
1 Young’s Modulus.

Table 3 shows the initial positions of each relevant part of the model. Point references and the
reference frame can be seen in Figure 3. All values were measured from the fixed frame O.

Table 3. Position of relevant parts.

Parameters X (mm) Y (mm) Z (mm)

O′ 355 477 607
Ai 310 377 575
D 355 417 502
C 193 358 642
Bi 23 953 902

EE1 was fixed as well as the vertical rod to make possible the isolated analysis of the compliant
actuator. EE2, with 0.3 kg of mass, could move along the rod without friction with the unique actuation
of cable CD, which is represented as a spring in Figure 10. In order to leave the end effector moving
without attachment, we needed to know the forces that acted on it, which were provided by using
the method proposed in this article. The simulated experiment, which is shown in graphs as the last
10 s, and each one of the 400 samples was taken each 0.025 s. The speed of the control cable (lB) was
approximately 18 mm/s (0.018 m/s). As can be seen in the following graphs, this speed was slow
enough to neglect the dynamic effects.

Finally, the sensorized cable AC was modeled as a spring. This spring stiffness was obtained
by using a traction test of the spring as can be seen in Figure 11. The linear region of the spring was
considered from 0 to 120 mm and its stiffness, considered constant, as kA = 63.6 N

m . This maximum
length for the spring imposes a restriction in the movement of EE2. In that maximum elongation, the
force achievable was 7.5 N (+2.2 N of the force of the linear encoder) = 9.7 N.
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The linear sensor used was a LX_EP-40 of UniMeasure modeled as a constant force of 2.2 N
compressing the spring. This force was measured and is also specified in the sensor datasheet. So, the
stiffness of the link which connects A with C was modeled as a spring with an additional compressing
force of 2.2 N. The maximum force achievable with springs was 7.5 N + 2.2 N = 9.7 N. At the beginning
of the simulated experiment, the system was pre-tensed to begin in an equilibrium state where the
tension in all cables had a non-zero value. This previous pre-tension mode was not shown because it
was considered as not relevant data in this analysis.

A comparison between the simulation and calculated values of the method proposed in this article
are shown below. In Figure 10, the position of EE2 along the rod, in red, represents the simulated
values and the values obtained with kinetostatic method are in black. The available length of the rod
was 260 mm and the analysis was made from −100 to −270.

The input values in the theoretical method were obtained by using data acquired in a simulation
with MSC ADAMS. Figure 12 shows the value obtained of LD, and Figure 13 shows the value obtained
of LB and LA, which is the measure of the linear sensor. Looking at the configuration of the system
(Figure 3), it can be seen that it was difficult to reach positions close to EE1 with EE2, which was due
to the high tension needed to reach them, and can likely be deduced by extrapolating the data from
Figures 14 and 15.
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Figure 13. (a) Values of LA simulated that are considered in the kinetostatic method as the sensor value.
(b) Input values of LB, length of controlled cable.
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Figure 14. Comparison of the theoretical tension of B cable (blue) and the simulated tension of B
cable (green).
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Figure 15. Comparison of the theoretical tension of D cable (blue) and the simulated tension of D
cable (green).

With this method, the tension values of the tree cables could be obtained. Figure 14 shows the
tension values of cable B, which are related to the torque that the motor has to exert; additionally, this
tension value is highly related to the deformation of this cable as the length is proportional to the cable
deformation as seen in Equation (32).

In order to perform the first validation of these results, the error was measured between the
simulated results and the results from this method. Table 4 shows the mean and standard deviation of
the absolute error of each sample:

εa = Valuecalculated −Valuesimulated. (40)
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Table 4. Absolute error between the model and simulation.

Parameters Values Parameters Values

Mean error LD −1.53 mm Std. Dev. 1 LD 1.71 mm
Mean error τB −0.05 N Std. Dev. 1 τB 0.27 N
Mean error τD 0.01 N Std. Dev. 1 τD 0.01 N

1 Standard Deviation.

Table 5 considers the absolute imprecision values, which considered the absolute value in order
to obtain the mean. The standard deviation with absolute value was also considered:

Ea =
|Valuecalculated −Valuesimulated|

no o f samples
. (41)

Table 5. Absolute imprecision between model and simulation.

Parameters Values Parameters Values

Mean error LD 2.09 mm Std. Dev. 1 LD 0.95 mm
Mean error τB 0.24 N Std. Dev. 1 τB 0.13 N
Mean error τD 0.01 N Std. Dev. 1 τD 0.01 N

1 Standard Deviation.

Table 6 shows the mean of the relative error between the calculated and simulated results with its
value along all samples. This error is defined as:

εR =
εA

Valuesimulated
. (42)

Table 6. Relative error between model and simulation.

Parameters Values

Mean error LD 0.63%
Mean error τB −1.74%
Mean error τD 0.34%

8. Experimental Results

In order to verify that the simulated model was valid, a prototype was built to compare the real
world with the simulated results. The dimensions of the dynamic model in MSC ADAMS and the
prototype are defined in Table 7 (values are considered in the reference frames shown).

Table 7. Dimensions of the robot.

Parameters Values

O′F (mm) [355, 447, 622]
AM (mm) [−45, −70, −30–17] 1

BF (mm) [23, 953, 902]
EM (mm) [0, −30, −30]
mEE1 (Kg) 0.4
mEE2 (Kg) 0.2
lD (mm) 2 222

1 Position of linear encoder is 17 mm under the vertex of the body; 2 Length of cable between C and D when not
under tension.
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As seen in Figure 16c, EE2 was formed by a mechanism of two degrees of freedom (rotations)
that allowed the alignment of cable lD with the central axis of the rod. This was made to reduce the
friction effects and to ensure that the lD cable always ended at the axis of the rod. The distance of lD
was considered from Ci until the red point and not only the physical cable length. The linear encoder
of Figure 16b exerted 2.2 N of force to EE2 due to the tension of its cable. This force was added to the
EE2 mass in the model.Sensors 2018, 18, x FOR PEER REVIEW  20 of 28 
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Figure 16. (a) General view of the CDPR where it shows point Bi where the compliant actuator begins
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a red dot); (c) EE2 with the central axis of the rod marked with a red dot and the extrapolation of the
cable marked with a white discontinuous line.

A scheme of the experimental setup is shown in Figure 17. The incremental linear encoder used
was an LX-EP-40 of UniMeasure. It is able to measure the linear distance of the cable deployed from its
base. The cable of this encoder was under a nominal tension of 2.2 N. The measured resolution
was 2.45 ± 0.35% counts/mm, giving a precision of 0.4 mm/count. The sensing element of the
encoder as an optical incremental encoder with electrical outputs consisting of two square wave,
Transistor-Transistor Logic (TTL) output channels in quadrature. One of these encoders was used
to find the value of lA, as seen in Figure 16b, which is the encoder that will be situated in the robot
in normal duty. The second linear encoder was used to measure the distance of the EE2 from E,
denominated as lD, and check if the real position corresponded with the theoretical one.

The length of the cable was measured by using the encoder of the motor. This motor coiled the
cable around a pulley of 14 mm in diameter that was attached to the shaft of the motor. The tmotor
was an RE 13 Graphite Brushes motor of 3 Watts of Maxon that provided a nominal torque of
2.42× 10−3 nm. The motor had a reducer of 275:1, so the nominal torque in the shaft of the motor
was 0.67 nm. As the pulley where the cable was coiled had a diameter of 14 mm, the nominal tension
exerted to it had a value of 95 N. The motor obtained its power from the amplifier ADS 50/5 4-Q-DC
of Maxon, which applied a current control of the motor.

The encoders of the actuators were attached to the shaft of the motor before the reduction. These
encoders were of the MR Type S, 16 CPT, 2 Channels of Maxon. They detect 16 counts per turn of the
motor, or 16 × 275 = 4400 counts per turn of the shaft of the entire actuator. Each count appears after
0.08◦, which corresponds in the linear displacement of the cable to one count each of 9.7× 10−6 m.

The precision provided by the encoders was enough to work with an accuracy in the experiment
of 0.5 mm.
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All of the signals were handled by using a CompactRIO 9081 from National Instruments that
had a central processing unit (CPU) Dual-Core 1.06 GHz, 2 GB DRAM, 16 GB storage, and an
Field-Programmable Gate Array (FPGA) Virtex-6 LX75. The modules used were the analog input
module AI-NI9205 and the analog output module AI NI-9264.

The absolute accuracy of the analog input module was 3.23 × 10−3 V with random noise of
2.4× 10−4 Vrms and a sensitivity of 9.6× 10−5 V. The calibration of this module was done by using
the self-calibration software. However, the signals acquired by this module were TTL signals from the
encoders, so it did not need more accuracy than this kind of signal requires.

The analog output module requires more precision as this voltage is responsible for controlling
the current of the actuator. This module had a resolution of 16 bits, the gain error for this experiment
was 8× 10−3 V, and the offset error was 10−2 V. Those values were enough to set the current value of
the motor.
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Figure 17. Scheme of the signals considered. Two linear encoders read the values of lA and lD while
the value of lB is obtained by using the encoder of the motor. In blue are the lines of the incoming
values from the sensors, in red are the power lines, and in green are the outcoming signals to control
the motors. The processor was a CompactRIO 9081 with modules for analog input and output.

In Figures 18–20, the values obtained for LB, LA, and LD with the MSC ADAMS simulation
are compared with the values obtained from the real prototype. In order to make an appropriate
comparison, the samples of the real values of lB were situated over the corresponding samples of the
simulated values, which were from sample 56 to sample 156. The same correspondence of the samples
considered the values of lA and lD and had the same scale for the comparison. The values of lB were
obtained by a Proportional-Integral-Derivative (PID) control loop in the actuator where the value of lB
acts as feedback.

Due to limitations in the prototype, only a limited range of movement was achieved. In order
to reach higher positions with EE2, longer springs are needed as the required values of lA are high
when EE2 is situated at a higher position than −200 mm as seen in Figure 13. As seen before, the range
of linear stiffness of the spring was from 0 to 120 mm so the values corresponding to that range are
shown in Figure 19 in red color. In order to focus this analysis in terms of the behavior of the compliant
actuator, EE1 was attached to the fixed frame.
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Figure 19. Comparison of the simulated and real world results for lA. The dotted line corresponds to
the simulated results with MSC ADAMS. The red line corresponds to the value of lA in an experiment
where EE2 goes up from its lower position. The blue line corresponds to the value of lA in an experiment
where EE2 goes down from its upper position.
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Figure 20. Comparison of the simulated and real world results for lD. The red line corresponds to the
value of lD in an experiment where EE2 goes up from its lower position. The blue line corresponds to
the value of lD in an experiment where EE2 goes down from its upper position.
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We conducted t experiments to calculate the repeatability and statistical distributions.
Two experiments were undertaken by displacing the EE2 from its lower position to the upper position
and another two experiments were developed by displacing the EE2 from its upper position to
the lower position. This method should be valid for the two types of displacements so the two
measures were considered together as experiments with the same working conditions to obtain the
statistical distributions.

The repeatability of the measures was based on the method presented in [44]. The values of the
range of the measures can be seen in Figure 21a,b.Sensors 2018, 18, x FOR PEER REVIEW  23 of 28 
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Two different measures from different experiments were performed. The maximum value of the
range of the measure of lA was 6.3 mm while the mean value of its range was 2.2 mm. The maximum
value of the range of the value of lD was 4.2 mm while the mean value of its range was 1.7 mm.
The standard deviation due to repeatability is calculated and the results are shown in Table 8.

Table 8. Range of the measuring.

Parameters lA (mm) lD (mm)

Max. range 6.2 4.2
Mean range 2.2 1.7

Max. Std. Dev 1 5.5 3.7
Mean Std. Dev 1 1.9 1.5

1 Std. Dev.: Standard Deviation

Measuring the difference between the real values and the simulated ones allows for the
visualization of the deviation of the measurements from the desired values. The maximum error
between the real and simulated measures is shown in Figure 22 and Table 9 as well as the mean error
along the whole range of the mechanism.
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Table 9. Deviation from simulated and real measures.

Parameters lA (mm) lB (mm)

Max. error −3.5 −3.9
Min. error 0 −0.6
Mean error −1.2 −1.9
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The range of lA was [54, 94] mm and the range of lB was [−237, −202] mm. The relative error
comparing the mean error with the range of each measure is shown in Table 10.

Table 10. Relative error between simulation and real prototype.

Parameters Values

Mean error LA 3.0%
Mean error LD 5.3%

9. Discussion

The method presented in this article gives the position of the second body of the end effector
and tension of all parts of the compliant actuator with limited accuracy for any given value of lB. The
following values are needed as input:

• Position and shape of the first end effector.
• Position of the points where cables are deployed from the fixed structure.
• Characteristics of the cable, spring, and linear sensor.
• Mass of the two end effectors.
• Constant length of the cable attached to the second end effector.
• Variable length of control cable (lB) and measure of the linear encoder as the input of the algorithm.
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The analysis proposed was kinetostatic and dynamic effects were neglected. This consideration is
valid when slow movements are made. In this case, lB moved with a speed of 18 mm/s (0.018 m/s),
which, as seen, was low enough to neglect the dynamic effects.

The number of samples considered was 400 samples in the simulated experiment and 8000 in
the real world experiment. In each sample, the mathematic method ran with only one iteration of the
algorithm shown in Figure 5. It can be seen that with only one iteration, the absolute imprecision of
EE2’s position was below 3.5 mm of error when compared with the simulated model.

The results obtained with the analysis shown in this study allows for the creation of the control
position of a cable-driven parallel robot with two end effectors configured in the way defined with a
cable that exerts its effort over the two bodies. Considering this methodology of measuring with a
linear encoder in the intermediate links, it could be possible to increase the number of end effectors
and complexity of the system.

In addition, by using the information provided by the sensor and the spring attached to it, it
is possible to calculate tension in all cables. Knowing the tension in control cable (lB), it is easier
to develop better joint control of the actuator by adding this variable tension to the control scheme.
Tension in cable lD can be useful in those cases where there is interaction with humans or delicate
environments to restrict the cable tension to increase security. The value of tension of cable lA allows
for the control of EE1 due to its direct influence being one of the wrenches applied by the n cables.

The dynamic model used in MSC ADAMS simulated a totally controlled environment to test
the validity of this algorithm. It can be seen that the error between both results is acceptable for
slow applications that do not need high precision or high speed, such as underwater robots or
rehabilitation devices.

The dynamic model of MSC ADAMS was validated with real-world experiments developed
with a prototype with the same configuration as the dynamic model. There were some sources of
error between the prototype and the model, such as the friction effects not modeled, deviation of
the cable of the linear encoder before getting into the spring, or the presence of electric noise in
some measurements.

Several hypothesis were imposed in order to make this analysis possible:

• Mass of C was neglected.
• Mass of cables was neglected.
• Pulleys’ geometry and their dynamics were not considered.

The mass of point C was very small because in the actual prototype it is made by a system of
bolts and nuts of low weight. In the simulated model, this weight was considered to be 10−2 kg. This
hypothesis was crucial in this analysis to work with one plane Π.

Nylon cables have a density of 1150 (kg/m3) and an area of 0.28 mm2. For a length of 700 mm,
the cable weight is 0.22 g, which in this analysis could be easily neglected. With this hypothesis, the
catenary effects were not considered.

It is noticeable that the mean error between the real and simulated measures had a negative value
for the position of the second body of the end effector as well as a negative value for the elongation
of the spring with the sensor. This effect could have appeared due to a non-precise characterization
of the elastic effects of the nylon cable that in the real case could have a lower stiffness than in the
theoretical and simulations. The Young’s modulus of the cable has been defined in Table 8 because
is the parameter related to nylon. However, the behavior of the nylon varies with the use and other
conditions as seen in [44]. In addition, the neglecting of the mass of the cables and the mass of C could
have relevance in the appearance of that error. In [37], different sources of errors are explained when
an elasto-geometrical model is used with cable mechanism. Similarities between the graphs presented
in both articles are easily detected.

One way to reduce this error could be the consideration of a cable stiffness of lower values than
the theoretic value of the nylon and the consideration of the cable mass.
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Finally, the dynamics and geometry of the pulleys were considered in the dynamic simulator;
however, the algorithm considered them as points in their center.

Future research should consider kinetostatic and dynamic analysis of this kind of robot in order
to improve control with higher speeds.

10. Conclusions

In this paper, we designed a novel cable-driven robot with a reconfigurable end effector by using
a “compliant actuator” setup. The proposed design was simulated within MSC ADAMS with a range
of movement of the end effector mechanism of 170 mm with an 0.63% of error with respect to the
theoretical results.

The experimental tests validated the simulated model with a 5.4% error, which can be seen as
suitable for the intended application due to the intended human–robot collaboration and the high
elastic effects present in the robot.

This compliant actuator mechanism is open to a wide range of applications related to end effectors
with many dof where they are controlled by using the redundancy in the external actuators.
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