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Abstract: Indoor localization is one of the fundamentals of location-based services (LBS) such as
seamless indoor and outdoor navigation, location-based precision marketing, spatial cognition of
robotics, etc. Visual features take up a dominant part of the information that helps human and
robotics understand the environment, and many visual localization systems have been proposed.
However, the problem of indoor visual localization has not been well settled due to the tough
trade-off of accuracy and cost. To better address this problem, a localization method based on image
retrieval is proposed in this paper, which mainly consists of two parts. The first one is CNN-based
image retrieval phase, CNN features extracted by pre-trained deep convolutional neural networks
(DCNNs) from images are utilized to compare the similarity, and the output of this part are the
matched images of the target image. The second one is pose estimation phase that computes accurate
localization result. Owing to the robust CNN feature extractor, our scheme is applicable to complex
indoor environments and easily transplanted to outdoor environments. The pose estimation scheme
was inspired by monocular visual odometer, therefore, only RGB images and poses of reference
images are needed for accurate image geo-localization. Furthermore, our method attempts to use
lightweight datum to present the scene. To evaluate the performance, experiments are conducted,
and the result demonstrates that our scheme can efficiently result in high location accuracy as well as
orientation estimation. Currently the positioning accuracy and usability enhanced compared with
similar solutions. Furthermore, our idea has a good application foreground, because the algorithms
of data acquisition and pose estimation are compatible with the current state of data expansion.

Keywords: indoor positioning; image geo-localization; image retrieval; CNN features; pose estimation

1. Introduction

The increasing demand of location-based services (LBS) in recent years inspires the desire for
accurate position information. The most common way for positioning with cell phone and other
mobile platforms is GNSS (Global Navigation Satellite System). However, in most of the time, GNSS is
only available for the outdoor environment. When it comes to indoor environment, GNSS signals are
mostly blocked by obstacles. In recent years, a number of alternative technologies have been proposed
for indoor positioning. Most of indoor positioning methods are focused on fingerprinting-based
localization algorithms which are infrastructure-free [1–3]. In these methods, Wi-Fi received signal
strengths (RSS) or magnetic field strengths (MFS) are collected and will be compared with data in
a fingerprinting database during positioning period. This fingerprinting-based system is easy to
establish and can achieve fine localization performance in the short term. Nevertheless, signal patterns
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will change over time due to the environment changes, which makes it hard to maintain the positioning
performance. Additionally, construction of fingerprint database is time-consuming and labor-intensive.
To overcome the defects of this scheme, many alternatives have been proposed, including Optical [4,5],
RFID (Radio Frequency Identification) [6], Bluetooth Beacons [7], ZigBee [8,9], Pseudo Satellite [10,11],
etc. Whereas the accuracy is not enough in intricate indoor environment, and these solutions may
need artificial setting and additional infrastructures which may bring unbearable costs.

There are also some previous attempts at indoor visual positioning. Recognition-based image
geo-localization methods are quite similar with the problem of image classification in computer vision,
in which global or region features are used for image matching [12–15]. In image classification issue,
similar images are labeled as the same category. Regarding the visual localization problem, relative
images are identified as sharing similar geo-location information. As for recognition-based method,
location of the target image is estimated by retrieving related images or scene classification [16–19].
Recognition-based methods apply an image retrieval strategy or a scene classification strategy at first,
subsequently the location of the query image is estimated based on the localization information of
the associate retrieved images or the classification labels. However, the mentioned methods above
generally provide a rather coarse estimation of location, which hardly satisfies the need of accurate
LBS. Geometric matching-based methods represent the scenes by geo-referenced 3D models, and
then, estimate the pose of query image by directly matching 2D image features to 3D models or by
matching 3D image features to 3D models when depth information is available. These approaches
typically come with estimation of 6 degrees of freedom (DoF) camera parameters. However, geometric
matching-based methods still have many challenges, which can be concluded as follows: (1) Superior
difficulty in constructing high fidelity RGB-D scene models as well as employing 2D-to-3D matching
for textured 3D models scheme; and (2) as for non-RGB point-only models scheme, the problem of
geometric alignment between the query images and 3D point models can be hard to settle.

To overcome the limitations of recognition-based methods and geometric matching-based
methods, a combination of these two strategies has been proposed in the devised scheme. In this paper,
we demonstrate an image-based indoor localization scheme which is capable of not only achieving
sub-meter level positioning accuracy but also determining orientations. At the same time, the proposed
scheme merely uses RGB images in the course of the online localization period and a server is used to
host the image database for the computing operation.

The main contributions of this paper can be concluded as follows:

(1) Inspired by the visual spatial cognition ability of human, an image-based visual positioning
scheme is proposed. The target image is matched with database images to get the most similar
image for localization computing.

(2) Our visual localization algorithm is 3D-modeling-free. Compared with visual localization
methods that combine with image retrieval and image pose estimation from regional 3D
reconstruction, regional 3D modeling is unrequired in our scheme since we recover camera
pose from two sets of 2D-to-2D matches.

(3) Our spatial model is training-free for different scenarios. Owing to pre-trained deep learning
models are stable and can be used as powerful feature extractors, we apply deep convolutional
neural network (DCNN) pre-trained on ImageNet to extract features to represent images, thus we
need not train a unique model for a specific scene.

(4) For localization purpose, we use a lighter model to represent the scene. CNN features extracted
from images of database can represent the scene in image retrieval phase. Compared with CNN
learning-based visual localization methods that require a large number of images during model
training, much fewer images are required to represent the same scene in our scheme.

The paper proceeds as follows: Section 2 provides a brief overview of related work. The system
architecture and methods are described in detail in Section 3. Experiments and performance evaluations
are presented in Section 4. Sections 5 and 6 are discussion and suggestions for future work.
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2. Related Work

The work presented in this paper relates to many fields, such as visual localization, image retrieval,
and visual pose estimation.

At present, visual localization systems can be roughly divided into three categories.
Structure-based localization methods are the most common visual localization methods that utilize

local features to estimate 2D-to-3D matches between features in a query image and points in 3D
models, or employ 3D-to-3D matches between RGB-D images and 3D models. Then camera pose
will be estimated from the correspondence. Similarly, Torsten et al. [20] compared 2D image-based
localization with 3D structure-based localization, and they drew a conclusion that purely 2D-based
methods achieve the lowest localization and 3D-based methods offer more precise pose estimation
with more complex model construction and maintenance. They proposed a combination of 2D-based
methods with local structure-from-motion (SfM) reconstruction which has both a simple database
construction procedure and accurate pose estimation. However, the drawback of their method is
significantly longer run-time during the location process.

Image-based localization methods were pushed by massive repositories of public geo-labeled images.
These methods employ an image retrieval-based strategy [16–19], which match the query image with
images from the database. Afterward the location of the query image is computed based on the pose
information of the retrieved reference images [21–23]. Owing to the prosperity of social network and
street view photos, quantity of images with geo-tags has emerged which can be used for reference
to these data-driven image-based localization methods. Image retrieval is a visual search task that
searches and retrieves images from a large database of digital images, which is commonly used in many
image-based localization methods. Conventional methods retrieve images based on local descriptor
matching and reorder with elaborate spatial verification [24–26]. Content based image retrieval search
for images relies on visual content such as edges, colors, textures, and shape [27]. Recent works
leverage deep convolution neural networks for image retrieval, the majority of them use a pre-trained
network as local feature extractor. Moreover, some work even can address the problem of geometric
invariance of CNN features [28,29], and to accurately represent images of different sizes and aspects
ratios [30,31].

Learning-based localization methods emerged in the past few years, which benefited from the
dramatic progress made in a variety of computer vision tasks. By training models from given images
with pose information, scenes can be represented by these learned models. These learning-based
localization methods either predict matches for pose estimation [32–35] or directly regress the camera
pose such as PoseNet [36], PoseNet2 [37], and VlocNet [38]. PoseNet was the first approach to
use DCNNs to solve the metric localization problem, and then Bayesian CNN implementation was
utilized to address the pose uncertainty [39]. After that, architectures such as long-short term memory
(LSTM) [40–42] and symmetric encoder-decoder [43] were utilized to facilitate the performance
of DCNNs.

Moreover, many localization methods [44–47] adopt a from-rough-to-precise idea. For example [44],
to utilized scene recognition to locate in scene-level area, and then employed a multi-sensor fusion
approach to give a specific location. Similarly, the purely visual-based methods have also been
proposed by researchers. Reference [45] casts the localization as an alignment problem of the edges
of the query image to a 3D model consisting of line segments. In Reference [46], recognition-based
periods are utilized to give coarse localization and then matching can be employed in rather small
region. Whereas, in their work, the accuracy and robustness are not sufficient for pervasive use,
for the reason that their SIFT-based images retrieval is not stable for the complexity and diversity of
indoor environments. To solve this problem, the proposed method adopts a robust CNN-based images
retrieval scheme which can fully satisfy the requirement of image retrieval, which is efficient for indoor
scenes. Moreover, 3D model is unnecessary in our strategy.

Compared with previous schemes, this paper combines image retrieval-based strategy with
feature-based pose estimation period. During the image retrieval period, we utilize a network
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pre-trained on ImageNet as feature extractor. CNNs learn suitable feature representations for
localization in indoor environments, and experiment shows that the performance of this strategy
is sufficient to retrieve spatial adjacent images. Pose of the target image is estimated based on a selected
geo-tagged image, this algorithm was inspired by similar procedure in monocular visual odometer
which uses the images of nearby frames as well as the estimated pose of the first frame. Due to the
procession of 3D modeling is complicated, we utilize a strategy that represents local scenario by two
contiguous images and succeeding computed the query image’s pose from one of the reference images.
However, the performance of pose estimation is highly related to the similarity between the query
images and the reference images. In other words, well-behaved image retrieval paves the way of valid
precise pose estimation.

3. System Overview and Methods

In this section, firstly, we describe the proposed method at a high level. Then, key modules and
important algorithms are described in detail, including data preparation, CNN-based image retrieval
and pose estimation.

3.1. System Architecture

We demonstrate a single RGB image based localization system which is not only capable of
reaching sub-meter localization accuracy but also estimating orientation.

The proposed system consists of three components, as shown in Figure 1:
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Figure 1. Overview of our visual indoor positioning method. The process is composed of (a) database
construction; (b) image retrieval; and (c) pose estimation stages.
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(1) Data preparation, shown in Figure 1a: We collected RGB images from target scenarios,
then extracted CNN features from all RGB images through pre-trained CNN models. All of the
work was done in offline period.

(2) Image retrieval, shown in Figure 1b: We loaded all of the CNN features of images in database,
and ranked them according to their similarity from the CNN features extracted from captured
image, and then output a set of images with top similarity. Pose estimation, shown in Figure 1c:
We carried out image retrieval to the query image and got two of the most similar images as well
as their poses. Then, feature points were extracted from the query image and retrieved images.
We employed 2D-to-2D correspondence to feature points extracted from two retrieved images to
compute the scale in monocular vision setting, and then applied the same procedure to feature
points from the query image, and the matching image to compute the pose of the query image.

3.2. Data Preparation

In this part, structure of the database is described. The input of the proposed system is an RGB
image which is captured either by a cellphone camera or other mobile platforms. In the database,
the absolute 3D spatial coordinates (x, y, z) and quaternion (qx, qy, qz, qw) of all images are known with
respect to a given local coordinate system. In addition, CNN features of each image are also included
in image database.

Each image can locally represent the scene it belongs to, and image set contains the information
of the scene. In the proposed method, two of the most similar images are applied to compute the scale
of monocular vision during pose estimation period, therefore, adjacent images should have enough
common area for feature matching. The more well-selected images to represent the scene, the better
performance of the retrieval and pose estimation result would be. Besides, too many images result in
increasing of the cost of data acquisition and computing time. We design the image set as follows.

As shown in Table 1, the database S of this experiment contains n different scenes as
S = {S1, S2, . . . , Sn}. For each scene Si, we need to get a set of images I =

{
Iij
}

with associated pose
information P =

{
Pij
}

, and their respective CNN features C =
{

Cij
}

to create a global representation
of this scene, where Pij =

{
xij, yij, zij, qxij, qyij, qzij, qwij

}
is the position and pose data of image Iij.

Table 1. Composition of database.

Scene Labels Color Images Pose Information CNN Features

S1
{

I11, I12, . . . , I1k1

} {
P11, P12, . . . , P1k1

} {
C11, C12, . . . , C1k1

}
S2

{
I21, I22, . . . , I2k2

} {
P21, P22, . . . , P2k2

} {
C21, C22, . . . , C2k1

}
. . . . . .
Sn

{
In1, In2, . . . , Inkn

} {
Pn1, Pn2, . . . , Pnkn

} {
Cn1, Cn2, . . . , Cnk1

}
3.3. CNN-Based Image Retrieval

In this section, fundamentals of a deep convolutional neural network are described, as well as
a pre-trained CNN model for deep feature extraction in following experiment.

3.3.1. Deep Convolutional Neural Networks (DCNNs)

As illustrated in Figure 2, the configuration of CNNs used in our proposed scheme is similar
to VGG16 which achieved great performance in the large-scale image recognition tasks such as
ILSVRC classification and localization. VGG-Nets apply the same principles as normal CNNs, and
the key characteristic of this kind of method is increasing depth using an architecture with very
small (3 × 3) convolution filters. [48] proposed six kinds of VGG-Nets, number of their layers varied
from 16 to 24. In our proposed scheme, we use a 16-layer VGG-Net named VGG16, this network
consists of thirteen convolutional layers (block1_conv1, block1_conv2, block2_conv1, block2_conv2,
block3_conv1, block3_conv2, block3_conv3, block4_conv1, block4_conv2, block4_conv3, block5_conv1,
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block5_conv2, block5_conv3), five max pooling layers (block1_pool, block2_pool, block3_pool,
block4_pool, block5_pool), three fully connected layers (fc1, fc2, fc3) and a soft-max layer.
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It is hard to train a valid DCNN model only by data we collected since deep learning needs a mass
of training data. In the proposed scheme, we use CNN for image feature extraction and apply the
extracted features in a retrieval task, and then get the most similar images related to the query image.
In view of the representation power of CNNs, pre-trained networks based on ImageNet can be used in
our feature extraction period.

3.3.2. Deep Features Extracted by CNNs

As shown in Figure 1a,b, both the query images and images in database are processed by CNN
model. From previous work [14], we know that deeper layers represent higher level of sematic
information from the visualization of feature maps. In our experiment, deep features extracted from
CNN can better represent the image, therefore competitive accuracy of image retrieval can be achieved.

Convolution layers (including responding ReLU and max pooling) are used to extract features
from input images, and these features are robust to scale and translation. Subsequently image features
are aggregated into a compact feature vector of fixed length. As is shown in Figure 3, we visualize the
first 16 matrices of each layer. We scale layer maps to the same size when visualizing them, but their
sizes as well as depths are different among layers as labeled at the left of the figure.
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3.3.3. Image Retrieval Using Deep Features

Image features are aggregated into a vector of fixed length after feature extraction period. If we
apply the same CNN model to extract features to the same size images, we will get the same fixed
length of feature vectors, as shown in Figure 4. When comparing two images, we calculate the distance
between image feature vector of retrieved image (vectori) and vector of the query image

(
vectorq

)
,

where i ∈ [1, n] and n refers to the number of images in database. For a query image, we apply
Equation (3) to calculate its scores with every image in database. Then, the images in the database are
ranked in descending order of scores. At the end of this period, we output certain number of the most
similar images as retrieved images related to the query image.

vectori =
[
vector0

i , vector1
i , . . . , vector512

i

]
, (1)

vectorq =
[
vector0

q , vector1
q , . . . , vector512

q

]
, (2)

scorei = vectori ∗ vectorq
T , (3)
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3.4. Pose Estimation

As shown in Figure 1c, the last step of our visual indoor localization process is pose recovery of
the query image. In image retrieval period, we get two of the most similar geo-tagged images related
to the query image. In this period, the method for pose estimation mainly consists of the following
four steps: Firstly, key-points and descriptors are extracted to mathematically express these three
images. Secondly, the transformation from 2D-to-2D matches between images is calculated. Thirdly,
both the transformation and the pose of the two retrieved images are utilized to compute the scale of
monocular vision. Finally, pose of the query images is computed by applying the monocular vision
scale and the transformation between the query image and the most similar image. It should be noted
that, target images and images in database may captured by different cameras, and the difference in
intrinsic parameters may affect the localization performance. Therefore, camera calibration is required
beforehand in order to achieve more accurate positioning result. Furthermore, in consideration of top 2
retrieved images may fail to estimate the pose of the target image, all images in database are re-ranked
in retrieval period. If the transformation from 2D-to-2D matches between images is calculated failed,
we use the next ranked retrieved image for transformation computation, until pose of the target image
could be figured out.

3.4.1. Feature Detection and Matching

The proposed system aims at recovering pose of the query image based on nearby image. However,
the image is a matrix of brightness and color, and it is hard to compute the transformation between
images by whole matrix. The most common approach to this issue is searching for salient key-points
that can be used to match well in other images.

There are many point-feature detectors, such as corner detector (e.g., Moravec [49], FAST [50]) and
blob detectors (SIFT [51], SURF [52], CENSURE [53]), their pros and cons can be found in Reference [54].
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SIFT fully considers the illumination, scale, rotation and other changes in the image transformation,
and achieves great performance in many positioning applications such as in Reference [46], however
it can result in large computational cost. For the proposed system which is designed for real-time
positioning and LBS, SIFT cannot satisfy the requirements. The time of extracting the same number
of features from the same image by SIFT, SURF and ORB [55] is compared in Reference [55]. In that
work, when extracting roughly 1000 features, SIFT takes 5228.7 ms, SURF takes 217.3 ms, while ORB
only takes 15.3 ms. Accordingly, we adopt ORB (Oriented FAST and Rotated BRIEF) as our detector of
point features.

After extraction of ORB features from a pair of images, we use Hamming distance as distance
measurement to match features. The results of feature detection and matching from two images are
shown in Figure 5.
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3.4.2. Motion from Image Feature Correspondences

In our proposed system, only RGB images are captured by cameras, therefore, feature
correspondence is in two dimensions. This section explains the method of computing the
transformation TK between two images IK−1, IK from two sets of corresponding features fK−1, fK.

For calibrated cameras, the geometric relationship between two images IK−1 and IK can be
described by essential matrix E. The rotation and translation can directly be extracted from E which
can be computed from 2D-to-2D feature correspondence. E contains an unknown scale factor of the
transformation parameters in the following form:

E = t̂R, (4)

where t =
[
tx, ty, tz

]T and

t̂ =

 0 −tz ty

tz 0 −tx

−ty tx 0

, (5)
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E can be computed from 2D-to-2D feature correspondence by using the epipolar constraint.
Reference [56] illustrated a minimal case solution, which involves the correspondence of five pairs
of points’, and Reference [57] proposed an efficient implementation of this five-point-algorithm.
In References [58,59], an eight-point-algorithm is created for the n ≥ 8 noncoplanar
points, which is summarized below. For one pair of points with normalized coordinates
x1 = [u1, v1, 1]T and x2 = [u2, v2, 1]T , according to epipolar constraint as Equation (6),
where E = [e1, e2, e3, e4, e5, e6, e7, e8, e9]

T .

[u1u2, u1v2, u1, v1u2, v1v2, v1, u2, v2, 1]E = 0, (6)

Stacking the constraints from eight points gives the linear equation system as Equation (7), and
the parameters of E can be computed by solving this system.


u1

1u1
2 u1

1v1
2 u1

1 v1
1u1

2 v1
1v1

2 v1
1 u1

2 v1
2 1

u2
1v2

2 u2
1v2

2 u2
1 v2

1u2
2 v2

1v2
2 v2

1 u2
2 v2

2 1
...

...
...

u8
1v8

2 u8
1v8

2 u8
1 v8

1u8
2 v8

1v8
2 v8

1 u8
2 v8

2 1





e1

e2

e3

e4

e5

e6

e7

e8

e9


= 0, (7)

The rotation and translation can be extracted from E using singular value decomposition (SVD).
A valid essential matrix after SVD is E = USVT . Generally, four different solutions for R, t for one E;
however, by triangulation of a single point, the correct R, t can be determined. The four solutions are:

R = U
(
±WT

)
VT , (8)

t̂ = U
(
±WT

)
SUT , (9)

where

WT =

 0 ±1 0
∓1 0 0
0 0 1

, (10)

The transformation can be described by transform matrix T in the following form:

T =

[
R t
0 1

]
, (11)

3.4.3. Scale Determination

The main property of 2D-to-2D motion estimation is the epipolar constraint, which is based on
the constraint of zero equation. Therefore, the equivalence is valid when essential matrix multiplies
a multiplicative scalar. In other words, the essential matrix lacks scale to merely correspond to real
scenario. This section explains the method to determine the scale by two reference images.

In the image retrieval periods, two most similar images I1, I2 are output. With camera calibrated,
the scale can be computed from two images transformation and given pose.

By applying epipolar constraint to image I1, I2, we can get the transform matrix T12 from I1 to I2:

T12 =

[
R12 t12

0 1

]
, (12)
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Images I1, I2 can be written in the form of homogeneous coordinate. Take image I1 as example,
the pose is P1 = {x1, y1, z1, qx1, qy1, qz1, qw1}. Its translation is t1 = [x1, y1, z1]

T and the rotation
R1 can be donated as Equation (13). Then image I1 can be represented by transform matrix T1 as
Equation (14).

R1 =

 1− 2qy1
2 − 2qz1

2 2qx1qy1 − 2qw1qz1 2qx1qz1 + 2qw1qy1

2qx1qy1 + 2qw1qz1 1− 2qx1
2 − 2qz1

2 2qy1qz1 − 2qw1qx1

2qx1qz1 − 2qw1qy1 2qy1qz1 + 2qw1qx1 1− 2qx1
2 − 2qy1

2

, (13)

T1 =

[
R1 t1

1 1

]
, (14)

Transformation T′12 from image I1 to image I2 can be computed from a function as Equation (15),
where inv(T1) is the inverse of matrix T1. The relationship of transformation T′12 and its corresponding
rotation R′12 and translation t′12 is in Equation (16).

T′12 = inv(T1)T2, (15)

T′12 =

[
R′12 t′12
0 1

]
, (16)

Comparing T′12 with transform matrix T12 computed from 2D-to-2D feature correspondence, we
find the rotation R12 almost equals to R′12, however t12 and t′12 show a great difference and contain a
scale as Equation (17), where s is the scale.

t′12 = s t12, (17)

3.4.4. Pose Estimation of the Query Image

In Section 3.4.2, computation of transform matrix from two images is illustrated, and Section 3.4.3
gave the method of computing scale from two retrieved images. As the poses of retrieved images are
known, the transform matrix can be calculated by one of the retrieved images. In our method, we use
two of the most similar images I1 and I2 to determine the scale s, then estimate the query image’s pose
P0 from the transform matrix T10 which is computed from the most similar image I1 and the query
image I0, and the relationship between the pose P0 of image I0 and corresponding transform matrix
from T0 is illustrated in Equation (18). P0 can be denoted as P0 = {x0, y0, z0, qx0, qy0, qz0, qw0}.

T0 =

∣∣∣∣∣∣∣∣∣
1− 2qy0

2 − 2qz0
2 2qx0qy0 − 2qw0qz0 2qx0qz0 + 2qw0qy0 x0

2qx0qy0 + 2qw0qz0 1− 2qx0
2 − 2qz0

2 2qy0qz0 − 2qw0qx0 y0

2qx0qz0 + 2qw0qy0 2qy0qz0 + 2qw0qx0 1− 2qx0
2 − 2qy0

2 z0

0 0 0 1

∣∣∣∣∣∣∣∣∣, (18)

4. Experimental Evaluation

4.1. Data Acquisition

For our experiment setup, we utilize images and their poses from trajectories for visual
odometer since the task of visual positioning is similar to visual odometer tasks. In this experiment,
the ICL-NUIM dataset [60] and the TUM RGB-D dataset [61] are adopted.

ICL-NUIM: A dataset consists of RGB-D images from camera trajectories from two indoor scenes,
living room and office room. The images were collected by a handheld Kinect RGB-D camera and the
ground truth of trajectories was obtained by using Kintinuous [62]. The images were captured at
640× 480 resolutions. Four trajectories were recorded in each scene, and images were taken at different
positions for different trajectories. Images obtained at different pose are shown in Figures 6 and 7.
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TUM RGB-D: A dataset contains the color and depth images of a Microsoft Kinect sensor and the
ground-truth trajectory of camera pose with the goal of establishing a benchmark for the evaluation
of visual SLAM systems. The images are at a resolution of 640 × 480 and ground-truth trajectory
was obtained from high accuracy motion-caption system. The dataset consists of 89 sequences from
different camera motions.

These datasets are employed to verify the performance of the proposed method, and images deal
with different scales of captured area vary in capabilities of representing the scenario in different levels.
Among these datasets, as shown in Figure 6, images in office scene of ICL-NUIM can represent a larger
area such as half a room, whereas as shown in Figure 8, area represented in TUM RGB-D varies from
a corner to part of room. As illustrated in Table 2, we choose a part of images in the dataset to represent
scenarios, the number of train images and test images are also shown in this table. It should be noted
that, database images are hand-picked to cover the application scenarios. The intrinsic parameters of
the RGB camera can be obtained from Reference [63].
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Table 2. We chose images from different scenarios of ICL-NUIM and TUM RGB-D to compose our own
experiment dataset.

Dataset Scenario The Number of
Raw Images

The Number of
Database Images

The Number of
Test Images

ICL-NUIM
office room 4602 289 1495
living room 4602 304 1533

TUM RGB-D

freiburg1_plant 1141 115 456
freiburg1_room 1362 91 454

freiburg2_360_hemisphere 2729 273 1092
freiburg2_flowerbouquet 2972 149 1188
freiburg2_pioneer_slam3 2544 128 1017

freiburg3_long_office_household 2585 130 1034

4.2. Performance of Image Retrieval

In this section, we evaluate the image retrieval performance by means of feature extraction
methods on our database. It is important to note that, the process of evaluating the performance
of image retrieval is time-consuming since feature extraction period is expensive, nevertheless,
this process is not needed by our applying visual positioning algorithm.

Generally, mean average precision (mean AP) is applied to evaluate the performance of image
retrieval task quantitatively, which compares the query image and the top retrieved images belonging
to the same categories. The comparison of traditional image retrieval methods with CNN-based
image retrieval methods has illustrated in Reference [29,64]. However, in the procedure of proposed
image retrieval based visual positioning, mean AP cannot effectively demonstrate the retrieval result
efficiently. Due to the feature extraction and matching period can affect the result of pose estimation
heavily, pairs of images should share as many feature points as possible, which makes it essential
for the query image and the retrieved images share some common areas. Therefore, we calculate the
number of matched features between images to evaluate the result of image retrieval.

To evaluate the performance of image retrieval, we extract feature points and descriptors from
each pair of images, and calculate the number of good-match. In our retrieval period, three of the
most similar images are returned. We extract ORB features from these retrieved images together with
the query image, then match features of the query image and its corresponding retrieved images.
Noted that Hamming Distance is employed to compute the distance between ORB descriptors. Then the
minimal distance of matched descriptors is computed in all image pairs, and matched feature points
whose distance is less than a threshold value can be labeled as good-match. Moreover, when calculating
the good-match in ORB descriptors, the threshold value is defined by the larger number between
twice of the minimal distance and a constant, since sometimes the minimal Hamming distance can be
quite small. As shown in Table 3, a great number of good-matches are detected, which is sufficient for
eight-point-algorithm in pose estimation period. The experiment results show that top-ranked similar
images share more good-match.

Table 3. The average number of ORB Oriented FAST and Rotated BRIEF) good-match in two datasets.

Similarity Rank ICL-NUIM Dataset (Test on 3026 Images) TUM RGB-D Dataset (Test on 5241 Images)

1 252.8 225.3
2 203.1 135.9
3 158.4 104.0

Average 204.8 155.1

In Reference [65], Jason et al. also developed an image based indoor localization scheme which
uses FLANN search on SIFT features, and their experiment only successfully matched 78 out of
83 images to achieve a 94% retrieval accuracy. Whereas, in our proposed method, which aided by
CNN-based image retrieval, achieved more than 99% image retrieval rate of 8267 images (the output
images share the common area with the query image) owing to CNN features have more powerful
representations for images.
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4.3. Localization Results and Analysis

Figures 9 and 10 summarize the performance of pose estimation stage of proposed scheme.
As shown in Figure 9a, our method is able to localize the position within sub-meter level of accuracy
for over 90% of the query images in both datasets. Furthermore, more than 80% of the query images
are successfully localized within 0.25 m of the ground truth position. As shown in Figure 9b, about
90% of the query images are localized within 3 degrees of ground truth position. We reported the
performance in terms of the median errors of translation and orientation for each scene in the datasets,
as shown in Table 4. The median errors of translation of our proposed method are around sub-meter
level, which the 90% accuracy is 0.28 m in ICL-NUIM dataset and 0.45 m in TUM RGB-D dataset.
The median error of orientation is within 1◦ and the 90% accuracy is 0.94◦ for ICL-NUIM dataset and
2.03◦ for TUM RGB-D dataset. It is important to note that the statistics in Table 4 has not removed the
outliers, which enlarged the mean error of localization.

The proposed localization method combines CNN features and point features to estimate the
pose. We compare the accuracy of the proposed method with the average pose estimation errors
of three different CNN-based localization methods: (i) PoseNet which directly regress the camera
pose by CNN; (ii) 4D PoseNet which was modified from PoseNet to accommodate the RGB-D input;
(iii) CNN+LSTM [42], which utilize the PoseNet as a baseline pose estimator and the LSTM works as
a temporal filter to process the estimated pose sequence. Table 5 summarizes statistics of the average
pose estimation errors from those methods on ICL-NUIM dataset. We achieved better position accuracy
on both scenarios, and achieved comparable accuracy in orientation.

More importantly, compared with state-of-the-art learning-based methods, the proposed scheme
uses much fewer images in database construction period, which is significant for generalizing
application of visual positioning. As is known, learning-based methods need quantity of images
with poses to train a model (see Table 6). However, in proposed visual localization scheme, much fewer
images are required. Less than 10% images are needed compared to learning-based methods, and we
can still achieve comparable localization accuracy. Furthermore, CNN features can reduce the cost of
model storage. Our CNN features model takes up 1.8 M storage for 886 images from TUM RGB-D
database, which raw images occupy memory of 419.4 M, and 1.2 M storage is needed for 593 images
from ICL NUIM database, which raw RGB images need 175.1 M.
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Table 4. Localization performance in different scenarios from different datasets.

Dataset Scenario The Median Error The Mean Error 90% Accuracy

ICL-NUIM
office room 0.07 m 0.01◦ 0.31 m 2.47◦ 0.35 m 0.83◦

living room 0.05 m 0.02◦ 0.36 m 4.36◦ 0.23 m 1.03◦

All images 0.06 m 0.01◦ 0.34 m 3.43◦ 0.28 m 0.94◦

TUM RGB-D

freiburg1_plant 0.12 m 0.01◦ 0.38 m 3.37◦ 0.45 m 1.95◦

freiburg1_room 0.17 m 0.54◦ 0.43 m 4.82◦ 0.71 m 4.04◦

freiburg2_360_hemisphere 0.05 m 0.16◦ 0.38 m 6.55◦ 0.38 m 1.08◦

freiburg2_flowerbouquet 0.07 m 0.12◦ 0.15 m 5.32◦ 0.26 m 2.54◦

freiburg2_pioneer_slam3 0.13 m 0.13◦ 0.34 m 8.80◦ 0.66 m 1.54◦

freiburg3_long_office_household 0.15 m 0.21◦ 0.36 m 3.00◦ 0.41 m 2.05◦

All images 0.10 m 0.16◦ 0.32 m 5.58◦ 0.45 m 2.03◦

Table 5. Comparison of average pose estimation error in ICL-NUIM dataset.

Method Living Room Office Room

PoseNet 0.60 m, 3.64◦ 0.46 m, 2.97◦

4D PoseNet 0.58 m, 3.40◦ 0.44 m, 2.81◦

CNN+LSTM [42] 0.54 m, 3.21◦ 0.41 m, 2.66◦

ours 0.36 m, 4.36◦ 0.31 m, 2.47◦

Table 6. Comparison of database sizes.

Method Database Image per Scene Median Localization Error

PoseNet
3000 0.47 m 14.40◦

6000 0.48 m 7.68◦

NNnet [66]
2000 0.27 m 11.82◦

4000 0.24 m 6.35◦

VLocNet
2000 0.097 m 6.48◦

4000 0.036 m 1.71◦

ours 148 0.102 m 0.164◦

289 0.062 m 0.011◦
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We implemented the proposed localization scheme on Intel Core i7-7700 CPU @ 3.60 GHz. It takes
324.5 ms on average to find 10 best matches for a single image on 593 images of ICL NUIM database,
and 336.5 ms to find 10 best matches on 886 images of TUM RGB-D database. Pose estimation costs
88.5 ms on average. The whole procedure from image retrieval to pose estimation takes ~0.45 s to
output a location for a single image. We also employed a NVIDIA TITAN XP GPU to accelerate the
computation of image retrieval, and 20 ms and 12 ms are taken to find 10 best matches of ICL NUIM
and TUM RGB-D respectively. The whole procedure takes ~0.1 s for a single image. Computation
and storing the CNN presentation of database images are done offline, and the period of retrieval
evaluation, which is illustrated in Section 4.2, is unnecessary in localization procedure.

5. Discussion

In this study, we presented an image retrieval aided approach for indoor visual localization.
A CNN-based image retrieval method was adopted to recognize the given query images by retrieving
the matching images that were geo-tagged. The CNN-based strategy not only provides the output
images with high spatial correlation, but also gives a new idea of scene representation. To put it another
way, we no longer have to represent the space by its 3D model, instead we can design its spatial model
representing methods in line with the usage of the spatial model. For instance, a group of CNN
features with original images and poses can represent the whole area for visual localization purpose.
A feature-points-correspondences strategy was then applied to estimate the precise location and pose
of the query image. Experimental results demonstrated that our monocular visual odometer-inspired
pose estimation methods resulted in high-precision localization consequence.

It is obvious that our result outperformed that of retrieval-based methods without CNN feature
extraction in robustness, due to the complex and unstable indoor environments. Compared with
2D-to-3D and 3D-to-3D methods in pose estimation methods, our strategy only depends on calibrated
monocular camera in online localization period. Furthermore, our method is free of building 3D
models, which the process is considered as an expensive process. Compared with end-to-end
learning-based methods that directly regress the pose from input images, the advantage of our method
exists in offline preparing period. As is known, deep learning has become an extremely powerful
tool in computer vision tasks, but due to deep learning is a kind of data-hungry method, a massive
of high-quality training data is required. Experimental results have shown that when achieving
comparable localization accuracy, the number of database images of our method is far smaller than
that in learning-based methods. Besides, learning-based strategies heavily rely on the training stage
with quantity of geo-tagged images, it is assumed that when expanding the applicant area will cause
the whole model retrained as well as the growth of model size, whereas in our methods, the increasing
of raw data has no effect on the extractor, but only correspondingly add to the database.

Moreover, owing to the scheme of data acquisition and the process of image-based localization,
our method has massive potential to extend to a crowdsourcing-based method. The raw data from
different resources can be integrated to compose the database. In the indoor environment, images are
captured by cameras on cellphones, robots or other platforms, and the pose information can be obtained
through pose measuring infrastructures. In fact, our proposed scheme is not a data-hungry solution
as DCNNs, a set of limited images with high-precision pose is the key. In the future, the problems
we need to address are the strategy of defining the space by a set of images and the approach to get
high-precision pose information for database images. For image retrieval phase, a more efficient and
robust method as well as more complicated and larger scale of environment needs to be considered in
the future work.

6. Conclusions

In summary, our solution is highly available to different and complex environments and easily
extendable to the change of raw data. We utilize a CNN-based image retrieval strategy which represents
the scene by CNN features, and match the query image with database images. After that, the pose
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of the query image is recovered from the ORB feature points’ correspondence, which is efficient
and effective.

Based on the state-of-the-art studies of indoor visual localization systems, to the best of our
knowledge, this work is the first to adopt both CNN-based image retrieval strategy and merely RGB
images for accurate localization which is highly applicable to monocular vision positioning task.
We think the image-based localization methods may become the mainstream owing to the scheme of
data acquisition and the algorithm of pose estimation accorded with the current state of data expansion.
The from-coarse-to-accurate strategy will be efficiently adopted to much larger applied range.
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