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Abstract: Steel bars play an important role in modern construction projects and their quality
enormously affects the safety of buildings. It is urgent to detect whether steel bars meet the
specifications or not. However, the existing manual detection methods are costly, slow and offer poor
precision. In order to solve these problems, a high precision quality inspection system for steel bars
based on machine vision is developed. We propose two algorithms: the sub-pixel boundary location
method (SPBLM) and fast stitch method (FSM). A total of five sensors, including a CMOS, a level
sensor, a proximity switch, a voltage sensor, and a current sensor have been used to detect the device
conditions and capture image or video. The device could capture abundant and high-definition
images and video taken by a uniform and stable smartphone at the construction site. Then data
could be processed in real-time on a smartphone. Furthermore, the detection results, including steel
bar diameter, spacing, and quantity would be given by a practical APP. The system has a rather
high accuracy (as low as 0.04 mm (absolute error) and 0.002% (relative error) of calculating diameter
and spacing; zero error in counting numbers of steel bars) when doing inspection tasks, and three
parameters can be detected at the same time. None of these features are available in existing systems
and the device and method can be widely used to steel bar quality inspection at the construction site.

Keywords: machine vision; steel bars; quality inspection; dimensional measurement; number
counting; high precision; video data acquisition

1. Introduction

With the development of modern society, the demand for reinforced concrete in the process of
urbanization is greatly increasing, which gives rise to higher technology requirements. In order to
ensure the quality of construction projects as well as the safety of builders and occupants, it is urgent
to detect whether the steel bars in the building meet the specifications or not.

In urban construction, there are many problems, such as rough construction, thin steel bars and
so on, which can seriously affect the building quality and safety [1]. There are three main reasons
for this: firstly, the relevant building companies can gain huge economic benefits from shoddy work
and sub-standard materials. Secondly, the construction management is lax. Thirdly, the construction
workers and the public have poor security awareness. These problems lead to the construction quality
failing to meet the acceptance criteria, posing a security risk. The statistics of the Ministry of Housing
and Urban-Rural Development of the China (MOHURD) show that from 2004 to 2017 structural
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collapses occurred a total of 1321 times, accounting for 13.42% of the total number of safety accidents
and the number of deaths was 1764, accounting for 19.28% of the total number of deaths from 2004
to 2013. Structural collapses are the leading cause for death among safety accidents and the second
most likely cause of safety accidents. Therefore, solving the problem of steel bar quality detection has
a profound and important practical significance.

In order to put forward an automated inspection device and method, we searched the domestic
and foreign literature about the quality inspection of steel bars [2–12] to know the various detection
methods widely used in recent years. Moreover, we organized them into the following Table 1
according to the content of the articles including measuring parameters, sensors employed, inspection
method, absolute error, and relative error.

Table 1. Articles about quality inspection of steel bar.

References Measuring
Parameters Sensors Inspection

Method
Absolute

Error Relative Error

Defects detection methods of bar
surface size under complex
illumination [4]

Diameter CCD Machine vision More than
0.072 mm

More than
0.18%

Application of ground
penetrating radar in the survey
of the rebar in concrete slab [5]

Diameter
and spacing

Ground
penetrating

radar

Radar image
processing

More than
2 mm More than 10%

Application of wavelet
transform in GPR to detect
reinforcing bar [6]

Diameter
and spacing

Ground
penetrating

radar

Wavelet
transform

More than
0.4 mm More than 1.6%

GPR measurement of the
diameter of steel bars in concrete
specimens based on the stationary
wavelet transform [7]

Diameter
and spacing

Ground
penetrating

radar

Radar image
processing

More than
2 mm More than 9.1%

Extracting dimensional
information from steel reinforcing
bars in concrete using neural
networks trained on data from an
inductive sensor [8]

Diameter
and spacing

Inductive
sensor

Neural
networks

More than
0.12 mm More than 1.1%

Method for detecting the diameter
of steel bar in wall by terahertz
wave or millimeter wave [9]

Diameter

Terahertz
wave or

millimeter
wave

Measuring the
power of

reflected signal
- -

Precise Diameter Measurement of
Reinforcing Bar and Steel Pipe
based on Bi-static Model using
Microwave Radar [10]

Diameter Microwave
radar

Microwave
propagation

time

More than
5.6 mm More than 20%

From Table 1, we can summarize that there are four main methods to detect the quality of steel
bars, including the measurement of the diameter and spacing, for which most proposed existing
methods use static image processing. The first approach is based on machine vision, which has a
comparatively high accuracy (as low as 0.072 mm (absolute error) and 0.18% (relative error)), however,
it can only calculate the diameter of steel bars through processing static images. The second method is
to use ground-penetrating radar (GPR) technology to detect buried matters with different dielectric
constant and conductivity. It can calculate the diameter and spacing of steel bars and has a lower
accuracy than machine vision-based methods. In addition, GPR equipment is expensive, and it is
mainly used to detect the nature and location of underground materials, so it is so wasteful and less
precise to measure steel bars diameters in buildings or at the construction site. The third technique is
to use steel bar detectors. Currently, most steel bar detection devices use electromagnetic induction
to detect steel bars, but such devices are unable to work under a strong alternating electromagnetic
field. There is another method using a special neural network to extract the diameter and the spacing
of the steel bars. This neural network is trained by data collected from induction sensors. However,
the neural network method is complex and can only process static images. It takes a long time cost
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to train the network although it has a low error. The fourth way is use microwaves to measure the
diameter but the error is rather high (5.6 mm (absolute error) and 20% (relative error)). These four
methods are all used to detect steel bars embedded in buildings, but none if the existing method focus
on the number of steel bars.

Our current goal is to measure the diameter, spacing, and number of steel bars at the same
time. Traditional steel bar quality inspection methods mainly utilize Vernier calipers or other fast
inspection rulers to detect bars. These methods rely on human eyes for judgement, and they have the
disadvantages of large workload, low efficiency, poor accuracy and only sampling small batches at
a time, so the results are usually unsatisfactory. In a word, there is essentially no especially efficient
method for quality inspection of steel bars in the present construction industry field. The entire
construction industry has a huge gap in this area, therefore, an automated, sophisticated inspection
device is the best choice. Therefore we focus the method based on machine vision.

Additionally, we can find that the accuracy of machine vision-based detection methods is much
higher than that of other methods. These methods have the advantages of real-time and large-capacity
detection. Related research is however rare, so we innovatively choose this method to realize steel bar
quality inspection. In order to realize the machine vision-based quality inspection of large quantities
of steel bars, it is necessary to acquire image and video data of the steel bars in the field. In view of the
complex and changeable construction environment, poor working environment and large interference
of wireless signals, we have designed a data acquisition device. The device obtains high-precision
photos and videos taken by the uniform and stable smartphone in the banding field, then utilizes
computer image processing technology to achieve large volume quality detection of several kinds of
steel bars in the buildings, and further promotes the construction safety to an unprecedented new level.
We conducted multiple tests at the construction site of a power pipe gallery. The acquisition image
is clear and the device has a high adjustment accuracy, so the implementation process is effective,
which demonstrates that the device and method can be extended to steel bar quality inspection at
other construction site in the future.

In this paper, a high precision machine-vision-based inspection system for steel bar quality has
been developed. On the construction site, steel bar images or video could be taken by a smartphone,
and a practical APP installed on the smartphone would process the video in real-time. Ultimately,
the application could show the inspection results which are helpful to users. The rest of the paper
is organized as follows: Section 2 describes the principle of the steel bar quality inspection system
in detail, including design ideas, the overall architecture, and workflow. Section 3 describes out the
methods that are used to detect the steel bars’ diameter, spacing and quantity, including the sub-pixel
boundary location method (SPBLM) and fast stitch method (FSM). Section 4 describes the hardware
and software components of the steel bar quality inspection system. In Section 5, the applications
of this system is discussed and the result analysis is given. Finally, the paper is concluded in the
last section.

2. Principle of the Steel Bar Quality Inspection System

Due to complexity of the construction environment, different data acquisition and process
methods are required in various working environments [13]. It is not easy to realize data acquisition
at construction sites, for example, a power pipe gallery. Aiming at solving these problems, we have
successfully developed a set of data acquisition equipment and proposed a corresponding method to
inspect the quality of steel bars, including the diameter, spacing, and quantity of steel bars.

A schematic diagram of the data acquisition system is shown as Figure 1. It expresses that a
smartphone is installed in the device that under the correct operation conditions captures images or
videos from the construction site. The whole device (including the smartphone) uses the following
sensors: a level sensor, a CMOS, a proximity switch, a voltage sensor, and a current sensor (the voltage
sensor and the current sensor are encapsulated in the power supply and stepper motor). Then data
is transmitted to computer in a wireless way or will be processed by a practical APP installed on
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the smartphone that we specially designed. The acquisition image is clear and the device has high
adjustment accuracy, which makes implementation process effective. The smartphone or computer
will finish the quality inspection through video processing tasks based on machine vision, including
the detection of diameter, spacing, and quantity of steel bars. Finally, the inspection results can be
reported to the developers or quality inspection agencies through the application. Once the results
are assessed, the developers or quality inspection agencies can immediately order the construction
workers to stop watering cement and perform the necessary rework for removing any unqualified steel
bars. This system is not complicated, but it can provide sufficient and real-time solutions to the current
problems in the construction industry field, greatly ensuring the safety of buildings and personnel.
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Figure 1. Schematic diagram of video data acquisition system.

As shown in Figure 2, the video data acquisition process can be described as follows: it is a
complete assembled data acquisition device. After arriving at the building site, the components
of the equipment are assembled. Then the horizontal calibration operation is carried out.
More concretely, the triangular bracket is provided with a hand-wheel capable of controlling the
elevation. The horizontal calibration device, level sensor, is mounted on the triangular brackets and
the guide rail. The height of the triangular bracket at both ends of the guide rail is adjusted to be equal
by rolling the hand-wheel and the guide rail is horizontal. After adjusting the position in place, we set
the velocity and turning direction by using the stepping motor controller. Then the stepping motor
driver will receive the signal and the motor will drive the slider to move smoothly. At this moment,
the mobile phone installed on a gimbal will move to capture images or video and the acquisition
process begins. The shooting angle of the gimbal and smartphone are arranged in advance, and the
shot is finished when the slider touches the proximity switch at both ends of the guide rail.
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3. Methods

3.1. Image Pretreatment Method

It’s common that the laying environment of steels is very bad, causing a variety of interference
signals in the obtained image. Hence, it is necessary to do de-noising operations in order to improve
the quality of images. Afterwards comparing with Wiener filter and mean filter, the median filter has
been chosen to decrease the salt and pepper noise on the surface of steels.

Owing to the high precision of steel dimension calculations, the background and target should
be segmented in the image. Typically, for purpose of getting a threshold, different methods to solve
segmentation problems are proposed. One of the most common and effective methods is the Otsu [14]
method, compared with the two-peak method and iterative method, which can get the details more
precisely, thereupon making edge detection possible.

The Canny edge detector is an edge detection operator that uses a multi-stage algorithm to detect
a wide range of edges in images. The boundary determined by the Canny operator is a single pixel
edge, which reflects the distribution of transverse rib edges more precisely.

We conducted four sets of experiments under different illumination and background, and they
are shown in Table 2, respectively. We captured images in a laboratory (Group 1) and an outdoor
environments, including a normal outdoor environment (Group 2) and a construction site (Groups 3
and 4). For Group 1, the image has a large contrast between foreground (FG) and background (BG)
and finally we get clear edges for subsequent processing. In Group 2, the images have a relatively
large FG and BG contrast, but the BG is more complex. Although the outline of the reinforcement is a
bit defective, we finally get distinct edges and it can be used for subsequent treatment. In Group 3,
the image has a totally different illumination and interference of banding knots but we finally get
clear edges for post-processing. In Group 4, the FG and BG contrast is relatively low with a complex
background. Though our adopted pretreatment, steel bars can be segmented well and there still be
a little noise that cannot be removed. It means that pretreatment we used may not work very well
in some low FG and BG contrast environments but this hardly influenced subsequent processing.
In general, the pretreatment we adopted can get good results under different conditions.
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Table 2. Several results of pretreatment.

Group Original Image Image after
Median Filter

Segmentation by
Otsu Method

Edges Detected by
Canny

1
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3.2. Steel Bar Boundary Localization Method

In general, the diameter is the closest inner distance of two thinned edges, and the distance is the
closest outer edges distance of adjoining steel bars. However, it is easy incur in an error owing to the
lack of precision on account of the discretized image, influence of noise, and jagged edges.

Many common methods are used to detect lines in images [15–19], The Hough transform is
one of those methods. When facing the problem of detecting steel bar lines, its results may not be
rational in many conditions, an even erroneous. For instance, it’s the ideal situation we encounter
from the processed images that steel bars are critically vertical (Figure 3a) and the threshold of Hough
transform we set is apropos (Figure 3b), which gets the right inner position of the steel bars (red lines
in Figure 3c), and we can get the right diameter, denoted by d, as shown in Figure 3d. However,
the most common state we encounter is shown as Figure 3e. If we adjust the threshold (Figure 3f),
we may obtain the outer position, nevertheless we cannot get each outer position, which is depicted
as red lines in Figure 3g, and we will get wrong diameter d2 as the right diameter is denoted as d1
(Figure 3h). Hence, under the condition of a fixed threshold, it seems that this is an impossible task for
the Hough transform algorithm. Similarly, other line detection algorithms are also confronted with
such a dilemma.
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Figure 5. Recording the pixel numbers of edges by scanning the first row of pixels of a projection. 

Figure 3. Two commonly edge detection state: (a) ideal state of steel bar; (b) apropos Hough
transformation threshold; (c) right inner position acquired; (d) correct diameter obtained; (e) common
state of steel bar; (f) another Hough threshold; (g) wrong inner position acquired; (h) erroneous result
of diameter we may obtain.

In view of this, this paper proposes a sub-pixel boundary location method (SPBLM) based on the
image projection. This method uses the directional projection of the acquired image. Then the image
can be easily processed and we can obtain the information we require.

Figure 4 is a schematic diagram of sub-pixel boundary positioning by finding the projection edges.
We give the pixel positions of four peaks of one steel bar as h1, h2, h3 and h4. Moreover, the diameter is
denoted as D and spacing is given as S. The left two figures show the ROI (red rectangle), for decreasing
calculation amount, and vertical projection of the edge-detected image processed by Canny operator,
and the middle figure shows a partial enlargement of the vertical projection (blue rectangle). As can be
seen from the right figure, each refinement boundary has two peaks (the position is indicated by the
blue line), which can be seen as the outer position and inner position of saw tooth edge, compared
with the right figure, a crop of the segmentation image.
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3.3. Steel Bar Dimension Calculation Method

In this paper, the dimension calculation method is to transform the pixel difference to an actual
size. After obtaining the value of h1 to h4, we can simply calculate the inner-inner position pixel
difference δin and outer-outer position pixel difference δout. Subsequently, it is necessary to multiply a
converse parameter to get the real dimension. The equations can be defined as follows:{

D = α× δin = α× |h3 − h2|
S = α× δout = α× |h1 − h4|

(1)

where h1 and h4 should be obtained from two adjacent steel bars and h1 should be obtained from the
right one while h4 should be obtained from the left one because of the scanning direction. α is the
conversion parameter, transforming the pixel difference value to an actual size value. The diameter is
given as D and the spacing is given as S.

Several methods have been proposed for the determination of α values. Due to the fact different
phones have various lens focal lengths, and the presence of electronic image stabilization during
recording which trims the picture, we do a test whose object is get the accurate value of α for almost
situation when using a smartphone. We put the phone at a fixed height to shoot a scale in the middle
of the frame, and it was set on the video mode with electronic image stabilization mode on. Then we
intercept a frame from the video, and the number of pixels corresponding to different lengths at
this height is obtained through processing. Subsequently, do same test under different fixed heights.
Partial experimental data are shown in Table 3, including fixed height, scale length, number of pixels,
and transformation parameter.

Table 3. Pixel value/actual size transformation.

Fixed Height
H (cm)

Scale Length
D (mm)

Number of Pixels
(px)

Transformation Parameter
α
(
cm× px−1 )

8 60 1575 0.038095238
10 80 1675 0.047761194
12 90 1550 0.058064516
15 100 1440 0.069444444
18 120 1438 0.083449235
20 140 1434 0.097629010
40 150 769 0.195058518
60 150 511 0.293542074

H is regarded as a fixed height, and D is the scale length. Parameter α is the quotient of scale length divided by the
number of pixels.
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For the sake of showing the relationship between H and α more intuitively, we have drawn the
following chart (Figure 6). A linear relationship has been found between H and α from the chart,
then we make fitting calculation to obtain the experimental formula as follows:

α = 0.0049H − 0.0032 (2)

In order to minimize the error caused by the viewing angle in video detection, detection and
calculation are always performed on ROI when in between every two steel bars it moves to the center
of the picture, namely calculating the average of the closest inner positions of two adjacent bars and it
is approximately equal to the width of ROI, the result of that frame is the output.
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Figure 6. Pixel value/actual size transformation.

3.4. Steel Bar Counting Method

Since the processing of video will eventually be converted into image processing, it is necessary
to use image stitching technology [20–22]. Image splicing is the technique of combining images with
overlapping parts into a large, seamless and high-resolution image. There are many methods of image
splicing, whose different algorithm steps may vary, but the general process is the same. We propose a
fast stitch method (FSM) to record the last column pixels of each frame of the video and the last frame
of the entire video by a matrix, and then the matrix is converted into a spliced image successfully.
Suppose that the video input has a total of n frames, and each frame has i× j pixels, then the concrete
steps are as follows:

Step 1: Record the pixel value of the last column of the first frame image as φ1i.
Step 2: Record the pixel value of the last column of the second frame image as φ2i, and obtain φ1i + φ2i.
Step 3: Record the pixel value of the last column of the (n − 1)-th frame image as φ(n−1)i,

and obtain
n−1
∑
1

φi.

Step 4: Since only the last column of all the frames cannot contain all the bars, the entire image of the

last frame is saved and spliced into the preceding sum, which is to obtain
n−1
∑
1

φi + φn.

Among them, φi is the last column of pixel values for each frame of the image, then φki is the
pixel value of the last column of the k-th frame, k = 1, 2, . . . , n, φn is all pixel values of the last frame.
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Combined with Figure 7, the image stitching process can be more easily understood. Since only the
last column of each frame will be processed during stitching, a correct and able-to-use image can be
spliced as long as the shooting speed is not too fast.

The first 
frame

Stitching image

......

The second 
frame

...

The (n-1)-th  
frame

...

The n-th 
frame

φ1i φ2i φ(n-1)i φn

φ1i φ2i φ(n-1)i φn...

Figure 7. Image stitching treatment.

After obtaining the whole stitching image, we do the same treatment we proposed in Sections 3.1
and 3.2, recording numbers of edges—four edges of every steel bar—denoted as i. Obviously,
the number of steel bars is i/4. We get many stitching images at the construction site, and a part of one
is as shown in Figure 8.
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4. Components of the Steel Bars Position Quality Inspection System

4.1. Hardware

As shown in Figure 9, the data acquisition device proposed in this paper mainly includes the
following parts: two triangular brackets, a guide rail, a stepper motor with controller and driver, a DC
power supply, a slider, a gimbal, and a smartphone. The acquisition device comprises a guide rail
which is supported by a triangular bracket connected with both ends of the guide rail. And a slider is
linked to the stepping motor which connected with its controller via its driver through the guide rail.
The driver and controller are connected to power supply module. A smartphone for acquiring the
image or video of the construction site is arranged on the slider through a gimbal.
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4.1.1. Main Hardware Components

The main hardware components of acquisition device are presented in Figure 10. It can be seen
that the steel bars quality inspection device in the construction site is primarily comprised of four
types of sensors and a controller. These sensors include CMOS, level sensor, proximity switch, voltage
sensor, and current sensor. The controller is the core for calculation and control of this inspection
system, which mainly contains a speed and direction determination unit, motor control unit, balance
degree estimation unit, and human machine interaction unit.
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4.1.2. Sensors

Sensors are employed to automatically and continuously detect the working status of the device
on the construction site, thus appropriate ones with certain mechanical and electrical properties should
be chosen to satisfy the actual measurement needs. Table 4 gives some key specifications of five
types of sensors involved in this inspection system. To be specific, CMOS is used to capture images
and videos. The level sensor is for its role in estimating the degree of balance of the whole device.
The proximity switch is applied to make the slide stop automatically when it is close to both ends of
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the rail. The voltage sensor and current sensor are used to ensure a stable power supply for the whole
system and steady the output of the stepper motor.

Table 4. Specifications of the five types of sensors.

Parameter
Sensor

CMOS Level Sensor Proximity Switch Voltage Sensor Current Sensor

Measurement range 16 MP 0~90◦ 0~2.0 cm 0~40 V 0~2.21 A
Degree of precision 1 px 0.05◦ 0.1 cm 1.0% 1.0%
Temperature range −20~50 ◦C −5~70 ◦C 0~50 ◦C −40~70 ◦C −40~70 ◦C

It is known that noise usually has negative impact on follow-up processing and analysis of signals,
especially for weak analog signals. In this study, a porous metal shell has been used to shield noises
during the analog signal measurement process.

4.1.3. Controller

The controller in the construction site is the core hardware component of the inspection system,
which can fulfill the tasks of speed adjustment and direction determination, balance degree estimation,
and human machine interaction. Its functional block diagram and physical appearance can be found
in Figures 11 and 12, respectively. The following are the main functions and features of this controller:

• Speed adjustment and direction determination. This unit has been dedicated to set velocity and
direction by inputting the voltage.

• Balance degree estimation and motor control. The balance degree estimation unit is devoted to
ensure the shooting height is fixed. The motor control unit is used to adjust the motor speed
flexibly by means of input value to make sure that gimbal, with the smartphone, is running at
the optimal speed and decelerating when slider is close to both ends. In the controller, a single
chip microcomputer has been designed to implement the tasks of speed and direction control,
and proximity limit will give the signal to the microcomputer to determine when to decelerate.

• Human machine interaction. A LCD, a keyboard with three buttons on the panel, and the
smartphone are used for the interaction between human and machine. A LCD is installed for
displaying the current speed and direction of stepper motor. Buttons are mainly responsible for
parameter (velocity & direction) setting and devoted to manual operation in an emergency, such
as emergency stop, system reset, and power switch. The stepper motor will drive the timing belt
and finally make the smartphone move to capture videos. After acquisition finishes, we uninstall
the smartphone from the device and open the APP to process and get the inspection results.

4.2. Software

4.2.1. Development Environment

The development process of this article mainly includes the algorithm design and simulation on
Matlab, then debug in C code. Its functions include data acquisition, image pretreatment, modules of
diameter and spacing measuring and number counting. Then it is ported to the Android Development
Environment, while developing an Android host human-computer interaction interface. From the
overall framework design of the system, it is divided into development of the local C/C++ code and
the upper interface of Android human-computer interaction (developed by Java). These codes are first
debugged on Qt platform and then packaged to satisfy JNI interface. NDK tool is used to compile
and generate dynamic link libraries. Android application Java terminal includes a main window,
a parameter setting module, and a detection module. The overall system framework design block
diagram is shown in Figure 13.
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4.2.2. Development Platform

Nowadays, Android smartphones occupy a large market share globally. The proportion of
domestic Android system smartphones reaches up to 85%. When compared with PCs, smartphones
are more portable. Moreover, with the rapid development of mobile phone performance, especially
the growing performance of CPU/GPUs, smartphones carry more processing power than ever. As a
result, more people start to enjoy dealing with their affairs on their phones, and Android smartphones
are being used as testing platforms. Our Android application interface is shown in Figure 14.
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When we open the APP, we can see several modules in the main interface (Figure 14a), including
“Select Files” button, “Parameters” button, “Process” button, an image display area, and a result
display area. We click “Select Files” button first to select an image or a video, and then we click
“Parameters” button to turn to parameter setting interface to set photographic height (Figure 14b).
The true diameter, spacing and number is not necessary to input if you just want to measure steel
bars. After setting the photographic distance, we can do image process by clicking “Process” button
(Figure 14c). The selected image or video has been shown in image display area and results have been
shown in another area. In result display area, we give current diameter of the left one of two middle
steel bars and spacing of two middle steel bars showed in image display area. At the end of process,
we can see final results in another interface when we touch the result display area in main interface.
In final results interface, for example, in Figure 14d, we can see that we process a video of 16 steel
bars. The counting number is 16, and qualified numbers of steel bar (diameter and spacing) are all 16.
The conclusion of inspection is “Congratulations!”

5. Results and Discussion

5.1. Statistical Results of Steel Bars Dimension Inspection

Using the inspection system developed in this paper, we will focus on static image and video
processing results, mainly discuss detection results and their errors.

In the laboratory, we set the fixed height as 20 cm, and results are as shown in Table 5. Groups 1–3
are inspection results of static images and Groups 4, 5 are video results. In the right four columns,
where the first and second value “number-D” represents the diameter of the left and right steel bar,
and the third value “number-S” represents the spacing of two steel bars. We can see that the measured
spacing value has a very low error compared to the true value in most instances, especially in static
images and the result is a little bit higher in video detection. To be specific, in the former three groups,
we placed two steel bars of the same or different diameter (20 mm/15 mm) at different spacings
(105 mm and 120 mm). We do a static image process and get the result that the lowest error is 0.04 mm
(absolute error) and 0.002% (relative error) in measuring diameter while the highest error is no more
than 2.8 mm (absolute error) and 3.00% (relative error) in measuring spacing. This has reached a fairly
low level, namely our device and method have a rather high accuracy in processing static images.
In Groups 4 and 5, we take videos and test our method. Because video cannot be as clear as picture in
the same state, results show that error is as high as 1.18 mm (absolute error) and 7.13% (relative error).
However, it is still lower than some existing image processing method introduced in Section 1. More
importantly, our method can do treatment and display the result in real time, which is not available in
other methods.

At a construction site, we set the fixed height as 50 cm, and results are as shown in Table 6.
All groups are video inspection results. As the results show, we can see that the absolute error and
relative error are not high (1.66 mm/5.93%), which is as same as the result in laboratory. It can be sure
that our device and method have a practical application to measure diameter and spacing of steel bars.

5.2. Statistical Results of Steel Bars Counting Number

Using the inspection system, we will only focus on video processing counting results. We set
the fixed height as 100 cm (Groups 1, 3 and 4) and 80 cm (Groups 2 and 5) and collect videos at the
construction site. Results are as shown in the Table 7. It is obvious that results of all groups are correct.
For instance, the true number of steel bars in Group 1 is seven and the number counted through our
method is the same. The count numbers are all correct for the other groups, too. This is a powerful
support to say that our device and method can be used in actual environment to count numbers of
steel bars.
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Table 5. Results of true and measured values of diameter (-D) and spacing (-S) of steel bars in
the laboratory.

Group Collected Images/Video
Screenshot

True Value
(mm)

Measured
Value (mm)

Absolute Error
(mm) Relative Error

1
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In final results interface, for example, in Figure 14d, we can see that we process a video of 16 steel 

bars. The counting number is 16, and qualified numbers of steel bar (diameter and spacing) are all 

16. The conclusion of inspection is “Congratulations!” 

5. Results and Discussion 

5.1. Statistical Results of Steel Bars Dimension Inspection 

Using the inspection system developed in this paper, we will focus on static image and video 

processing results, mainly discuss detection results and their errors. 

In the laboratory, we set the fixed height as 20 cm, and results are as shown in Table 5. 

Groups 1–3 are inspection results of static images and Groups 4, 5 are video results. In the right four 

columns, where the first and second value “number-D” represents the diameter of the left and right 

steel bar, and the third value “number-S” represents the spacing of two steel bars. We can see that 

the measured spacing value has a very low error compared to the true value in most instances, 

especially in static images and the result is a little bit higher in video detection. To be specific, in the 
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lowest error is 0.04 mm (absolute error) and 0.002% (relative error) in measuring diameter while the 

highest error is no more than 2.8 mm (absolute error) and 3.00% (relative error) in measuring spacing. 

This has reached a fairly low level, namely our device and method have a rather high accuracy in 

processing static images. In Groups 4 and 5, we take videos and test our method. Because video 

cannot be as clear as picture in the same state, results show that error is as high as 1.18 mm (absolute 

error) and 7.13% (relative error). However, it is still lower than some existing image processing 

method introduced in Section 1. More importantly, our method can do treatment and display the 

result in real time, which is not available in other methods. 

Table 5. Results of true and measured values of diameter (-D) and spacing (-S) of steel bars in the 

laboratory. 

Group 
Collected Images/ 

Video Screenshot 

True Value 

(mm) 

Measured Value  

(mm) 

Absolute Error  

(mm) 

Relative 

Error 

1 

 

20.00-D 

20.00-D 

105.00-S 

19.96-D 

20.29-D 

107.80-S 

0.04-D 

0.29-D 

2.80-S 

0.002%-D 

1.45%-D 

2.67%-S 

2 

 

20.00-D 

20.00-D 

120.00-S 

20.18-D 

20.07-D 

122.26-S 

0.18-D 

0.07-D 

2.26-S 

0.90%-D 

0.35%-D 

1.88%-S 

20.00-D
20.00-D
120.00-S

20.18-D
20.07-D
122.26-S

0.18-D
0.07-D
2.26-S

0.90%-D
0.35%-D
1.88%-S

3
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15.21-D 

106.44-S 

0.51-D 

0.21-D 

1.44-S 

2.55%-D 

1.40%-D 

1.37%-S 

2 

 

20.00-D 

15.00-D 

120.00-S 

20.83-D 

14.19-D 

118.93-S 

0.83-D 

0.81-D 

1.07-S 

4.05%-D 

5.40%-D 

0.89%-S 

3 

 

20.00-D 

15.00-D 

65.00-S 

21.09-D 

14.11-D 

65.31-S 

1.09-D 

0.89-D 

0.31-S 

5.45%-D 

5.93%-D 

0.48%-S 

20.00-D
15.00-D
90.00-S

19.40-D
15.18-D
88.84-S

0.60-D
0.18-D
1.16-S

3.00%-D
1.20%-D
1.29%-S

4
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5
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Table 6. Results of true and measured values of diameter (-D) and spacing (-S) of steel bars at a
construction site.

Group Video Screenshot True Value
(mm)

Measured
Value (mm)

Absolute Error
(mm) Relative Error

1
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2
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5.40%-D
0.89%-S

3
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20.00-D
15.00-D
65.00-S

21.09-D
14.11-D
65.31-S
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0.89-D
0.31-S

5.45%-D
5.93%-D
0.48%-S

4
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5.2. Statistical Results of Steel Bars Counting Number 

Using the inspection system, we will only focus on video processing counting results. We set the 

fixed height as 100 cm (Groups 1, 3 and 4) and 80 cm (Groups 2 and 5) and collect videos at the 

construction site. Results are as shown in the Table 7. It is obvious that results of all groups are correct. 

For instance, the true number of steel bars in Group 1 is seven and the number counted through our 

method is the same. The count numbers are all correct for the other groups, too. This is a powerful 

support to say that our device and method can be used in actual environment to count numbers of 

steel bars. 

Table 7. Comparison of True and Counting Number of Steel Bars. 
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5.3. Statistical Results of Processing Time 

In this inspection system, we use a Samsung GALAXY S7 smartphone. It has an Exynos 8890 

SoC (Octa-core@2.7GHz) and a 4 GB LPDDR4 RAM (1866 MHz). For each photo (4083  3063, 12 MP) 

and videos (1080p@30fps), the relevant processing time is as shown in the Table 8. We record the 

processing time of each photo and it is between 0.054 s and 0.067 s. Similar processing has been done 

with videos and we obtain an experimental formula that relates video time (VT) and processing time 

(PT): 

  0.5717 1.929 (s)PT VT  (3) 

15.00-D
20.00-D
150.00-S

14.67-D
20.85-D
151.66-S

0.33-D
0.85-D
1.66-S

2.20%-D
4.25%-D
1.11%-S

Table 7. Comparison of True and Counting Number of Steel Bars.

Group Frame of Video True Number Counting Number Absolute Error Relative Error

1
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5.3. Statistical Results of Processing Time 

In this inspection system, we use a Samsung GALAXY S7 smartphone. It has an Exynos 8890 

SoC (Octa-core@2.7GHz) and a 4 GB LPDDR4 RAM (1866 MHz). For each photo (4083  3063, 12 MP) 

and videos (1080p@30fps), the relevant processing time is as shown in the Table 8. We record the 

processing time of each photo and it is between 0.054 s and 0.067 s. Similar processing has been done 

with videos and we obtain an experimental formula that relates video time (VT) and processing time 

(PT): 

  0.5717 1.929 (s)PT VT  (3) 
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5.3. Statistical Results of Processing Time 

In this inspection system, we use a Samsung GALAXY S7 smartphone. It has an Exynos 8890 

SoC (Octa-core@2.7GHz) and a 4 GB LPDDR4 RAM (1866 MHz). For each photo (4083  3063, 12 MP) 

and videos (1080p@30fps), the relevant processing time is as shown in the Table 8. We record the 

processing time of each photo and it is between 0.054 s and 0.067 s. Similar processing has been done 

with videos and we obtain an experimental formula that relates video time (VT) and processing time 

(PT): 

  0.5717 1.929 (s)PT VT  (3) 
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Table 7. Cont.

Group Frame of Video True Number Counting Number Absolute Error Relative Error
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5.3. Statistical Results of Processing Time

In this inspection system, we use a Samsung GALAXY S7 smartphone. It has an Exynos 8890 SoC
(Octa-core@2.7 GHz) and a 4 GB LPDDR4 RAM (1866 MHz). For each photo (4083 × 3063, 12 MP)
and videos (1080p@30 fps), the relevant processing time is as shown in the Table 8. We record the
processing time of each photo and it is between 0.054 s and 0.067 s. Similar processing has been
done with videos and we obtain an experimental formula that relates video time (VT) and processing
time (PT):

PT = 0.5717×VT + 1.929 (s) (3)

The formula means that it needs at least 1.929 s to stitch an image, and per additional second
video needs extra 0.5717 s time cost. It can be seen from these two sets of data that proposed method
can do real-time processing.

Table 8. Processing times of photos and videos.

Photo Processing Time (s) Video Video Time (s) Processing Time (s)

1 0.054 1 3.430 4.182
2 0.061 2 5.133 4.993
3 0.067 3 6.833 5.683
4 0.057 4 10.267 7.650
5 0.060 5 20.600 14.048

6. Conclusions

The presented quality inspection system for steel bars adopts advanced machine vision technology.
It solves the real-time inspection problem of steel bars including diameter and spacing measuring and
number counting. The research shows that machine vision can substitute most manual work in steel
bars quality inspection, and furthermore, improve the production efficiency.

Compared with the existing devices, the proposed data acquisition device can be used to
capture images and videos of banding steel mesh at construction sites, preparing them for later
quality inspection. Each component is assembled, so it is convenient to disassemble and transport.
The device can realize automatic collection of image and video of steel bars, and promotes the intelligent
development of the modern construction industry, and has great application prospects.

Compared with the existing methods, the proposed method has a very low related error in static
image processing when calculating diameter and spacing (as low as 0.04 mm (absolute error) and
0.002% (relative error)) and zero error in counting the number of steel bars.

The overall operation is simple and convenient, and the acquired image is clear. The device and
method have a high adjustment precision, can realize real-time detection of steel construction quality
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which is unavailable in other existing methods. Moreover, it should be broadly applicable at various
construction sites.
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