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Abstract: Vehicle control systems such as ESC (electronic stability control), MDPS (motor-driven 
power steering), and ECS (electronically controlled suspension) improve vehicle stability, driver 
comfort, and safety. Vehicle control systems such as ACC (adaptive cruise control), LKA (lane-
keeping assistance), and AEB (autonomous emergency braking) have also been actively studied in 
recent years as functions that assist drivers to a higher level. These DASs (driver assistance systems) 
are implemented using vehicle sensors that observe vehicle status and send signals to the ECU 
(electronic control unit). Therefore, the failure of each system sensor affects the function of the 
system, which not only causes discomfort to the driver but also increases the risk of accidents. In 
this paper, we propose a new method to detect and isolate faults in a vehicle control system. The 
proposed method calculates the constraints and residuals of 12 systems by applying the model-
based fault diagnosis method to the sensor of the chassis system. To solve the inaccuracy in detecting 
and isolating sensor failure, we applied residual sensitivity to a threshold that determines whether 
faults occur. Moreover, we applied a sensitivity analysis to the parameters semi-correlation table to 
derive a fault isolation table. To validate the FDI (fault detection and isolation) algorithm developed 
in this study, fault signals were injected and verified in the HILS (hardware-in-the-loop simulation) 
environment using an RCP (rapid control prototyping) device. 

Keywords: road vehicle; fault diagnosis; fault detection and isolation; sensitivity analysis; model-
in-the-loop; hardware-in-the-loop 

 

1. Introduction 

The vehicle control system improves the performance of the braking, steering, and suspension. 
ESC (electronic stability control), which is a vehicle chassis control system, is used to maintain the 
driving stability in consideration of the driving situation of the driver, the vehicle condition, and the 
road conditions [1,2]. The steering system MDPS (motor-driven power steering) receives the steering 
input of the driver and provides assistant torque to the support steering [3,4]. The ECS (electronically 
controlled suspension) system can also maintain the stability and ride comfort by varying the height 
of the vehicle body depending on the road surface condition and the driving conditions [5–7]. 

An advanced driving assistance system (ADAS), which is more advanced than the traditional 
driving assistance system (DAS), is a system that assists drivers with advanced systems, and is the 
subject of many current research projects. Recently, parking assistance systems (PAS) have also been 
developed to accurately identify obstacles and to park a car automatically using sensor fusion [8]. 
Autonomous emergency braking (AEB) has also been developed to cope with emergencies that are 
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difficult for drivers to handle [9]. Adaptive cruise control (ACC) was first proposed in the 1960s to 
assist drivers and, more recently, to take into account not only convenience and safety but also fuel 
economy to make optimal driving possible [10]. Further studies have undertaken research into lane-
keeping assistance systems (LKAS) which recognize lanes through sensors and prevent lane 
departure [11–13]. 

Therefore, sensors in intelligent vehicles that use sensors to control cars and in autonomous 
vehicles that run without driver input are essential. However, contingency plans are also needed if 
these sensors fail. A car that operates based on sensor signals can pose a fatal threat to a car, driver, 
and even pedestrians when a sensor fails. For this reason, diagnosing sensor failures is an important 
task for researchers who develop smart cars. 

The fault diagnosis method can be classified into a hardware redundancy method and an 
analytical redundancy method [14–17]. The hardware redundancy method in Figure 1a uses two or 
more sensors and actuators to ensure that stable fault diagnosis and normal operation are possible 
and have high reliability. However, this method has a disadvantage in that cost and space for 
duplication are required. Therefore, an analytical redundancy method in Figure 1b using 
mathematical relations between signals that overcome these problems has been proposed and 
studied. These methods of preparing for failure by creating an analytical redundancy make it possible 
to diagnose failure with algorithms without investing in space and cost, and thus enabling the 
commercialization of smart cars. 

 
(a) 

 
(b) 

Figure 1. Hardware and analytical redundancy scheme. (a) Hardware redundancy scheme;  
(b) analytical redundancy scheme. 

However, there are limitations to performing fault diagnosis with multiple residuals. This is 
because there is a difference between a mathematical model that is considered for diagnosing faults 
and a real car. Researchers in past studies have called this model uncertainty. In other words, when 
many residuals are applied, there are model uncertainties of different sizes and types in each of the 
residuals. Model uncertainty can have a fatal impact on each of the analytical redundancies. For this 
reason, it is difficult to detect and isolate a fault using multiple residuals. In previous studies, 
developers have set arbitrary limits to account for this model uncertainty. However, the analytical 
method of fault-finding with dynamic models is problematic for model uncertainty. Therefore, an 
adaptive thread using the frequency of input expressions has also been studied and widely used [18]. 



Sensors 2018, 18, 2720 3 of 38 

 

Recently, a study was conducted on an observer using real-time fuzzy calculations to diagnose 
faults using neural networks [19]. Moreover, with the significant improvement in computational 
power and efficiency of computers, research was conducted to detect and classify faults using 
machine learning [20]. A further study suggested failure diagnosis using a new method, Gaussian 
Mixer Modeling, to apply model-based fault-finding for nonlinear systems [21]. In contrast, a 
randomized failure detection method was also proposed using a generalized canonical correlation 
analysis without the use of a Gaussian model [22]. Another groundbreaking study was also conducted 
to diagnose faults on systems without sensors using only dynamic models [23]. However, research has 
yet to be conducted on systems where the accurate determination and separation of failures are critical, 
with many types of sensors operating simultaneously, as is the case in automobiles. 

This paper is based on a study first reported in the Korean Journal of Transaction of KSAE [24]. In 
this paper, we propose a new method of fault diagnosis, sensitivity-based fault detection, and 
isolation. Section 2 introduces and describes the sensitivity-based fault method. In Section 3, 
estimation is performed based on vehicle dynamics to diagnose faults on sensors in the vehicle and 
verified using Carsim, a vehicle dynamics simulator. As a next step, the residual is calculated using 
the proven estimation and sensor values. In Section 4, the calculated residual expression is used to 
calculate the sensitivity to the fault signal. In Section 5, we verify the sensitivity-based FDI (fault 
detection and isolation) algorithm introduced in Section 2. For verification, we inject the failure of 
each sensor into the simulation environment based on HILS (hardware-in-the-loop simulation) and 
examine the results. 

2. Fault Detection and Isolation Algorithm 

2.1. Residual Generation, Threshold Review 

The method for generating the residual is shown in Figure 2. It shows how to use the output 
error method and polynomial error method using the input and output models of the system. 

ݎ = ௣ݕ − ௠ݕ (1) (ݎ݋ݎݎ݁	ݐݑ݌ݐݑܱ)	

ݎ = ௣ݕ(ݏ)௠ܣ − (2) (ݎ݋ݎݎ݁	݈ܽ݅݉݋݊ݕ݈݋ܲ)	ݑ(ݏ)௠ܤ

If the model is correct, the residual would be zero for normal conditions, and it would be non-
zero when a failure exists. However, there is the model uncertainty due to the system, which is 
estimated by the model. To solve this model uncertainty, the existing model-based fault diagnosis is 
based on the following fault detection conditions. 

(∆)ݎ > (3)  (݊݋݅ݐ݅݀݊݋ܿ	݊݋݅ݐܿ݁ݐ݁݀	ݐ݈ݑܽܨ)	∆ܪܶ

(∆)ݎ ≤ (4)  (݊݋݅ݐ݅݀݊݋ܿ	݊݋݅ݐܿ݁ݐ݁݀	ݐ݈ݑܽܨ	݋ܰ)	∆ܪܶ

Unlike Equations (3) and (4), which are set threshold targets based on the residual, the new 
condition is calculated to the fault signal expressed in Equation (5). 

 
(a) 
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(b) 

Figure 2. Residual calculation with output error and polynomial method. (a) Output error method 
residual calculation; (b) polynomial error method residual calculation. 

2.2. Sensitivity Applied Fault Detection and Isolation 

(ݐ)݂ > ௙ (5)ܪܶ

where ݂ represents the fault signal and ܶܪ௙ indicates the maximum allowable range of the fault. In 
this case, we can rearrange the threshold value based on the residual value, which is the actual result 
of the algorithm for detecting the fault. Therefore, the fault signal can be expressed as a combination 
of the residual sensitivity of the fault signal and the residual of the fault signal, as shown in  
Equations (6) and (7). 

൯(ݐ)൫݂ݎ =
ݎ߲
߲݂ ݂

(6) (ݐ)

(ݐ)݂ =
ݎ߲
߲݂ ݎ

൫݂(ݐ)൯ > ௙ (7)ܪܶ

Therefore, the fault detection condition can be defined by Equation (8) and, finally, the fault 
detection condition of Equation (9) can be derived for the threshold considering model uncertainty [24]. 

൯(ݐ)൫݂ݎ >
ݎ߲
߲݂ ௙ (8)ܪܶ

,∆൫ݎ ൯(ݐ)݂ > ∆ܪܶ +
ݎ߲
߲݂ ௙ (9)ܪܶ

In previous fault diagnosis studies, the concept of fault detectability has been presented as in 
Figure 3 [19]. In this paper, the detectability of the fault is considered using residual sensitivity. For 
the fault isolation, the sensitivity of each residual equation is analyzed, and the fault isolation table 
is also derived from the analysis of residual equations for the fault detectability. 

 

Figure 3. Fault detectability (strong/weak). 
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Finally, the model-based residual value and fault detection condition are calculated in real time 
for fault diagnosis. These were applied to the fault detection and isolation algorithm as shown in 
Figure 4. This algorithm compares the residual with a threshold value and generates a fault flag, 
indicating that the corresponding residual is abnormal. Considering residual sensitivity as 
detectability, we can separate faults using these flags. 

 
Figure 4. Sensitivity-based fault detection and isolation algorithm scheme. 

3. Vehicle Dynamics-Based Residual Generation and Simulation 

We used constraints based on vehicle dynamics to diagnose faults in sensors used in 
automobiles. For the convenience of developing the FDI algorithm, we calculated the residuals of the 
wheel angular speed, steering wheel angle, and normal force of each wheel. To estimate and generate 
the roll angle residual, we used the polynomial error method and verified the algorithm. 

In Section 3, we estimate and simulate the wheel speed and steering wheel angle output of 
sensors in the vehicle to calculate the residual. However, estimates without a sensor, such as normal 
force and roll angle, are also addressed by the FDI algorithm, so the overall estimate was validated 
using Carsim (a vehicle dynamics simulator). This study assumes a single fault. Thus, it was assumed 
that robust estimation of longitudinal speed is possible by using other speed and acceleration sensors 
[25,26]. It was also assumed that the car was traveling on a level surface without bank angle and 
grade, the most common road type. 
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3.1. Wheel Angular Speed Residual 

ො௙௟ݒ = ௫ݒ − ߰̇൬
݈௧௪
2 − ݈௙

௬ݒ
௫ݒ
൰ (10) 

ො௙௥ݒ = ௫ݒ + ߰̇ ൬
݈௧௪
2 + ݈௙

௬ݒ
௫ݒ
൰ (11) 

ො௥௟ݒ = ௫ݒ −
݈߰̇௧௪
2  (12) 

ො௥௥ݒ = ௫ݒ +
݈߰̇௧௪
2  (13) 

Figure 5 shows vehicle wheel with the mass center of the vehicle. Equations (10) and (11) are 
equations for the front left and right wheel speeds, where ݒ௫ is the longitudinal speed of the vehicle, 
߰̇ is the yaw rate, ݈௧௪ is the track width, ݈௙ is the length of the wheel base, ݒ௬ is the lateral speed 
of the vehicle, ݒ௙௟ is the longitudinal speed of the front left wheel, ݒ௙௥ is the longitudinal speed of 
the front right wheel, ݒ௥௟ is the longitudinal speed of the rear left wheel, and ݒ௥௥ is the longitudinal 
speed of the rear right wheel [27,28]. 

Equations (12) and (13) are equations for the rear left and right wheel speeds. To validate the 
dynamic equation, the simulation scenario in Figure 6 was used [29,30]. Results of the simulation in 
Figure 7 show that minor errors exist as the vehicle speed increases. In other words, we can see that 
there is a model uncertainty that occurs when a vehicle accelerates. 

 
Figure 5. Vehicle wheel scheme. 
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(b) 

Figure 6. Estimation simulation scenario 1. (a) Vehicle speed; (b) steering wheel angle. 
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(d) 

Figure 7. Estimation simulation result for wheel angular speed. (a) Wheel angular speed—fl (front 
left); (b) wheel angular speed—fr (front right); (c) wheel angular speed—rl (rear left); (d) wheel 
angular speed—rr (rear right). 

Lateral velocity (ݒ௬) can be calculated using the lateral acceleration (ܽ௬) and the yaw rate (߰̇) 
signal as shown in Equation (14) [31,32]. There is no lateral velocity sensor, but we used the equation 
to help understand the vehicle dynamics model used in residuals. For this reason, ݒ௬  is also 
estimated using a dynamic model: 

௬ݒ = න ൫ܽ௬ − ௫൯ݒ̇߰
௧

௧బ
(14) ݐ݀

and ݒ௬ estimation simulation is also conducted as in Figure 8, where ܽ௬ is the lateral acceleration 
of the vehicle. 

 
Figure 8. Estimation simulation result for lateral velocity. 

The lateral velocity required for the calculation is calculated by Equation (14). Therefore, the 
residual equations for the fault diagnosis system are constructed by Equations (15) to (18). 

߱௙௟	ଵ:ݎ −
ො௙௟ݒ
ݎ = ߱௙௟ − ܿଵ(߰̇, ܽ௬) (15)

߱௙௥	ଶ:ݎ −
ො௙௥ݒ
ݎ = ߱௙௥ − ܿଶ(߰̇, ܽ௬) (16)

߱௥௟	ଷ:ݎ −
ො௥௟ݒ
ݎ = ߱௥௟ − ܿଷ(߰̇) (17)
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	:ସݎ ௥߱௥ −
ො௥௥ݒ
ݎ = ௥߱௥ − ܿସ(߰̇) (18)

For convenience of explanation, wheel speed ݒ௙௟,௙௥,௥௟,௥௥  is converted as wheel angular speed 
߱௙௟,௙௥,௥௟,௥௥  using tire radius ݎ . The parameters semi-correlation table analysis was performed to 
analyze the relationship between the generated residual and the sensor signals. Table 1 shows the 
result of the parameters semi-correlation table analysis visualized as an X representation of the 
association between the sensors and the residual.  

Through analysis, residual 1 can easily be influenced by the yaw rate signal, the lateral 
acceleration signal, and the angular speed signal of the front left wheel. Likewise, residual 4 can be 
influenced by the yaw rate signal and the wheel angular speed of the rear right wheel. In other words, 
it is possible to analyze that residuals 1–4 are affected by different signals. 

Table 1. Parameters semi-correlation table of wheel angular speed residuals. 

࢘ࢌ࢝ ࢒ࢌ࢝ ࢟ࢇ ࣒̇   ࢘࢘࢝ ࢒࢘࢝ 
ଵݎ  X X X    
ଶݎ  X X  X   
ଷݎ  X    X  
 ସ X     Xݎ

3.2. Steering Wheel Angle Residual 

The steering angle has the constraint of Equation (19) and so constitutes Equation (20). 

መ௦௪௔,ଵߜ =
݅௥݈
௫ݒ
ቆ1 +

௫ଶݒ

௖௛ଶݒ
ቇ
߱௙௥ − ߱௙௟

݈௧௪
 (19)

መ௦௪௔,ଶߜ =
݅௥݈
௫ݒ
ቆ1 +

௫ଶݒ

௖௛ଶݒ
ቇ ௥߱௥ − ߱௥௟

݈௧௪
 (20)

௦௪௔ߜ	:ହݎ − መ௦௪௔,ଵߜ = ௦௪௔ߜ − ܿହ(߱௙௟ , ߱௙௥) (21)

௦௪௔ߜ	:଺ݎ − መ௦௪௔,ଶߜ = ௦௪௔ߜ − ܿ଺(߱௥௟ , ௥߱௥) (22)

Residuals 5 and 6, which were generated using Equations (19) and (20), are given in  
Equations (21) and (22) where ߜ௦௪௔ is the steering wheel angle, ݅௥ is the steering ratio, and ݒ௖௛ is 
the characteristic velocity of the vehicle [33,34]. For steering wheel angle estimation validation, we 
used scenario 2, shown in Figure 9. Figure 10 shows the validation simulation result of the sensor 
value with estimation values. 

(a) 
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(b) 

Figure 9. Estimation simulation scenario 2. (a) Vehicle speed; (b) vehicle steering wheel angle. 

 

Figure 10. Estimation simulation result for the steering wheel angle. 

Table 2 shows the parameters semi-correlation table matrix result of residuals 5 and 6. Similar 
to Table 1, the signals used have a different influence on residuals 5 and 6. 

Table 2. Parameters semi-correlation table of steering wheel angle residuals. 

࢘ࢌ࢝ ࢒ࢌ࢝  ࢇ࢙࢝ࢾ ࢘࢘࢝ ࢒࢘࢝   
 ହ X X   Xݎ
଺ݎ    X X X 

3.3. Suspension Velocity Residual 

To diagnose the failure of the vertical acceleration sensor installed in the vehicle, a normal force 
is calculated using the acceleration sensor signal. However, the normal force cannot be measured by 
sensors. Thus, to calculate the polynomial error method residual, the normal force was also calculated 
by considering the weight shift of the vehicle using the longitudinal and lateral acceleration sensor 
signals. 
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(a) (b) 

Figure 11. Vehicle normal force scheme. (a) Vehicle side view; (b) vehicle front view. 

Figure 11a shows the vertical forces of the vehicle on the road from the side view. Figure 11b 
shows the vertical forces of the vehicle from the front view. The vertical force acting on each wheel 
can be calculated from Equations (23) to (26) by considering the weight shift according to the behavior 
of the vehicle when the longitudinal acceleration and lateral acceleration are known [35], where 
௭݂,௜(݅ = ݂݈, ,ݎ݂ ,݈ݎ  ,௦ is the vehicle mass, ݃ is the gravitational accelerationܯ ,is the normal force (ݎݎ
݈௥ is the length of the rear wheel base, ℎ௦ is the height from the ground to the mass center, and ܽ௫ 
is the longitudinal acceleration of the vehicle. 

௭݂,௙௟,ଵ =
௦݈݃௥ܯ
2݈ −

௦ܽ௫ℎ௦ܯ
2݈ −

௦ܽ௬ℎ௦݈௥ܯ
݈௧௪݈

 (23)

௭݂,௙௥,ଵ =
௦݈݃௥ܯ
2݈ −

௦ܽ௫ℎ௦ܯ
2݈ +

௦ܽ௬ℎ௦݈௥ܯ
݈௧௪݈

 (24)

௭݂,௥௟,ଵ =
௦݈݃௙ܯ
2݈ +

௦ܽ௫ℎ௦ܯ
2݈ −

௦ܽ௬ℎ௦݈௙ܯ
݈௧௪݈

 (25)

௭݂,௥௥,ଵ =
௦݈݃௙ܯ
2݈ +

௦ܽ௫ℎ௦ܯ
2݈ +

௦ܽ௬ℎ௦ܯ ௙݈
݈௧௪݈

 (26)

To calculate the other normal force estimation, the quarter car model in Figure 12 was used 
[36,37]. 

 

Figure 12. Quarter car model for normal force calculation. 

݉௦(̈ݖ௦ − ݃) + ݇௦(ݖ௦ − (௨ݖ + ܾ௦(̇ݖ௦ − (௨ݖ̇ = 0 (27)
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݉௦(̈ݖ௦ − ݃) + ݇௦(ݖ௦ − (௨ݖ + ܾ௦(̇ݖ௦ − (௨ݖ̇ + ݇௧(ݖ௨ − (ݍ = 0 (28)

௭݂ + ݇௧(ݍ − (௨ݖ = 0 (29)

In the quarter car model, the normal force of each wheel has the relation of  
Equations (27) to (29), where ݉௦ is the sprung mass of the quarter car model, ݉௨ is the un-sprung 
mass of the quarter car model, ݇௦ is the suspension spring coefficient, ܾ௦ is the suspension damper 
coefficient, ݇௧ is the tire spring coefficient, ̈ݖ௦ is the vertical acceleration of sprung mass, ̇ݖ௦ − ௨ݖ̇  is 
the suspension velocity, ݖ௦ − ௨ݖ  is the suspension deflection, ݖ௨ is the un-sprung mass height, ݍ is 
the road profile, and ௭݂ is the normal force effect on the tire. 

In this paper, assuming that the tire stiffness is ignored, the vertical force of each wheel is 
summarized by Equation (30). 

௭݂,௜,ଶ = ൫݉௦,௜ +݉௨,௜൯݃ −݉௦,௜̈ݖ௦,௜ −݉௨,௜̈ݖ௨,௜ 			(݅ = ݂݈, ,ݎ݂ ,݈ݎ (30) (ݎݎ

Therefore, residuals 7 to 10 for fault detection can be calculated by Equations (31) to (34). 

:଻ݎ መ݂௭,௙௟,ଵ − መ݂௭,௙௟,ଶ = ܿ଻(ܽ௫ , ܽ௬ , ௦,௙௟ݖ̈ , ௨,௙௟) (31)ݖ̈

ݎ଼ : መ݂௭,௙௥,ଵ − መ݂௭,௙௥,ଶ = ଼ܿ(ܽ௫ , ܽ௬ , ௦,௙௥ݖ̈ , ௨,௙௥) (32)ݖ̈

:ଽݎ መ݂௭,௥௟,ଵ − መ݂௭,௥௟,ଶ = ܿଽ(ܽ௫ , ܽ௬ , ௦,௥௟ݖ̈ , ௨,௥௟) (33)ݖ̈

:ଵ଴ݎ መ݂௭,௥௥,ଵ − መ݂௭,௥௥,ଶ = ܿଵ଴(ܽ௫ , ܽ௬ , ௦,௥௥ݖ̈ , ௨,௥௥) (34)ݖ̈
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(b) 
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(c) 

 
(d) 

Figure 13. Estimation simulation result for the normal force. (a) Normal force—fl; (b) normal force—
fr; (c) normal force—rl; (d) normal force—rr. 

The simulation results in Figure 13 show that there are few errors, but the tendency of the 
estimation is the same. Since this error is due to the model uncertainty, it can be judged that it does 
not have a great influence on the failure judgment.  

However, the rear left, right wheel vertical acceleration ( ௨,௥௟ݖ̈ , ௨,௥௥ݖ̈ ), and rear left body 
acceleration (̈ݖ௦,௥௟) in Equations (31) to (34) are values calculated with existing vertical acceleration 
sensors as shown in Equations (35) to (36). In the sensitivity analysis, therefore, residuals 7 to 10 must 
be reconsidered as Equations (37) to (40). 

(ݐ)௦,௙௟ݖ̇ = න (ݐ)௦,௙௟ݖ̈
௧

௧బ
 ݐ݀

(ݐ)௦,௙௥ݖ̇ = න (ݐ)௦,௙௥ݖ̈
௧

௧బ
 ݐ݀

(ݐ)௦,௥௟ݖ̇ = න (ݐ)௦,௙௟ݖ̈
௧

௧బ
ݐ݀ −න (ݐ)௦,௙௥ݖ̈

௧

௧బ
ݐ݀ + න (ݐ)௦,௥௥ݖ̈

௧

௧బ
 ݐ݀

(ݐ)௦,௥௥ݖ̇ = න (ݐ)௦,௥௥ݖ̈
௧

௧బ
 ݐ݀

(35)

(ݐ)௨,௙௟ݖ̇ = න (ݐ)௨,௙௟ݖ̈
௧

௧బ
 ݐ݀

(ݐ)௨,௙௥ݖ̇ = න (ݐ)௨,௙௥ݖ̈
௧

௧బ
 ݐ݀

(36)
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(ݐ)௨,௥௟ݖ̇ = ݐ)௨,௙௟ݖ̇ +  (௫ݒ/݈

(ݐ)௨,௥௥ݖ̇ = ݐ)௨,௙௥ݖ̇ +  (௫ݒ/݈

The vertical body velocity is calculated by Equation (35), with the vertical wheel velocity 
calculated by Equation (36). 

:଻ݎ መ݂௭,௙௟,ଵ − መ݂௭,௙௟,ଶ = ܿ଻(ܽ௫ , ܽ௬ , ௦,௙௟̈ݖ , ௨,௙௟̈ݖ ) (37)

ݎ଼ : መ݂௭,௙௥,ଵ − መ݂௭,௙௥,ଶ = ଼ܿ(ܽ௫ , ܽ௬ , ௦,௙௥̈ݖ , ௨,௙௥̈ݖ ) (38)

:ଽݎ መ݂௭,௥௟,ଵ − መ݂௭,௥௟,ଶ = ܿଽ(ܽ௫ , ܽ௬ , ௦,௙௟̈ݖ , ௦,௙௥̈ݖ , ௦,௥௥̈ݖ , ௨,௙௟̈ݖ ) (39)

:ଵ଴ݎ መ݂௭,௥௥,ଵ − መ݂௭,௥௥,ଶ = ܿଵ଴(ܽ௫ , ܽ௬ , ௦,௥௥̈ݖ , ௨,௙௥̈ݖ ) (40)

The normal force residual calculated with the existing sensors can be summarized by  
Equations (37) to (40). Therefore, the parameters semi-correlation table is expressed as in Table 3. 
However, unlike the previous parameters semi-correlation tables depicted in Tables 1 and 2, the 
parameters semi-correlation table shows that the first and second columns tend to be the same, and 
that the third and sixth columns tend to be the same. This means that if the longitudinal acceleration 
sensor has a fault, residuals 7 to 10 make flags, but this cannot be distinguished from a lateral 
acceleration fault. Therefore, an additional residual using a signal described in Section 3.4 is essential 
for fault isolation. 

Table 3. Parameters semi-correlation table of normal force residuals. 

࢒ࢌ,࢙ࢠ̈ ࢟ࢇ ࢞ࢇ  ࢘ࢌ,࢙ࢠ̈  ࢘࢘,࢙ࢠ̈  ࢘ࢌ,࢛ࢠ̈ ࢒ࢌ,࢛ࢠ̈   
	଻ݎ X X X   X  
ݎ଼ 	 X X  X   X 
ଽݎ  X X X X X X  
 ଵ଴ X X   X  Xݎ

3.4. Roll Angle Residual 

Unlike the previously calculated residuals 1 to 6, residuals 7 to 10 are calculated by the 
polynomial error method instead of the output error method. This is because the estimated value 
used as a constraint is not known from the vehicle sensors. Similarly, since the roll angle of a car is 
not measured with a sensor, the roll-relevant residual is calculated in a polynomial error method 
using vehicle dynamics estimation. 

The roll angle can be calculated from Equations (41) and (42), where ݇௥௢௟௟  is the roll coefficient 
of the vehicle [38–40]. 

߶෠ଵ =
௙௟ݖ∆ − ௙௥ݖ∆ + ௥௟ݖ∆ − ௥௥ݖ∆

2݈௧௪
 (41)

߶෠ଶ = −(
௦ℎ௦ܯ
݇௥௢௟௟

)ܽ௬	 (42)

௜ݖ∆ = ௦,௜ݖ − ݅) ௨,௜ݖ = ݂݈, ,ݎ݂ ,݈ݎ 		(ݎݎ (43)

Figure 14 shows the roll angle scheme where ∆ݖ௜ 	(݅ = ݂݈, ,ݎ݂ ,݈ݎ (ݎݎ  is presented as in  
Equation (43). Assuming a flat road surface, we can consider the suspension deflection as shown in 
Equation (43), substituting it into Equation (44). 

௜ݖ∆ = ݅) ௦,௜ݖ = ݂݈, ,ݎ݂ ,݈ݎ 		(ݎݎ (44)

Moreover, Equation (42) presents another equation of the roll angle using the lateral acceleration 
signal. However, roll angle estimation formulas use only lateral acceleration signal and suspension 
deflection. This problem creates difficulty in a sensitivity analysis using partial derivatives. Therefore, 
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the residual of estimation of the derivative of the roll rate was added as a constraint as in  
Equations (45) and (46). Figure 15 shows the result of the estimation simulations of the roll angle and 
the derivatives of the roll rate. Figures 15a and 15b both can confirmed that there is very little error. 

߶෠ଵ̈ =
௦,௙௟ݖ̈ − ௦,௙௥ݖ̈ + ௦,௥௟ݖ̈ − ௦,௥௥ݖ̈

2݈௧௪
=
௦,௙௟ݖ̈ − ௦,௙௥ݖ̈

2݈௧௪
	 (45)

߶෠ଶ̈ = −(
௦ℎ௦ܯ
݇௥௢௟௟

)ܽ̈௬	 (46)

 

Figure 14. Vehicle roll angle scheme. 

 
(a) 

 
(b) 

Figure 15. Estimation simulation result for the roll angle derivative of the roll rate. (a) Roll angle; (b) 
a derivative of the roll rate. 
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:ଵଵݎ ߶෠ଵ̇ − ߶෠ଶ̇ = ܿଵଵ(ܽ௬ , ௦,௙௟̈ݖ , ௦,௙௥̈ݖ )	 (47)

ଵଶ:߶෠ଵ̈ݎ −߶෠ଵ̈ = ܿଵଶ(ܽ௬ , ௦,௙௟̈ݖ , ௦,௙௥̈ݖ )	 (48)

The parameters semi-correlation table of residuals 11 and 12 in Equations (47) and (48) is 
presented in Table 4. As shown in the parameters semi-correlation table, residual 11 is related to 
lateral acceleration, body vertical acceleration front left, and body vertical acceleration front right. 
However, for convenient sensitivity calculation, the sensitivity analysis of the residuals would be as 
shown in Table 5. 

Table 4. Parameters semi-correlation table of roll residuals. 

࢘ࢌ,࢙ࢠ̈ ࢒ࢌ,࢙ࢠ̈ ࢟ࢇ   
 - - ଵଵ Xݎ
 ଵଶ - X Xݎ

Table 5. Parameters semi-correlation table of all residuals. 

࢘ࢌ࢝ ࢒ࢌ࢝ ࢟ࢇ ࢞ࢇ ࣒̇  ࢇ࢙࢝ࢾ ࢘࢘࢝ ࢒࢘࢝  ࢘ࢌ,࢙ࢠ̈ ࢒ࢌ,࢙ࢠ̈  ࢘࢘,࢙ࢠ̈  ࢘ࢌ,࢛ࢠ̈ ࢒ࢌ,࢛ࢠ̈   
ଵݎ  X  X X          
         ଶ X  X  Xݎ
        ଷ X     Xݎ
       ସ X      Xݎ
      ହ    X X   Xݎ
      ଺      X X Xݎ
  ଻  X X      X   Xݎ
ݎ଼   X X       X   X 
ଽݎ   X X      X X X X  
 ଵ଴  X X        X  Xݎ
    - -      ଵଵ   Xݎ
    ଵଶ   -      X Xݎ

4. Residual Sensitivity Analysis 

To develop the proposed FDI algorithms considering the residual sensitivity, a sensitivity analysis 
was conducted via the partial derivative. Each residual was partially differentiated by fault signals. 

Table 6 presents the equations of residual sensitivity using the vehicle sensor signals. For the 
visualization of sensitivity, the simulation was conducted using scenario 1, which was presented in 
Section 3.1. 

Table 6. The sensitivity of residuals with a fault signal. 

Fault Signal Sensitivity (Partial Derivative) 

߰̇ 

ଵݎ߲
߲߰̇

=
1
ݎ
ቆ
݈௧௪
2 −

݈௙ݒ௬
௫ݒ

+
݈߰̇௙ ݐ௫݀ݒ∫

௫ݒ
ቇ 

ଶݎ߲
߲߰̇

= −
1
ݎ
ቆ
݈௧௪
2 −

݈௙ݒ௬
௫ݒ

+
݈߰̇௙ ݐ௫݀ݒ∫

௫ݒ
ቇ 

ଷݎ߲
߲߰̇

=
݈௧௪
ݎ2  

ସݎ߲
߲߰̇

= −
݈௧௪
ݎ2  

ܽ௫  

଻ݎ߲
߲ܽ௫

= −
௦ℎ௦ܯ
2݈  

ݎ଼߲
߲ܽ௫

= −
௦ℎ௦ܯ
2݈  
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ଽݎ߲
߲ܽ௫

=
௦ℎ௦ܯ
2݈  

ଵ଴ݎ߲
߲ܽ௫

=
௦ℎ௦ܯ
2݈  

ܽ௬  

ଵݎ߲
߲ܽ௬

= −
݈߰̇௙ݐ
௫ݒݎ

 

ଶݎ߲
߲ܽ௬

=
߰̇ ௙݈ݐ
௫ݒݎ

 

଻ݎ߲
߲ܽ௬

= −
௦ℎ௦݈௥ܯ
݈௧௪݈

 

ݎ଼߲
߲ܽ௬

=
௦ℎ௦݈௥ܯ
݈௧௪݈

 

ଽݎ߲
߲ܽ௬

= −−
௦ℎ௦݈௙ܯ
݈௧௪݈

 

ଵ଴ݎ߲
߲ܽ௬

=
௦ℎ௦݈௙ܯ
݈௧௪݈

 

ଵଵݎ߲
߲ܽ௬

=
௦ℎ௦ܯ
݇௥௢௟௟

 

߱௙௟  

ଵݎ߲
߲߱௙௟

= 1 

ହݎ߲
߲߱௙௟

=
݈݅௥
݈௧௪

(1 + ൬
௫ݒ
௖௛ݒ

൰
ଶ
) 

߱௙௥  

ଶݎ߲
߲߱௙௥

= 1 

ହݎ߲
߲߱௙௥

= −
݈݅௥
݈௧௪

(1 + ൬
௫ݒ
௖௛ݒ

൰
ଶ
) 

߱௥௟  

ଷݎ߲
߲߱௥௟

= 1 

଺ݎ߲
߲߱௥௟

=
݈݅௥
݈௧௪

(1 + ൬
௫ݒ
௖௛ݒ

൰
ଶ
) 

߱௥௥  

ସݎ߲
߲߱௥௥

= 1 

଺ݎ߲
߲߱௥௥

= −
݈݅௥
݈௧௪

(1 + ൬
௫ݒ
௖௛ݒ

൰
ଶ
) 

௦௪௔ߜ  

ହݎ߲
௦௪௔ߜ߲

= 1 

଺ݎ߲
௦௪௔ߜ߲

= 1 

௦,௙௟ݖ̈  

଻ݎ߲
௦,௙௟ݖ߲̈

= ݉௦,௙௟  

ଽݎ߲
௦,௙௟ݖ߲̈

= ݉௦,௙௟  

ଵଶݎ߲
௦,௙௟ݖ߲̈

=
1
2݈௧௪

 

௦,௙௥ݖ̈  

ݎ଼߲
௦,௙௥ݖ߲̈

= ݉௦,௙௥  

ଽݎ߲
௦,௙௥ݖ߲̈

= −݉௦,௙௥  

ଵଶݎ߲
௦,௙௥ݖ߲̈

=
1
2݈௧௪

 

௦,௥௥ݖ̈  

ଽݎ߲
௦,௥௥ݖ߲̈

= ݉௦,௥௥  

ଵ଴ݎ߲
௦,௥௥ݖ߲̈

= ݉௦,௥௥  
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௨,௙௟ݖ̈  
଻ݎ߲
௨,௙௟ݖ߲̈

= ݉௨,௙௟  

 
ଽݎ߲
௨,௙௟ݖ߲̈

= ݉௨,௙௟  

௨,௙௥ݖ̈  

ݎ଼߲
௨,௙௥ݖ߲̈

= ݉௨,௙௥  

ଵ଴ݎ߲
௨,௙௥ݖ߲̈

= ݉௨,௙௥  

Figure 16 shows the sensitivity of the residuals. In Figure 16a, residuals 1 to 4 are very sensitive 
to the yaw rate signal. However, in Figures 16b and 16c, residuals 1 and 2 have zero sensitivity for 
no lateral dynamic behavior. Also, the sensitivity of residual 1 to the yaw rate (డ௥భ

డట̇
) uses yaw as a rate 

signal. Therefore, threshold using these sensitivities are not appropriate for use in the fault detection; 
if the yaw rate sensor signal has a fault, the threshold for residual 1 also goes wrong. In the table of fault 
detection and isolation (Table 7), these results should be applied for accurate fault isolation.  
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(b) 

5 10 15 20 25 30 35
time [s]

-30

-20

-10

0

10

20

30
r1
r2
r3
r4

5 10 15 20 25 30 35
time [s]

-400

-200

0

200

400
r1
r2
r7
r8
r9
r10
r11



Sensors 2018, 18, 2720 19 of 38 

 

 
(c) 

 
(d) 

 
(e) 

Figure 16. Sensitivity simulation result. (a) The sensitivity of yaw rate (residuals 1–4); (b) sensitivity 
of lateral acceleration (residuals 1, 2, 7, 8, 9, 10, 11); (c) sensitivity of lateral acceleration (residuals 1, 
2, 11); (d) sensitivity of wheel angular speed—fl (residuals 1, 5); (e) sensitivity of body vertical 
acceleration—fl (residuals 1, 5). 

Table 7. Fault detection and isolation table. 

࢘ࢌ࢝ ࢒ࢌ࢝ ࢟ࢇ ࢞ࢇ ࣐̇  ࢇ࢙࢝ࢾ ࢘࢘࢝ ࢒࢘࢝  ࢘ࢌ,࢙ࢠ̈ ࢒ࢌ,࢙ࢠ̈  ࢘࢘,࢙ࢠ̈  ࢘ࢌ,࢛ࢠ̈ ࢒ࢌ,࢛ࢠ̈   
ଵݎ  -  - X          
         ଶ -  -  Xݎ
        ଷ X     Xݎ
       ସ X      Xݎ
      ହ    X X   Xݎ
      ଺      X X Xݎ

5 10 15 20 25 30 35
time [s]

0

10

20

30

40

50
r1
r5
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  ଻  X X      X   Xݎ
ݎ଼   X X       X   X 
ଽݎ   X X      X X X X  
 ଵ଴  X X        X  Xݎ
    - -      ଵଵ   Xݎ
    ଵଶ   -      X Xݎ

5. Fault Detection and Isolation Algorithm Test Result 

The proposed sensitivity-based FDI algorithm was verified by generating a faulty signal in an 
HILS-based simulation environment using RCP (rapid control prototyping) equipment implemented 
with a fault diagnosis algorithm. Using scenarios 1 and 2 in Figures 6 and 9, each fault was injected, 
and it was validated that the fault can be detected by the sensitivity-applied threshold. Injected faults 
were also isolated as shown in Figures 17 to 32. In these experiments, IPG’s Xpack4 and CarMaker in 
addition to dSPACE’s MicroAutoBox2 are used. Moreover, all signals used in the sensitivity-based 
FDI algorithm received by the CAN (controller area network) were connected to an HILS device. In 
order to ensure efficiency, only one experiment result was inserted for the same type of sensor fault 
result. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 17. FDI (fault detection and isolation) simulation result for yaw rate sensor (normal). (a) 
Residual 1 and threshold; (b) residual 2 and threshold; (c) residual 3 and threshold; (d) residual 4 and 
threshold. 
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(b) 

 
(c) 

 
(d) 

Figure 18. FDI simulation result for yaw rate sensor fault (fault). (a) Residual 1 and threshold;  
(b) residual 2 and threshold; (c) residual 3 and threshold; (d) residual 4 and threshold. 

Figure 17 shows the experimental results in the normal situation with no fault and Figure 18 
shows the simulation results in the case where the yaw rate sensor failed. In Figure 18, residuals 3 
and 4 exceeded their thresholds, as designed by their sensitivities. On the other hand, as mentioned 
in Section 4, residuals 1 and 2 cannot detect a yaw rate sensor fault. This is because the threshold for 
residuals 1 and 2 use a faulty signal yaw rate signal (shown in Figures 18a,b). 
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(d) 

Figure 19. FDI simulation result for longitudinal acceleration sensor (normal). (a) Residual 7 and 
threshold; (b) residual 8 and threshold; (c) residual 9 and threshold; (d) residual 10 and threshold. 

 
(a) 

 
(b) 



Sensors 2018, 18, 2720 25 of 38 

 

 
(c) 

 
(d) 

Figure 20. FDI simulation result for longitudinal acceleration sensor (fault). (a) Residual 7 and 
threshold; (b) residual 8 and threshold; (c) residual 9 and threshold; (d) residual 10 and threshold. 

Figure 19 shows the experimental results in the normal situation with no fault and Figure 20 
shows the simulation results in the case where the longitudinal acceleration sensor failed. In  
Figure 20, residuals 7–10 exceeded their thresholds. This result is consistent with the expected results 
from the Table 7. 
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(e) 

Figure 21. FDI simulation result for lateral acceleration sensor (normal). (a) Residual 7 and threshold; 
(b) residual 8 and threshold; (c) residual 9 and threshold; (d) residual 10 and threshold; (e) residual 
11 and threshold. 
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(c) 

 
(d) 

 
(e) 

Figure 22. FDI simulation result for lateral acceleration sensor (fault). (a) Residual 7 and threshold;  
(b) residual 8 and threshold; (c) residual 9 and threshold; (d) residual 10 and threshold; (e) residual 
11 and threshold. 

Figure 21 shows the experimental results in the normal situation with no fault and Figure 22 
shows the simulation results in the case where the lateral acceleration sensor failed. In Figure 22, 
residuals 7–11 exceeded their thresholds, as designed by their sensitivities. As derived from Table 7 
above, we reflected the failure sensitivity of the residual to the lateral acceleration sensor. In this 
process, residual 1 and 2 had a sensitivity of 0 when no steering occurred, as shown in Figure 16. For 
this reason, we decided not to use residuals 1 and 2 to detect lateral acceleration sensor faults. It was 
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also confirmed that residual 11 effectively separates the failure of the longitudinal acceleration sensor 
and the failure of the lateral acceleration sensor. 

(a) 

(b) 

Figure 23. FDI simulation result for wheel angular speed sensor—fr (normal). (a) Residual 2 and 
threshold; (b) residual 5 and threshold. 

(a) 
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(b) 

Figure 24. FDI simulation result for wheel angular speed sensor—fr (fault). (a) Residual 2 and 
threshold; (b) residual 5 and threshold. 

Figure 23 shows the experimental results in the normal situation with no fault and Figure 24 
shows the simulation results in the case where the wheel angular speed sensor at the front right failed. 
In Figure 24, residuals 2 and 5 exceeded their thresholds, as designed by their sensitivities. These 
results are consistent with the expected results from Table 7. 

 
(a) 

 
(b) 

Figure 25. FDI simulation result for wheel angular speed sensor—rr (normal). (a) Residual 4 and 
threshold; (b) residual 5 and threshold. 
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(a) 

 
(b) 

Figure 26. FDI simulation result for wheel angular speed sensor—rr (fault). (a) Residual 4 and 
threshold; (b) residual 5 and threshold. 

Figure 25 shows the experimental results in the normal situation with no fault and Figure 26 
shows the simulation results in the case where the wheel angular speed sensor at the rear right failed. 
In Figure 26, residuals 4 and 5 exceeded their thresholds, as designed by their sensitivities. These 
results are consistent with the expected results from Table 7. 
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(b) 

Figure 27. FDI simulation result for a steering wheel angle sensor (normal). (a) Residual 5 and 
threshold; (b) residual 6 and threshold. 

 
(a) 

 
(b) 

Figure 28. Simulation result for a steering wheel angle sensor (fault). (a) Residual 5 and threshold;  
(b) residual 6 and threshold. 

Figure 27 shows the experimental results in the normal situation with no fault and Figure 28 
shows the simulation results in the case where the steering wheel angle sensor failed. 
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(a) 

 
(b) 

 
(c) 

Figure 29. Simulation result for body vertical acceleration sensor—fl (normal). (a) Residual 7 and 
threshold; (b) residual 9 and threshold; (c) residual 12 and threshold. 
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(a) 

 
(b) 

 
(c) 

Figure 30. Simulation result for body vertical acceleration sensor—fl (fault). (a) Residual 7 and 
threshold; (b) residual 9 and threshold; (c) residual 12 and threshold. 

Figure 29 shows the experimental results in the normal situation with no fault and Figure 30 
shows the simulation results in the case where the body vertical acceleration sensor at the front left 
failed. In Figure 30, residuals 7, 9, and 12 exceed their thresholds. In Section 3, residual 12 was added 
to separate the fault tendency of the body vertical acceleration front left from the fault tendency of 
wheel vertical acceleration front left. Figure 30 shows that residual 12 effectively detected the fault of 
the body vertical acceleration sensor at the front left in the HIL simulation. 
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(a) 

 
(b) 

Figure 31. Simulation result for wheel vertical acceleration sensor—fl (normal). (a) Residual 7 and 
threshold; (b) residual 9 and threshold. 
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(b) 

Figure 32. Simulation result for wheel vertical acceleration sensor—fl (fault). (a) Residual 7 and 
threshold; (b) residual 9 and threshold. 

Figure 31 shows the experimental results in the normal situation with no fault and Figure 32 
shows the simulation results in the case where the wheel vertical acceleration sensor of front left 
failed. In this simulation result, it was confirmed that residuals 7 and 9 exceeded their threshold 
values, which is different from the results shown in Figure 30. Based on this, it was possible to 
separate the fault tendencies of the body vertical acceleration sensor at the front left from the wheel 
vertical acceleration sensor at the front left. This also showed that residual 12 effectively isolated the 
fault of the body and wheel vertical acceleration sensors at the front left in the HIL simulation. 

6. Conclusions 

In this paper, to diagnose the faults of road chassis vehicle sensors, sensitivity-based fault 
detection and an isolation algorithm were developed. The proposed algorithm was constructed based 
on the sensitivity of residuals and generated using the analytical method. To generate residuals, 12 
vehicle dynamics equations were designed and used. 

Since a large number of failures were diagnosed simultaneously, the scope of each residual was 
significantly different, causing difficulties in determining and separating the failures. To improve the 
accuracy of fault judgment, the sensitivity of the residuals was analyzed analytically and applied to 
a threshold. Moreover, to improve the accuracy of the fault isolation, the sensitivity of the residual 
was applied to the previously analyzed parameters semi-correlation table to derive the fault isolation 
table. The open-loop state observer and FDI algorithms used in this paper were validated through a 
vehicle dynamic simulator and via HIL simulations. 

As shown in the simulation results in Figures 17 to 32, the results of the fault detection conditions 
using residual sensitivities are similar to those obtained by the adaptive threshold method introduced 
in previous studies. However, the difference in this paper is that the sensitivity of each residual is 
analyzed to take into account the uncertainty of the model. This study will help researchers who 
study faults in sensor-equipped commercial vehicles as well as fault-tolerant controllers of 
autonomous vehicles that control vehicles with sensor information. Further research will consider 
developing FDI algorithms using a closed-loop based observer and its sensitivity. 
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