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Abstract: In the future, phasor measurement units are expected to be applied in distribution networks
(DNs) for their control and monitoring. Because of the widely used power electronic devices in
DNs, harmonics are widely present in a voltage/current signal. Particularly, second harmonics
have the most significant uncertainty contributions to synchrophasor estimation, which is especially
true when a short cycle observation window is used for a fast response. Based on the interpolated
dynamic discrete Fourier transform (IpD2FT), this paper introduces an enhanced IpD2FT (e-IpD2FT)
synchrophasor estimator that considers second harmonic interferences. First, the adaptive equivalent
filters of the IpD2FT are given. Based on these, the optimal frequencies where the IpD2FT has the least
second harmonic interferences are then searched using an enumeration method, and the e-IpD2FT
synchrophasor estimator is accordingly proposed. Instantaneous frequency responses and several
simulation tests show that the e-IpD2FT performs much better than the IpD2FT in second harmonic
suppression, and can meet the P-class response time requirements and most of the M-class accuracy
requirements of the IEEE standard C37.118.1 only over a three-cycle window.

Keywords: discrete Fourier transform (DFT); digital filter; interpolated dynamic DFT; synchrophasor
estimation; second harmonic interference

1. Introduction

Nowadays, the power flows in distribution networks (DNs) become bidirectional due to the
increasing penetrations of distributed energy resources (DERs) (e.g., photovoltaic power generation
systems and energy storage systems) in power systems. It is necessary to accurately measure
voltage/current phasors, frequencies and even rate of change frequencies (ROCOFs) for DN monitoring
and control. To this end, phasor measurement units (PMUs) widely used in transmission networks
(TNs) are also expected to be applied in DNs.

According to the IEEE standard C37.118.1-2011 and its amendment standard C37.118.1a-2014
(collectively called the Standard in the following) [1,2], PMUs are divided into two classes for TNs:
(1) P-class for fast response applications (i.e., protection); and (2) M-class for high accuracy applications
(i.e., measurement and monitoring). In DNs, a PMU is expected to have the above two abilities
simultaneously. On the one hand, voltage dips and swells occur frequently in DNs, which requires
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that PMUs should estimate synchrophasors only over a few cycles. In addition, PMU-based fast
fault diagnose and location applications in DNs need fast synchrophasor estimates. On the other
hand, large harmonic distortions and frequency deviations can be present in DNs [3–5], which
requires that PMUs should be robust to large disturbances. However, it is a big challenge to meet
these two requirements simultaneously. Harmonic interferences are non negligible in this complex
scenario, which is especially true when large frequency deviations are also present in a voltage/current
signal [3,4]. Particularly, second harmonics, which can be very high in DNs due to the high penetration
of DERs, have the most significant uncertainty contributions [6].

Traditionally, many methods have been proposed to estimate synchrophasors with the
consideration of frequency deviations and oscillations [3,7–14]. For example, as for frequency
deviations, a very useful tool is the well-known interpolated discrete Fourier transform (IpDFT) [7]
and its enhanced version [8]. Regarding oscillations, the Taylor series expansion is widely used in
the literature to describe oscillating signals, such as the least square [9], the weighted least square
(WLS) [10], the Taylor-DFT [11–13], the TaylorK-Kalman filter [14] and the interpolated dynamic
DFT (IpD2FT) [3]. However, few of these papers have considered second harmonic interferences.
Typically, the IpD2FT is one of the most accurate synchrophasor estimators under oscillation and large
frequency deviation conditions [3]. It can obtain synchrophasor, frequency and ROCOF based on the
phasor derivative estimates. However, because the second harmonic is the harmonic closest to the
window spectrum main lobe, the attenuation around the second harmonic frequency is the lowest.
Thus, the IpD2FT suffers from second harmonic interferences, which is especially true when large
frequency deviations are also present.

The widely used DFT can suppress second harmonic interferences significantly under
synchronous sampling conditions [15]. However, under nonsynchronous conditions, large errors will
arise because of the effects of spectral leakage and second harmonic interferences [16]. Recently, a series
of methods was proposed to estimate synchrophasors considering second harmonic interferences,
such as the improved WLS method [4], the Taylor–Kalman–Fourier filter [17], the Taylor–Fourier
transform (TFT) and its improved version [18], i.e., the adaptive TFT [19–21]. For example,
synchrophasor estimation filters that have a notch filter effect at the second harmonic frequency
are designed by the TFT. However, under large frequency deviations, large errors will arise because the
second harmonic cannot be filtered clearly. Although the adaptive TFT has a wide stop band around
the second harmonic frequency, it needs high computational cost or large memory to calculate filters
online or store filters.

In this paper, an enhanced IpD2FT (e-IpD2FT) synchrophasor estimator is proposed considering
second harmonic interferences. It only uses a two- or three-cycle data window, and thus its response
time is extremely short. It can sufficiently suppress second harmonic interferences, even when large
frequency deviations and oscillations are also present. Although higher order harmonics can also
be significant in DNs, these harmonics can be suppressed by adopting a suitable window function,
e.g., the Hanning window [4]. Interharmonics can also be significant in DNs. Nevertheless, this paper
focuses on second harmonic suppression.

2. e-IpD2FT Synchrophasor Estimator

This section introduces the e-IpD2FT synchrophasor estimator. First, the classical IpD2FT is
briefly recalled. Then, the adaptive equivalent filters of the IpD2FT are given. Next, the optimal
frequencies used in the IpD2FT with the least second harmonic interferences are found based on these
filters, and the e-IpD2FT is accordingly proposed. Finally, the implementation steps of the e-IpD2FT
are summarized.

2.1. Signal Model

Generally, a dynamic signal can be expressed as
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x(t) =
√

2Re{X1(t)ej(2π f t+θ1(t))} (1)

where Re{·} represents the operation selecting the real part of its argument; f is the actual fundamental
frequency; and X1(t) and θ1(t) are the fundamental amplitude and phase oscillations, respectively.
Please note that f may differ from the nominal fundamental frequency f0 with a static frequency
deviation ∆ f , i.e., ∆ f = f − f0. According to [1], a synchrophasor s(t) is defined as a phasor referred
to the nominal fundamental frequency, which is given by

s(t) =
X1(t)√

2
ej(θ1(t)+2π∆ f t)

= p(t)ej2π∆ f t
(2)

where p(t) is the so called raw synchrophasor.

2.2. Classical IpD2FT

Assume Equation (1) is sampled at sampling rate fs = f0N0, and Nw samples are obtained in
an observation window centered at time t0 = 0, where N0 is the sample number of a nominal cycle.
Thus, the integer nominal cycle number of the observation window is c = bNw/N0c. Please note that,
to make t0 lie in the center of the observation window, Nw should be an odd number. The Taylor series
expansion is used to approximately express p(t) with a Kth-order truncation [9]. Then, the signal
around time t0 can be approximately expressed as

xK[n] =
√

2
2

K

∑
k=0

1
k!
(

n
fs
)k[pkej2π f n/ fs + p∗k e−j2π f n/ fs ]

n = −(Nw − 1)/2, ..., 0, ..., (Nw − 1)/2

(3)

where the superscript ∗ represents the conjugate operation; and pk is the kth-order derivative of p(t)
calculated at time t0. Computing the windowed discrete-time Fourier transform (DTFT) of Equation (3),
we have

XK( fb) =

√
2

Nw

(Nw−1)/2

∑
n=−(Nw−1)/2

xK[n]w[n]e−j2π fbn/ fs

=
K

∑
k=0

[pkWk( fb − f ) + p∗k Wk( fb + f )] b = 1, 2, 3

(4)

where fb (with b = 1, 2, 3) is a bin frequency (with f1 = (c−1) fs
Nw

, f2 = c fs
Nw

and f3 = (c+1) fs
Nw

), w[·] is
a window function, and

Wk( fb) =
1

Nw

(Nw−1)/2

∑
n=−(Nw−1)/2

1
k!
(

n
fs
)kw[n]e−j2π fbn/ fs (5)

is a function related to the derivative order k (with k = 0, 1, ..., K) and fb (with b = 1, 2, 3). Truncate the
Taylor series expansion to the second order (K = 2). Then, Equation (4) can be rearranged as[

WR W I

W I
∗ WR

∗

] [
p
p∗

]
≈

[
X
X∗

]
(6)

with X ∈ C3 being a column vector containing the windowed DTFT of x[n] at the three bin frequencies;
p ∈ C3 and p∗ ∈ C3 being two column vectors containing pk and its conjugate phasor p∗k (with
k = 0, 1, 2) , respectively; and WR ∈ C3×3 and W I ∈ C3×3 being two matrices containing Wk( fb − f )
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and Wk( fb + f ) computed at different orders k (with k = 0, 1, 2) and different frequencies fb (with
b = 1, 2, 3). Additionally, Equation (6) can be rearranged as

WP ≈ Y (7)

where W is a matrix consisting of WR, W I and their conjugate matrices; P is a column vector consisting
of the two vectors p and p∗; and Y is a column vector consisting of two vectors X and X∗. Obviously,
because the three bin frequencies used in the windowed DTFT are unequal, W ∈ C6×6 is a full rank
matrix. Then, P can be easily estimated by

P̂ = W−1Y (8)

Thus, the raw synchrophasor p̂0 and its derivatives p̂1 and p̂2 are obtained. Then, the fundamental
frequency and ROCOF can be estimated by [9]

f̂ (t0) = f +
1

2π
·

Im{ p̂1 p̂∗0}
| p̂0|2

(9)

ˆROCOF(t0) =
1

2π

Im{ p̂∗0 p2}
| p̂0|2

− 1
π

Re{ p̂∗0 p̂1}Im{ p̂∗0 p̂1}
| p̂0|4

(10)

where Im{·} represents the operation selecting the imaginary part of its argument. Accordingly,
the frequency deviation can be estimated by

∆ f̂ (t0) = f̂ (t0)− f0 (11)

In this way, the estimated synchrophasor ŝ(t0) can be obtained according to Equation (2). It should
be noted that the actual fundamental frequency f is usually unknown. It is originally assumed as f0

and then three iterations are needed to get an accurate estimate [3].
Obviously, the second harmonic interferences are not considered in [3]. If the second harmonic is

significant, it will lead to a large interference component in Y , and large differences will be present
between WP and Y . As a result, large errors will arise (see Equation (7)). Compared with other
harmonics, the second harmonic is closest to the window spectrum main lobe. Thus, it has the most
significant uncertainty contribution to synchrophasor estimation.

2.3. Adaptive Equivalent Filters of the IpD2FT

As is well known, PMU is a typical discrete-time system, and a PMU using the IpD2FT method can
be seen as a linear time-invariant system during each iteration. Thus, during each iteration, the phasor
derivative (p0, p1 and p2) estimators can be equivalent to three digital finite-impulse-response (FIR)
filters. Then, the ability of second harmonic interference suppression of the IpD2FT can be evaluated
based on these adaptive equivalent filters. Consider that, in Equation (8), Y can be expressed in linear
convolution, which is given by

Y =



g1[n]⊗ x[n]
g2[n]⊗ x[n]
g3[n]⊗ x[n]
g∗1 [n]⊗ x[n]
g∗2 [n]⊗ x[n]
g∗3 [n]⊗ x[n]


(12)

where ⊗ denotes the operation of linear convolution, and
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gb[n] =
√

2
Nw
· w[n] · ej2π fbn/ fs b = 1, 2, 3 (13)

is the equivalent filter of the windowed DTFT. Assume the six row vectors of the matrix W−1 are Ri
(with i = 0, ..., 5); Ri[q] represents the q-th element of Ri, which is related to Wk( fb − f ) and Wk( fb + f ),
and can be seen as the gain of the corresponding DTFT value Y[q]; P̂[i + 1] represents the (i + 1)-th
element of P, i.e., the phasor derivatives and their conjugate phasors. Then, Equation (8) can also be
expressed as

P̂[i + 1] =
6

∑
q=1

Ri[q]Y[q]

=
3

∑
q=1

Ri[q] · (gq[n]⊗ x[n]) +
6

∑
q=4

Ri[q] · (g∗q−3[n]⊗ x[n])

i = 0, ..., 5

(14)

In this way,

hi[n] =
3

∑
q=1

Ri[q] · gq[n] +
6

∑
q=4

Ri[q] · g∗q−3[n]

n = −(Nw − 1)/2, ..., 0, ..., (Nw − 1)/2

i = 0, 1, 2

(15)

are the adaptive equivalent FIR filters for p0, p1 and p2 estimation, respectively. According to
Equations (4), (13) and (15), these filters are related to the three DTFT frequencies fb (with b = 1, 2, 3)
and the fundamental frequency f . During each iteration, the IpD2FT modifies the fundamental
frequency f in its signal model, and W (or Ri[q]) is recalculated. Then, the adaptive equivalent filters
are redesigned.

Theoretically, if any three different frequencies around f are used in the windowed DTFT, W will
be a full rank matrix, and Equation (7) can be successively solved. Thus, not only the bin frequencies
but also other three frequencies around f can be used to design the above adaptive filters. Obviously,
when different DTFT frequencies are used, there will be different second harmonic interference
components in Y . That is also to say, the adaptive filters (thus the IpD2FT) will have different
performances on second harmonic suppression [22]. Thus, we can find optimal DTFT frequencies to
design adaptive filters with the strongest second harmonic suppression. Then, the total vector error
(TVE), frequency error (FE) and ROCOF error (RFE) will be controlled at a low level.

2.4. DTFT Frequency Selection for Accuracy Enhancement of the IpD2FT

This subsection first selects the optimal DTFT frequencies for the no frequency deviation condition,
i.e., f = f0. Then, the solution to the frequency deviation condition is given.

When f = f0, the IpD2FT does not need any iteration. Then, it is true that the IpD2FT can be seen
as a bank of FIR filters given in Equation (15) (no longer the adaptive ones). We can use the frequency
responses of these equivalent filters to evaluate the TVE, FE and RFE of the IpD2FT. According to [23],
if Equation (1) is stationary (i.e., the fundamental magnitude and phase oscillations are ignored),
the relationship between the IpD2FT’s TVE (FE or RFE) and its frequency response can be given by
(see Appendix A).

TVE ≤
√

2
2
{|H0( f0)−

√
2|+ |H0(− f0)|+ r(|H0(2 f0)|+ |H0(−2 f0)|)} (16)

FE ≤
√

2
2
· 1

2π
(|H1( f0)|+ |H1(− f0)|) +

r
2π

(|H1(2 f0)|+ |H1(−2 f0)|) (17)
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RFE ≤
√

2
2
· 1

2π
(|H2( f0)|+ |H2(− f0)|) +

r
2π

(|H2(2 f0)|+ |H2(−2 f0)|) (18)

where Hi( f )(with i = 0, 1, 2) represents the frequency response of hi[n] (with i = 0, 1, 2) at frequency
f ; and r is the magnitude ratio of the second harmonic to the fundamental. After some algebra and
simplifications (see Appendix B), Equations (16)–(18) can be rewritten as

TVE ≤
√

2
2
· r|H0(2 f0)| (19)

FE ≤
√

2
2
· r

2π
|H1(2 f0)| (20)

RFE ≤
√

2
2
· r

2π
|H2(2 f0)| (21)

Thus, the IpD2FT’s TVE, FE and RFE upper bounds are mainly determined by the filters’
attenuation at the second harmonic frequency. Based on the enumeration method, three optimal
frequencies can be found to minimize the sum of the TVE, FE and RFE upper bounds, i.e.,

e =
√

2
2
{r|H0(2 f0)|+

r
2π

(|H1(2 f0)|+ |H2(2 f0)|)} (22)

The implementation details of the enumeration method are as follows. Generally, to make W
a full rank matrix, the three frequencies cannot be the same. In this paper, the minimum deviations
between each of the two frequencies are set at 1 Hz. Additionally, to reduce the infiltration from the
image fundamental tone and second harmonic component [6], the three frequencies need to be close
to f . In this paper, they are limited in a frequency band of (25, 75) Hz. Finally, the step for optimal
frequencies searching is set at 0.2 Hz.

It should be highlighted that the optimal frequencies are for the no frequency deviation condition.
However, in practice, the fundamental frequency frequently deviates from the nominal value. To deal
with this problem, we can take the following measures:

• Compute W and Y using the optimal frequencies fb of the no frequency deviation condition,
and estimate the actual fundamental frequency f using Equation (9).

• Modify fb as fb + 2∆ f (with b = 1, 2, 3), and recompute W and Y to estimate the actual
fundamental frequency again.

• Repeat the above two steps twice (i.e., another two iterations) for high accuracy.

In this way, the new adaptive filters will have similar second harmonic suppression abilities as
the filters for the no frequency deviation condition. The reason is shown in Figures 1 and 2. When the
adaptive equivalent filters can sufficiently suppress second harmonic interferences, it is equivalent to
the second harmonic interferences at fb being very small (see the red line in Figure 2) [22]. When the
fundamental frequency has a deviation of ∆ f , the new optimal frequencies should deviate fb with
a deviation of 2∆ f to keep the ability of second harmonic suppression (see the blue and red bins
in Figure 2).

In Table 1, the optimal DTFT frequencies for the no frequency deviation condition are listed. In this
paper, short cycle windows, i.e., two- and three-cycle windows, are considered for fast responses.
The Hanning and Hamming windows are both adopted for illustration. In Table 1, we can see that the
optimal DTFT frequencies for two-cycle windows (both the Hanning and Hamming window) are very
small. This is because the DTFT values at small frequencies will have small interferences from second
harmonics (see Figure 2).
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Figure 1. Illustration of the principle.

Figure 2. Illustration of the second harmonic interference. The red and blue lines are second harmonic
interferences at different frequencies. The image second harmonic component is ignored. Only one bin
used in the IpD2FT is illustrated.

Table 1. Optimal DTFT frequency sets for different windows and window lengths with f = f0.
The sampling frequency is set at 2000 Hz (for 50-Hz system).

c Hanning Hamming

2 {25.0, 26.0, 27.2} {28.2, 33.8, 46.0}

3 {29.2, 53.0, 66.2} {35.2, 45.4, 65.0}

2.5. Implementation Steps of the e-IpD2FT

The implementation steps of the e-IpD2FT are summarized in Figure 3. To suppress second
harmonic interferences under frequency deviation conditions, a first estimation of fundamental
frequency should be carried out, and then the three DTFT frequencies are adaptively modified. In this
way, the estimated fundamental frequency is not only used in signal model foundation but also in
DTFT frequency modification. For a high accuracy, we take three iterations to modify the fundamental
frequency and thus the DTFT frequencies.
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Based on the optimal DTFT frequency selection and adaptive modification, the e-IpD2FT can
suppress second harmonic interferences. Even when the second harmonic interferences and frequency
deviations occur simultaneously, the e-IpD2FT can still estimate the synchrophasor, frequency and
ROCOF with a high accuracy.

Figure 3. Implementation steps of the e-IpD2FT.

2.6. Computational Complexity

The main computations of the e-IpD2FT and IpD2FT are generating matrices (W , Y) and solving
Equation (7). Assume there are Nw samples in the observation window; the iteration number is n;
and the Taylor truncation order is K = 2. Then, the main computations of the two methods are listed
in Table 2. Compared with the IpD2FT, the e-IpD2FT’s DTFT frequencies are adaptively modified at
each iteration. Thus, the DTFT computation will change at each iteration, and the computation time
of the e-IpD2FT will be longer than the IpD2FT. However, because only three iterations are carried
out, the overall complexity of the e-IpD2FT will still be quite small. If N0 = 40, then the overall
floating-point operations of the two- and three-cycle e-IpD2FT are only 45,468 and 94,122, respectively.
Thus, even if a low performance digital signal processor is used, the computation time will still be
very short.

Table 2. Computational complexity of the e-IpD2FT and IpD2FT. The computation types + and × denote
complex addition and multiplication, respectively.

Method Comp.
Comp. Type

+ × exp

e-IpD2FT
W 6n(Nw − 1) 6nNw 6nNw

Y 3n(Nw − 1) 3nNw 3nNw

(7) 130n 412n –

IpD2FT
W 6n(Nw − 1) 6nNw 6nNw

Y 3(Nw − 1) 3Nw 3Nw

(7) 130n 412n –
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3. Instantaneous Frequency Response

This section mainly compares the performances of the IpD2FT and e-IpD2FT for second harmonic
suppression. In Figure 4, the instantaneous frequency responses of the e-IpD2FT and IpD2FT are shown.
As is known, frequency and ROCOF estimates are more sensitive to second harmonic interferences.
This section selects the filter on p1 estimation for illustration. In Figure 4a, we can see that, when the
fundamental frequency is set at 50, 53 and 55 Hz, the second harmonic attenuation of the e-IpD2FT’s
adaptive equivalent filter is 27.76, 17.77 and 12.42 dB, respectively. By contrast, the second harmonic
attenuation of the IpD2FT’s adaptive equivalent filter is only 8.26, −6.56 and −6.32 dB, respectively
(see Figure 4b). The second harmonic attenuation of the e-IpD2FT’s adaptive equivalent filter is always
bigger than 10 dB, and is about 20 dB larger than the IpD2FT’s. This evidence shows that the e-IpD2FT
can suppress second harmonic interferences, even under large frequency deviation conditions.

It is interesting that Figure 4a,b shows different shapes around second harmonic frequency.
The reason is shown in Figures 1 and 2. When different frequencies are used in the IpD2FT, the DTFT
values in Y will have different interferences from the second harmonic. If the optimal frequencies are
used, the interferences will be very small, and the adaptive equivalent filters can strongly suppress the
second harmonic. Moreover, under frequency deviation conditions, the optimal frequencies will be
adaptively modified, and the second harmonic will still be sufficiently suppressed.

Figure 4. Instantaneous frequency response of the e-IpD2FT and IpD2FT for p1 estimation.
The three-cycle Hanning window is chosen for illustration. f is set at 50, 53 and 55 Hz, respectively:
(a) e-IpD2FT; and (b) IpD2FT.
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4. Simulation Tests

To evaluate and compare the performances of the e-IpD2FT and IpD2FT, a series of simulation tests
are carried out. First, canonical tests stated in the Standard are carried out to show that the e-IpD2FT
can meet basic requirements of the Standard. Next, peculiar conditions where multiple disturbances
occur simultaneously are considered to show the e-IpD2FT’s robustness to large second harmonic
interferences. Finally, a real world example is taken to show the practical values of the e-IpD2FT.

More details about the tests are as follows. (1) Two- and three-cycle windows are particularly
considered in this paper. (2) The Hanning and Hamming windows are both adopted for illustration.
(3) All test signals are sampled at 2000 Hz (for 50-Hz system). (4) The initial phases of all possible
components (e.g., the fundamental and the second harmonic) are randomly selected within [0, 2π] rad.
(5) At distribution level, the level of harmonics or other disturbances can be very high. Thus, all signal
parameters, such as frequency deviation, harmonic distortion level, modulation level, modulation
frequency and linear frequency ramp rate, are set at the maximum values of M-class tests stated in the
Standard (corresponding to the worst conditions). (6) As for accuracy tests, the M-class TVE, FE and
RFE limits in the Standard are referred with reporting rate RR = 50 frames/s (in China, RR is generally
set at 50 frames/s). (7) Regarding responsiveness tests, the P-class response time limits in the Standard
are referred for transient tests.

4.1. Canonical Tests

In this subsection, a set of canonical tests stated in the Standard, including frequency deviation,
harmonic distortion, amplitude and phase modulations (AM + PM), frequency ramp and step changes,
are carried out to verify the performances of the proposed method. The corresponding results are
shown in Table 3. As shown, although sometimes the results of the e-IpD2FT are worse than the
IpD2FT, they are always much smaller than the corresponding limits. In this respect, the e-IpD2FT can
be used for practical applications. The differences between the results of the e-IpD2FT and IpD2FT are
caused by their different instantaneous frequency responses.

Table 3. Canonical test results and the corresponding thresholds in the standard. The Hanning window
is adopted in the e-IpD2FT and IpD2FT. The observation window is three cycles long. The results of
the amplitude step change test are expressed in nominal cycles. In other tests, the TVEs (%), |FE|s (Hz)
and |FE|s (Hz/s) are given in maximum values.

Parameter
Fre. Dev. Harm. Dist. AM + FM

std e-IpD2FT IpD2FT std e-IpD2FT IpD2FT std e-IpD2FT IpD2FT

TVE 1 0.00 0.00 1.00 0.09 0.05 3.00 0.03 0.01

|FE| 0.005 0.00 0.00 0.03 0.00 0.01 0.30 0.02 0.02

|RFE| 0.1 0.00 0.00 – 0.06 1.73 14.00 0.95 0.92

Parameter
Amp. Step Change (±10%) Ph. Step Change (± π

18 ) Fre. Ramp

std e-IpD2FT IpD2FT std e-IpD2FT IpD2FT std e-IpD2FT IpD2FT

TVE 2.00 0.82 0.82 2.00 1.60 0.95 1.00 0.00 0.00

|FE| 4.50 2.35 2.35 4.50 2.38 2.57 0.01 0.00 0.00

|RFE| 6.00 2.70 2.70 6.00 2.78 2.53 0.20 0.00 0.00

In addition to the above tests, out-of-band interferences with frequencies within the interval
[10, f0 − RR/2] and [ f0 + RR/2, 100] should also be considered to test the proposed method.
These frequencies are close to the optimal frequencies and the bin frequencies, which makes the
interferences too high. As a result, neither the e-IpD2FT nor the IpD2FT can meet the Standard’s
requirements. The performances of the e-IpD2FT are similar to the IpD2FT as reported in [3].
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These interferences can be suppressed by adopting a long observation window [3], but this is not the
subject of this paper.

4.2. Frequency Deviation + Second Harmonic

In DNs, frequency deviations and second harmonic interferences may occur simultaneously.
To test the proposed method’s robustness to this condition, a signal with a −5-Hz frequency deviation
( f = 45 Hz) and a 10% second harmonic is considered. In the following, the abbreviation “frequency
deviation + second harmonic” is used to denote the test defined above. Similar abbreviations used in
the following have the similar meanings. This is the worst test condition stated in the Standard.

The maximum TVEs, |FE|s and |RFE|s returned by the e-IpD2FT and IpD2FT are shown in Table 4.
In Table 4, we can see that the e-IpD2FT is much more accurate than the IpD2FT. This is because the
e-IpD2FT can select optimal frequencies and adaptively modify them under frequency deviations.
Thus, even under large frequency deviations, the e-IpD2FT can still sufficiently suppress the second
harmonic interferences. Additionally, when a three-cycle window is used, the maximum TVEs, |FE|s
and |RFE|s of the e-IpD2FT are much smaller than the related limits of the Standard. In this respect,
the e-IpD2FT has a better performance than the IpD2FT, which needs a four-cycle window to achieve
the same performance [3].

Table 4. Maximum TVEs (%), |FE|s (Hz) and |RFE|s (Hz/s) returned by the e-IpD2FT and IpD2FT in
the “frequency deviation + second harmonic” test. Gray cells refer to the results beyond the boundaries
of the M-class requirements of the standard.

Parm. Std. c
Hanning Hamming

e-IpD2FT IpD2FT e-IpD2FT IpD2FT

TVE 1 2 1.97 7.47 0.47 7.14
3 0.10 2.42 0.11 1.61

|FE| 0.025 2 0.36 1.21 0.11 1.15
3 0.01 0.11 0.01 0.12

|RFE| –
2 120.66 472.07 14.97 423.75

3 0.56 88.66 2.97 52.26

4.3. Frequency Deviation + Second Harmonic + Modulation

In this subsection, another complex scenario that may occur in DNs is considered. Specifically,
not only the−5-Hz frequency deviation and 10% second harmonic but also the fundamental amplitude
and phase modulations are considered. The modulation level and frequency are set at 0.1 and 5 Hz,
respectively. According to the Standard, this is also the worst condition for such a test.

In Table 5, the results returned by the e-IpD2FT and IpD2FT under such condition are shown.
Please note that the e-IpD2FT is much more accurate than the IpD2FT because it can significantly
suppress second harmonic interferences. In addition, the maximum TVEs, |FE|s and |RFE|s returned
by the three-cycle e-IpD2FT are still smaller than the corresponding limits of the Standard.

4.4. Other Complex Scenarios

In some complex scenarios, not only the second harmonics but also the third or higher-order
harmonics may be present in a voltage/current signal. Generally, only the second and third harmonics
have strong impacts on synchrophasor estimation. Higher-order harmonics can be sufficiently
suppressed by the Hanning window [4]. Meanwhile, additive wide band noise should also be
considered. In this subsection, two typical scenarios are considered: (a) joint effects of−5-Hz frequency
deviation, 10% second harmonic and third harmonic; and (b) joint effects of−5-Hz frequency deviation,
10% second harmonic and 60-dB noise.
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Table 5. Maximum TVEs (%), |FE|s (Hz) and |RFE|s (Hz/s) returned by the e-IpD2FT and IpD2FT in
the “frequency deviation + second harmonic + modulation” test. The meaning of the gray cells is the
same as in Table 4.

Parm. Std. c
Hanning Hamming

e-IpD2FT IpD2FT e-IpD2FT IpD2FT

TVE 3 2 2.25 8.40 0.62 7.99
3 0.23 2.78 0.19 1.88

|FE| 0.3 2 0.40 1.35 0.14 1.29
3 0.04 0.15 0.04 0.16

|RFE| 14 2 134.41 540.20 19.30 482.36
3 4.12 100.35 5.69 61.10

The TVEs, |FE|s and |RFE| of both methods (maximum in Scenario (a), mean and standard
deviation values in Scenario (b)) are reported in Table 6. Compared with Table 4, several conclusions
can be drawn. Although the third harmonic or wide band noise are also present, the three-cycle
e-IpD2FT can still meet the corresponding requirements of the Standard. However, the IpD2FT
cannot meet the corresponding requirements. In the test of “Fre. Dev. + 2nd Harm. + 60 dB Noise”,
the e-IpD2FT with respect to the IpD2FT shows a remarkable performance improvement for the RFE.
When in the presence of second harmonics and frequency deviation, large interferences will be present
at bin frequencies, whereas they are negligible at the adaptive selected frequencies. Because the RFE is
the rate of FE, it is more sensitive to such interferences. As a result, the e-IpD2FT has much smaller
|RFE|s (mean and standard deviation values) than the IpD2FT.

Table 6. TVEs (%), |FE|s (Hz) and |RFE|s (Hz/s) returned by the e-IpD2FT and IpD2FT. The Hanning
window is adopted in the e-IpD2FT and IpD2FT. The observation window is three cycles long. The TVE,
FE and RFE limits in the standard are the same as in Table 4. The meaning of the gray cells is the same
as in Table 4.

Test Type Method TVE |FE| |RFE|

Fre. Dev. + 2nd Harm + 3rd Harm e-IpD2FT 0.12 0.01 1.32

IpD2FT 2.43 0.11 89.09

Fre. Dev. + 2nd Harm + 60 dB Noise
e-IpD2FT

mean 0.09 0.00 0.33

std. dev. 0.00 0.00 0.06

IpD2FT
mean 2.38 0.06 55.93

std. dev. 0.00 0.00 712.73

4.5. Sampling Rate

As is known, the optimal frequencies given in Table 1 are obtained in a sampling frequency of
2000 Hz. In this subsection, the performances of the e-IpD2FT under different sampling rates are tested
(2000, 2400, 4000 and 4800 Hz). The fundamental frequency is set at 51 Hz (1-Hz frequency deviation),
and the magnitude ratio of the second harmonic to the fundamental is set at 5%.

The results are shown in Table 7. As shown, although the sampling rate varies, the maximum TVEs,
|FE|s and |RFE|s returned by the e-IpD2FT do not have any variation. By contrast, the results returned
by the IpD2FT have a few changes. The reason is as follows. For the e-IpD2FT, the DTFT frequencies
are the same in all tests. However, the IpD2FT modifies its DTFT frequencies ( fb = (c−1) fs

Nw
, c fs

Nw
and

(c+1) fs
Nw

) with the sampling rate variations. Thus, the DTFT values (Y) of the e-IpD2FT are the same in
all tests, whereas the DTFT values of the IpD2FT are not the same. Anyway, the e-IpD2FT is robust to
sampling rate variations.
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Table 7. Results (maximum values) returned by the e-IpD2FT and IpD2FT under different sampling
rates. The TVE, FE and RFE limits in the standard are the same as in Table 4.

Parm. Method
Sampling Rate (Hz)

2000 2400 4000 4800

TVE e-IpD2FT 0.04 0.04 0.04 0.04
IpD2FT 0.06 0.06 0.07 0.07

|FE| e-IpD2FT 0.00 0.00 0.00 0.00
IpD2FT 0.01 0.01 0.01 0.01

|RFE| e-IpD2FT 0.06 0.06 0.06 0.06
IpD2FT 2.04 2.13 2.30 2.34

4.6. A Real World Example

To demonstrate the real benefit of the e-IpD2FT, a real world example in industry is taken in this
paper. According to [24], transformer current during inrush can have a second harmonic up to 63%
of the fundamental. Meanwhile, higher-order harmonics can also be present. In this subsection,
such a complex scenario is considered. Harmonic levels are set according to [24] (see Table 8).
The fundamental frequency is set at 49 Hz, and 60 dB wide band noise is added to the signal.
Accordingly, the results are reported in Table 9. We can see that, even under such large harmonic
disturbance conditions, the mean TVE, |FE| and |RFE| of the e-IpD2FT are only 0.55%, 0.01 Hz and
0.98 Hz/s, respectively, which are smaller than the corresponding limits of the Standard. However,
the IpD2FT cannot meet the corresponding requirements. This example shows the significant practical
values of the e-IpD2FT.

Table 8. Harmonic components of the test signal.

Harm. Comp. 2nd 3rd 4th 5th 6th 7th

Magnitude (% of the fundamental) 63 26.8 5.1 4.1 3.7 2.4

Table 9. TVEs (%), |FE|s (Hz) and |RFE|s (Hz/s) of the two methods. The Hanning window is adopted
in both methods. The observation window is three cycles long. The TVE, FE and RFE Limits in the
standard are the same as in Table 4. The meaning of the gray cells is the same as in Table 4.

Test Type Method TVE |FE| |RFE|

Fre. Dev. + Harmonics + 60 dB Noise
e-IpD2FT

mean 0.55 0.01 0.98
std. dev. 0.00 0.00 0.36

IpD2FT
mean 1.86 0.12 41.94

std. dev. 0.00 0.00 398.88

5. Conclusions

This paper proposes a novel synchrophasor estimator, especially for DNs, where the most
significant uncertainty contribution is the second harmonic. The adaptive equivalent filters of the
IpD2FT are given in this paper, which are used for finding optimal frequencies. The e-IpD2FT has
a fast response, and can meet P-class response time requirements because only a few cycles are used.
In addition, it has a high accuracy, and can meet most of the M-class accuracy requirements only over
a three-cycle observation window, even when oscillation, large frequency deviation and harmonic
distortions occur simultaneously in a voltage/current signal. A real world example is taken to show
the real benefit of the e-IpD2FT.
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Appendix A. Proof of Equations (16)–(18)

A stationary voltage/current signal containing the fundamental and second harmonic components
can be defined as

x(t) = x1(t) + x2(t)

= a1cos(2π f1t + φ1) + a2cos(2π · 2 f1 · t + φ2)

= Re{
√

2p1ej2π f1t +
√

2p2ej2π·2 f1·t}
(A1)

where a1 and a2 denote the amplitudes of the fundamental and the second harmonic, respectively;
φ1 and φ2 denote the phases of the fundamental and the second harmonic, respectively;
p1 = a1√

2
ejφ1 and p2 = a2√

2
ejφ2 are the fundamental and the second harmonic phasors, respectively;

and x1(t)= a1cos(2π f1t + φ1) and x2(t)= a2cos(2π · 2 f1 · t + φ2) denote the fundamental and the
second harmonic, respectively. Assume ∆ f1 is the static fundamental frequency deviation,
i.e., ∆ f1 = f1 − f0 (with f0 being the nominal fundamental frequency). According to the IEEE
standard [1], the synchrophasor is defined as a phasor referred to the nominal fundamental frequency,
i.e., s1(t) = p1ej2π∆ f1t. Please note that due to the possible frequency deviation, the synchrophasor
s1(t) should be a time function, even though the fundamental phasor p1 is a constant. Because ∆ f1 is
a constant, the i-th order derivative of the synchrophasor s1(t) is

s(i)1 (t) = (j2π∆ f1)
i p1(t) i = 0, 1, 2 (A2)

Then, the synchrophasor derivative estimates are as follows:

ŝ(i)1 (t) = x(t)⊗ hi(t)

= x1(t)⊗ hd
i (t) + x1(t)⊗ (hi(t)− hd

i (t)) + x2(t)⊗ hi(t)

= s(i)1 (t) + ηi(t) i = 0, 1, 2

(A3)

where hd
i (t) is the ideal filter for the estimation of the i-th order synchrophasor derivative, it should

have ideal frequency responses as follows:

Hi( f ) =

{√
2[j2π( f − f0)]

i | f − f0| ≤ 5

0 | f − f0| > 5
(A4)

and ηi(t) is the estimation error of p(i)1 (t), which is given by

ηi(t) = x1(t)⊗ (hi(t)− hd
i (t)) + x2(t)⊗ hi(t) i = 0, 1, 2 (A5)

Additionally, according to Equations (A3) and (A5), we can obtain

ŝ∗1(t)ŝ
(i)
1 (t) = s∗1(t)p(i)1 (t) + εi(t) i = 0, 1, 2 (A6)

where εi(t) is the difference between ŝ∗1(t)ŝ
(i)
1 (t) and s∗1(t)s

(i)
1 (t), which is given by
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εi(t) = s∗1(t)ηi(t) + s(i)1 (t)η∗0 (t) + η∗0 (t)ηi(t)

= s∗1(t)ηi(t) + (j2π∆ f1)
is1(t)η∗0 (t) + η∗0 (t)ηi(t) i = 0, 1, 2

(A7)

According to Equations (9) and (10), after some algebra, the TVE, FE and RFE of the estimator can
be given by [23]

TVE = |η0(t)
s1(t)

| (A8)

FE = ∆ f1Re{η0(t)
s1(t)

}+ 1
2π

Im{η1(t)
s1(t)

}+ o(η) (A9)

RFE = 2π∆ f1
2Im{η0(t)

s1(t)
} − 2∆ f1Im{η1(t)

s1(t)
}+ 1

2π
Im{η2(t)

s1(t)
}+ o(η) (A10)

where o(η) denotes negligible high-order term of ηi. Thus, we can obtain

TVE =

√
2

2
|
(H0( f1)−

√
2)p1 + H0(− f1)p∗1 + H0(2 f1)p2 + H0(−2 f1)p∗2

s1(t)
|

≤
√

2
2
{|H0( f1)−

√
2| |p1|
|s1(t)|

+ |H0(− f1)|
|p∗1 |
|s1(t)|

+ |H0(2 f1)|
|p2|
|s1(t)|

+ |H0(−2 f1)|
|p∗2 |
|s1(t)|

}

≤
√

2
2
{|H0( f1)−

√
2|+ |H0(− f1)|+ r[|H0(2 f1)|+ |H0(−2 f1)|]}

(A11)

FE =

√
2

2
∆ f1 · Re{

(H0( f1)−
√

2)p1 + H0(− f1)p∗1 + H0(2 f1)p2 + H0(−2 f1)p∗2
s1(t)

}

+

√
2

2
· 1

2π
Im{

[H1( f1)−
√

2(j2π∆ f1)]p1 + H1(− f1)p∗1 + H1(2 f1)p2 + H1(−2 f1)p∗2
s1(t)

}

≤
√

2
2
|∆ f1| · |

(H0( f1)−
√

2)p1 + H0(− f1)p∗1 + H0(2 f1)p2 + H0(−2 f1)p∗2
s1(t)

|

+

√
2

2
· 1

2π
|
[H1( f1)−

√
2(j2π∆ f1)]p1 + H1(− f1)p∗1 + H1(2 f1)p2 + H1(−2 f1)p∗2

s1(t)
|

≤
√

2
2
|∆ f1|{|(H0( f1)−

√
2)|+ |H0(− f1)|+ r(|H0(2 f1)|+ |H0(−2 f1)|)}

+

√
2

2
· 1

2π
{|[H1( f1)−

√
2(j2π∆ f1)]|+ |H1(− f1)|+ r(|H1(2 f1)|+ |H1(−2 f1)|)}

(A12)

RFE =

√
2

2
· 2π∆ f1

2 · Im{
(H0( f1)−

√
2)p1 + H0(− f1)p∗1 + H0(2 f1)p2 + H0(−2 f1)p∗2

s1(t)
}

−
√

2
2
· 2∆ f1Im{

[H1( f1)−
√

2(j2π∆ f1)]p1 + H1(− f1)p∗1 + H1(2 f1)p2 + H1(−2 f1)p∗2
s1(t)

}

+

√
2

2
· 1

2π
Im{

(H2( f1) +
√

2 · 4π2∆ f1
2)p1 + H2(− f1)p∗1 + H2(2 f1)p2 + H2(−2 f1)p∗2

s1(t)
}

≤
√

2
2
· 2π∆ f1

2{|(H0( f1)−
√

2)|+ |H0(− f1)|+ r(|H0(2 f1)|+ |H0(−2 f1)|)}

+

√
2

2
|2∆ f1|{|[H1( f1)−

√
2(j2π∆ f1)]|+ |H1(− f1)|+ r(|H1(2 f1)|+ |H1(−2 f1)|)}

+

√
2

2
· 1

2π
{|(H2( f1) +

√
2 · 4π2∆ f1

2)|+ |H2(− f1)|+ r(|H2(2 f1)|+ |H2(−2 f1)|)}

(A13)

where Hi( f1) (with i = 0, 1, 2) represents the frequency response of hi[n] (with i = 0, 1, 2) at the
fundamental frequency f1; and r= |p2|

|p1|
= |p2|
|s1(t)|

is the magnitude ratio of the second harmonic to
the fundamental. Please note that the denominator in Equations (A11)–(A13) is reduced since
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|p1| = |p∗1 | = |s1(t)|. Additionally, the “Im{·}” part becomes “| · |” because the imaginary part of
a phasor is always not greater than its absolute value.

When f1 = f0, ∆ f1 = 0. Then, Equations (A11)–(A13) can be rewritten or simplified as

TVE ≤
√

2
2
{|H0( f0)−

√
2|+ |H0(− f0)|+ r(|H0(2 f0)|+ |H0(−2 f0)|)} (A14)

FE ≤
√

2
2
· 1

2π
{|H1( f0)|+ |H1(− f0)|+ r(|H1(2 f0)|+ |H1(−2 f0)|)} (A15)

RFE ≤
√

2
2
· 1

2π
{|H2( f0)|+ |H2(− f0)|+ r(|H2(2 f0)|+ |H2(−2 f0)|)} (A16)

Appendix B. Proof of Equations (19)–(21)

For a filter given in Equation (15)

hi[n] =
3

∑
q=1

Ri[q] · gq[n] +
6

∑
q=4

Ri[q] · g∗q−3[n] i = 0, 1, 2 (A17)

its frequency response at frequency f0 is

Hi( f0) =
(Nw−1)/2

∑
n=−(Nw−1)/2

hi[n]e−j2π f0n/ fs

=
(Nw−1)/2

∑
n=−(Nw−1)/2

(
3

∑
q=1

Ri[q] · gq[n])e−j2π f0n/ fs

+
(Nw−1)/2

∑
n=−(Nw−1)/2

(
6

∑
q=4

Ri[q] · g∗q−3[n])e
−j2π f0n/ fs

=
3

∑
q=1

Ri[q]
(Nw−1)/2

∑
n=−(Nw−1)/2

gq[n]e−j2π f0n/ fs

+
6

∑
q=4

Ri[q]
(Nw−1)/2

∑
n=−(Nw−1)/2

g∗q−3[n]e
−j2π f0n/ fs

=
√

2
3

∑
q=1

Ri[q]W0(−( fq − f0)) +
√

2
6

∑
q=4

Ri[q]W0( fq−3 + f0)

=
√

2
3

∑
q=1

Ri[q]W0( fq − f0) +
√

2
6

∑
q=4

Ri[q]W0( fq−3 + f0) i = 0, 1, 2

(A18)

where W0(−( fq − f0)) = W0( fq − f0) because W0( f ) is an even function. Please note that Ri[q] is
an element of W−1, where

W−1 =


R0[1] R0[2] · · · R0[6]
R1[1] R1[2] · · · R1[6]

...
...

. . .
...

R5[1] R5[2] · · · R5[6]

 (A19)
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Because W has the form of

W =



W0( f1 − f0) W1( f1 − f0) W2( f1 − f0) W0( f1 + f0) W1( f1 + f0) W2( f1 + f0)

W0( f2 − f0) W1( f2 − f0) W2( f2 − f0) W0( f2 + f0) W1( f2 + f0) W2( f2 + f0)

W0( f3 − f0) W1( f3 − f0) W2( f3 − f0) W0( f3 + f0) W1( f3 + f0) W2( f3 + f0)

W∗0 ( f1 + f0) W∗1 ( f1 + f0) W∗2 ( f1 + f0) W∗0 ( f1 − f0) W∗1 ( f1 − f0) W∗2 ( f1 − f0)

W∗0 ( f2 + f0) W∗1 ( f2 + f0) W∗2 ( f2 + f0) W∗0 ( f2 − f0) W∗1 ( f2 − f0) W∗2 ( f2 − f0)

W∗0 ( f3 + f0) W∗1 ( f3 + f0) W∗2 ( f3 + f0) W∗0 ( f3 − f0) W∗1 ( f3 − f0) W∗2 ( f3 − f0)


(A20)

Then, we can obtain

H0( f0) =
√

2{
3

∑
q=1

R0[q]W0( fq − f0) +
6

∑
q=4

R0[q]W0( fq−3 + f0)} =
√

2 (A21)

H1( f0) =
3

∑
q=1

R1[q]W0( fq − f0) +
6

∑
q=4

R1[q]W0( fq−3 + f0) = 0 (A22)

H2( f0) =
3

∑
q=1

R2[q]W0( fq − f0) +
6

∑
q=4

R2[q]W0( fq−3 + f0) = 0 (A23)

The above three equations correspond to the first three elements of the first column of the identity
matrix I = W−1W . According to Equation (A21), we have

|H0( f0)−
√

2| = 0 (A24)

Additionally, when | f − f0| > f0, the attenuation of the estimator is very high. Thus, we can obtain{
|Hi(− f0)| ≈ 0

|Hi(−2 f0)| ≈ 0 i = 0, 1, 2
(A25)

According to Equations (A22)–(A25), Equations (16)–(18) can be simplified as

TVE ≤
√

2
2
· r|H0(2 f0)| (A26)

FE ≤
√

2
2
· r

2π
|H1(2 f0)| (A27)

RFE ≤
√

2
2
· r

2π
|H2(2 f0)| (A28)
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