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Abstract: When diagnosing the condition of a structure, it is necessary to measure the widths of
any existing cracks in the structure. To ensure safety when relying on images of cracks, the selected
imaging parameters and processing technology must be well understood. In this study, the effects of
the ground sample distance and threshold values on the crack width measurement error are analyzed
from a theoretical perspective. Here, the main source of such errors is assumed to be due to the mixed
pixel phenomena in the left and right boundary pixels. Thus, a mathematical model is proposed in
which the intensity changes in these pixels are computed via an equation. In addition, the relationship
between the error and error probability distribution is represented with an equation based on the
threshold values and mean error. Upon analysis, it was found that the threshold value that minimizes
the error is at the mid-point between the background and foreground, and the probabilistic nature
of the error indicates that it is theoretically possible to predict both the error and its probability
distribution. The proposed model was validated using artificial images.
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1. Introduction

The line width measurement technology that is employed in crack width management activities
is commonly used in a variety of fields. For example, in the field of medicine, it is used to measure the
thicknesses of blood vessels and joints, and is employed in computed tomography (CT) and magnetic
resonance imaging (MRI) images [1–9]. In the field of machinery, it is used to measure the thicknesses
of plates, oil films, cables, etc. [5,10,11]. In the field of remote sensing, it is used to measure the widths
of roads and rivers [12,13], and is also used when measuring the thicknesses of pearls and analyzing
nano-scale standard structures [14,15]. Crack thickness is an important criterion for evaluating the
safety of structures. Factors that affect line thickness measurements include the imaging parameters,
such as the resolution, and the image processing techniques, such as thresholding and edge detection.

Studies in the literature on the resolution and measurement errors in crack measurement include
the following. Jahanshahi and Li et al. found that increasing the imaging distance reduces the
spatial resolution of the images, and reducing the number of pixels used to represent cracks lowers
the accuracy of crack measurement [16–18]. Jahanshahi et al. analyzed printed crack images with
crack widths of 0.4–2.0 mm while varying the imaging distance from 725 to 1760 mm and found
that the measurement accuracy was reduced as the number of pixels used to represent the cracks
decreased. They also found that a decrease in the imaging distance, an increase in the focal distance,
and an increase in the resolution are all necessary to increase the accuracy of crack measurement [17].
Li et al. proposed a technique to measure the widths of cracks in bridges from a long distance away [18],
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and found that as the measurement distance increased, the crack measurement error became larger,
and the light source and film speed (ISO) had no effect on the magnitude of the error.

Studies have also been conducted on the relationship between the resolution and measurement
error outside of cracks. Merkx et al. analyzed the relationship between the resolution and the error
when measuring the diameter of blood vessels [19]. In their study, a full width at half maximum
(FWHM)-based method was used to measure the diameter of blood vessels, and they found that
the resolution should be greater than 2 pixels/diameter to ensure the measurement error was less
than 10%. Prevrhal et al. used an optimized segmentation method to determine how thickness
measurements depend upon the spatial resolution, and found that the cortical thickness must be larger
than the FWHM of the point spread function of the scanner to obtain accurate measurements [20].
Hsieh et al. analyzed the effect of the spatial resolution on the classification error [21]. In that study,
the statistical features of mixed pixels were derived and the corresponding classification errors were
evaluated, all of which demonstrated that a reduction in the ratio of the field width to ground sample
distance generally reduced the number of classification errors.

In addition to the resolution, threshold values are also important factors in accurate line width
measurement. Treece et al. found that simple thresholding and 50% relative thresholding techniques
could not produce accurate estimations in cortical bone thickness using CT data, so they proposed a
new thickness estimation method [22]. Nyyssonen reported that setting improper thresholds caused
errors in line width measurements, and found that setting the maximum intensity of the threshold to
25% resulted in accurate line width measurements [23].

In our research, we identified the following deficiencies in existing studies: existing studies on
resolution and line width measurement do not consider image processing techniques for automatically
extracting line widths, studies on thresholding and line width measurement do not consider the digital
sampling process, and studies on resolution do not consider the influence of image processing. Thus,
researchers in the previous studies were unable to show that the error is probabilistic. In addition,
image-based automatic line width measurement techniques combine the sampling and extraction
processes into a single step, so their combined effect on line width measurement must be considered.

In this study, the effects of the ground sample distance (GSD), which means that the actual distance
per pixel, i.e., unit-length/pixel, and thresholding during image processing have on crack width
measurements are analyzed from a theoretical perspective. Here, as the crack width measurement is
assumed to be affected by the mixed pixel phenomena in the left and right boundary pixels, the intensity
changes in the left and right boundary pixels were modeled mathematically. The intensities of the left
and right boundary pixels were assumed to occur probabilistically based on the position where the
pixel was measured, and the measurement errors due to the ground resolution and threshold value are
evaluated in terms of the probability distribution of the error. In addition, a threshold value that was
able to minimize the mean error was identified.

2. Line Width Measurement Error

The width of a crack is measured as the distance from the edge of one side of a crack to the
opposite edge in a direction that is perpendicular to the first edge. In digital images, the number of
pixels between the edges is used to measure the width in pixel units, and the number of detected
units is multiplied by the ground sample distance (GSD) to convert the measurement to actual units.
This can be represented as follows:

wm = g×N, (1)

where wm is the measurement value and g is the GSD in unit-length/pixel. The error in width
measurements is the difference between the true and measured widths, and can be expressed as follows:

e = w−wm, (2)



Sensors 2018, 18, 2644 3 of 17

where e is the measurement error and w is the true width. In other words, the measurement error is
determined by the GSD g and the detected number of pixels N. Here, the detected number of pixels
N is related to the image processing technology, and when the pixels are detected via thresholding,
the detected number of pixels (N) varies depending on the thresholding value.

To detect cracks, a suitable threshold value must be set. When crack images are measured
in ideal circumstances where they are not discontinuous, the pixels representing the crack can be
extracted by choosing an appropriate threshold value between the intensity of the crack and the
background. However, images must be digitized for automated crack measurement, which raises
the incidence of the mixed pixel phenomenon. The mixed pixel phenomenon refers to situations
in which a single pixel is meant to represent one or more different intensities, but only displays a
mixture of intensities. This phenomenon often occurs at boundaries. The intensities of the pixels at
the boundaries of backgrounds and foregrounds are determined by the ratio of the background and
foreground intensities included in the pixel as follows:

C = A×Aa + B× Ba, (3)

where A and B are the foreground and background intensities, respectively, and Aa and Ba are the
ratios of A and B included in pixel C.

The mixed pixel phenomenon that occurs during the digital image sampling process is shown in
Figure 1. The blue box in the figure indicates a boundary pixel where the mixed pixel phenomenon
occurs. In the example shown in the figure, the background intensity is 9 and the foreground intensity
is 1, and the ratio of background and foreground intensities included in the boundary pixel is 0.5.
Thus, the boundary pixel intensity C can be calculated as follows: 5 = 1× 0.5 + 9× 0.5. As a result,
the pixel located at the boundary has a value that does not reflect the intensity of the crack, but rather a
value between the intensities of the background and the crack. As this phenomenon makes it difficult
to detect boundary pixels when extracting cracks from images, it has a corresponding impact on the
crack width measurement error.
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Figure 1. The digital image sampling process and mixed pixel phenomenon.

The thresholding process after sampling an image is shown in Figure 2. As shown in the figure,
the intensities of the pixels located at the boundary of the crack varies depending on the ratio of the
background and foreground intensities included in the boundary pixels. This ratio varies depending
upon the position of the pixels used to sample the image. The intensity of the boundary pixels varies
according to the position of the pixels used to measure the crack, and the number of pixels that contain
the foreground intensity also varies. Here, the positions of the pixels used to measure the crack are a
random factor that cannot be controlled by the user. As the intensities of the boundary pixels vary,
so does the number of pixels extracted via thresholding.
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Figure 2. The intensity changes and pixel extraction via thresholding according to the pixel sampling
position in the sample process.

The process of sampling crack images is shown in Figure 3. The set of pixels used to sample the
image are shown in array yi, where i is the index of the array. When the left boundary pixel is yL and
the right boundary pixel is yR, the ratio of the foreground and background intensities included in the
boundary pixels of both sides vary depending upon the position of the sampling pixels. In Figure 3a,
it can be seen that no background intensity is included in pixel yL; however, when the pixel is moved
an amount x to the left, as in Figure 3b, the proportion of background intensity included increases to
more than the foreground intensity. Not only does the ratio of the included pixels change, the number
of pixels that include the foreground intensity (i.e., the crack) also changes. If the index L of the left
boundary pixel is assumed to be one, the index of the right boundary pixel R in Figure 3a is three.
Here, if the position of the sampling pixel is moved x amount to the left, as in Figure 3b, the index R of
the right boundary pixel increases to four. Figure 3 is shown to help understand Equations (4)–(10),
and the symbols in all the figures presented in this paper are the same as those used in the equations.
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Figure 3. The changes in the ratio of boundary pixels which contain cracks (foreground) according to
pixel sampling position: (a) no background intensity is included in pixel yL; (b) the pixel is moved an
amount x to the left.
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The following equations show the changes in intensity due to the mixed pixel phenomena in the
left and right boundary pixels as they change according to the position of the sampling pixels as per
Figure 3.

α = (A− B), (4)

q =
w
g

, (5)

if 0 ≤ x < 1: yL(x) = αx + B, L = 0, (6)

if 0 ≤ x < 1− d: yR(x) = −αx− αd + A, R = dqe, (7)

if 1− d ≤ x < 1: yR(x) = B, R = dqe, (8)

yR(x) = −αx− αd + 2A− B, R = dqe+ 1, (9)

where yL and yR are the intensities of the left and right boundary pixels, respectively; L and R are
the indexes of the left and right pixels, respectively; and x is the ratio of the background intensity A
included in yL or the pixel shifting ratio and describes the changes in intensity versus the sampling
position. Here, d is the ratio of the foreground intensity B included in yR when x = 0, and is defined
as follows:

d =
mod(w, g)

g
= 1 +

(
w− g

⌈
w
g

⌉)
g

. (10)

When the index of the left boundary pixel L is assumed to be zero, the index of the right boundary
pixel R can be expressed as q, which is the crack width w divided by GSD g (Equation (5).) Equations (7)
and (9) represent the conditions in which the index of the right boundary pixel increases or conditions
in which the number of pixels included in the foreground intensity increases. When the index of the
left boundary pixel L is assumed to be zero, the index of the right boundary pixel R is dqe. When x
becomes larger than 1 − d, R increases to dqe+ 1.

Therefore, the number of pixels that include the foreground intensity is R− L, and the number of
pixels N detected via thresholding is defined according to whether the left and right boundary pixels
are detected, as follows.

N = R− L + k, k = −2,−1, 0, (11)

where k is the number of detected left and right boundary pixels. When all pixels on both sides are
detected, k = 0, and when all pixels are not detected, k = −2. In general, L = 0, and R is in the range of
(dqe, dqe+ 1); thus, N is in the following range:

N ∈ (dqe − 2, dqe+ 1), N ∈ Z. (12)

Here, N has four possible values; thus, the measurement error e also has four cases:

e0 = w− g(dqe − 2) = w− gdqe+ 2g, (13)

e1 = w− g(dqe − 1) = w− gdqe+ g, (14)

e2 = w− gdqe, (15)

e3 = w− gdqe − g. (16)

Equation (10) shows that w− gdqe = g(d− 1), so the above equations define the following
equations for d.

e0 = g(d + 1), for N = dqe − 2, (17)

e1 = g(d), for N = dqe − 1, (18)

e2 = g(d− 1), for N = dqe, (19)
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e3 = g(d− 2), for N = dqe+ 1. (20)

3. Probability Distribution of the Measurement Error

The previous section examined cases in which an error can occur due to the threshold values.
This section discusses the distribution of the probability that an error occurs. The reason that the
probability of an error occurring varies is that the intensities of the left and right boundary pixels
change depending on the position of the sampling pixels. Changes in the positions of the sampling
pixels are represented by x in Equations (6)–(9). The range of x in which the intensities of yL(x) and
yR(x) are less than T indicates the probability of the pixel being extracted. When a threshold value T is
selected, the sections in which each of the boundary pixels is extracted are as follows:

V1 = {x|yL(x) < T}, (21)

V2 =
{

x
∣∣∣ydqe(x) < T

}
, (22)

V3 =
{

x|y dqe+1(x) < T
}

. (23)

The probability that each error occurs can be defined through set theory, as follows:

P(e0) = P
(
(V1 ∪V2 ∪V3)

c), (24)

P(e1) = P((Vc
1 ∩V2 ∩Vc

3) ∪ (V1 ∩Vc
2 ∩Vc

3)), (25)

P(e2) = P((Vc
1 ∩V2 ∩V3) ∪ (V1 ∩V2 ∩Vc

3)), (26)

P(e3) = P(V1 ∩V2 ∩V3), (27)

where V1, V2, and V3 indicate the sections of x in which the left and right boundary pixels are extracted,
respectively. More specifically, V1 indicates the section where the left boundary pixel is extracted,
and V2 and V3 indicate the sections where the right boundary pixels with indices dqe and dqe+1 are
extracted. P(e) indicates the probability of error occurrence.

Figure 4 shows Equations (24)–(27) by way of a diagram, and set theory is used to describe the
relationships between the errors and their probability distributions. Here, xL and xR are T = yL(xL) and
T = yR(xR), and z1 or z2 represent the differences between xL and xR. In Figure 4, the error probability
distribution is divided into four types, and each type includes only two of the four errors. Additionally,
the probability distributions of the two errors are represented by z1 or z2 and the remaining ratio.
The error ec indicated by z1 or z2 varies according to the type of probability distribution. The four types
of probability distribution are represented as Ps(e), s = 1, 2, 3, and 4, and the range of the threshold
values Ts that correspond to each probability distribution type are as follows:

B < T1 < yL(t1) P1(e)
yL(t1) < T2 < yR(0) P2(e)
yR(0) < T3 < yR(t1) P3(e)

yR(t2) < T4 < A P4(e)

. (28)
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error probability distribution: (a) P1(e); (b) P2(e); (c) P3(e); and (d) P4(e).

Figure 5 shows a graph of the yL(x) and yR(x) intensity changes in Equations (6)–(9), where xL,Ts

and xR,Ts represent Ts = yL(xL,Ts) and Ts = yR(xR,Ts), respectively. In Figure 4, it was confirmed that
the probability distribution of error ec had four types, and Figure 5 describes the relationships between
the four types of distribution and the threshold values. In order to represent this type of probability
distribution in the form of an equation, t1 and t2, which are the intersection points of yL and yR, and
xL, are defined as follows:

t1 = −d
2
+

1
2
=

1− d
2

, (29)

t2 = −d
2
+ 1, (30)

xL =
T− B
A− B

. (31)
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Lines yL and yR are symmetrical with respect to the intersection point at the center, and z1 and z2,
which are important distances for finding the error probability distribution, can be found as follows:

z1 = 2(t1 − xL), (32)

z2 = 2(t2 − xL). (33)

The case where the probability distribution Ps(e) occurs is redefined from the intensity range in
Equation (28) to the range of x, and this probability distribution is shown as the following equations:

If 0 ≤ xL < t1,


P(e0) = z1

P(e1) = 1− z1

P(e2) = 0
P(e3) = 0

, (34)

If t1 ≤ xL < 1− d,


P(e0) = 0

P(e1) = 1 + z1

P(e2) = −z1

P(e3) = 0

, (35)

If 1− d ≤ xL < t2,


P(e0) = 0
P(e1) = z2

P(e2) = 1− z2

P(e3) = 0

, (36)

If t2 ≤ xL < 1,


P(e0) = 0
P(e1) = 0

P(e2) = 1 + z2

P(e3) = −z2

. (37)

It is possible to use the equations for the error and probability distribution to express the
measurement values more accurately in the form of wm ± ec(Ps(ec)). Furthermore, the proposed
measurement error Equations (17)–(20) are defined as functions of GSD(g) and crack width (w). Thus,
the effect of GSD error on the crack measurement error can also be estimated from the proposed theory.

4. Mean Measurement Error According to Threshold Value

The previous section examined the error and error probability distribution according to the
threshold values and ground resolution. This section discusses the threshold value T in which the
error and probability distribution are employed to determine the smallest mean error. The mean error
can be calculated as the product of the error and its probability distribution, as shown below.

E(e) =
3

∑
c=0

Ps(ec)× ec. (38)

The error and its probability distribution can be expressed as the function f of the background
and foreground intensities A and B, the threshold value T, and d, as shown below.

e, P(e) = f (A, B, T, d), (39)

where d is a function of the true width(w) and the GSD(g) (Equation (10)). Here, w is the unknown
value that is to be measured. If w is assumed to be distributed in a fixed range, the d can be assumed
to be in the range of 0 to 1. Therefore, to find the threshold value T that can minimize the mean
measurement error, the mean error E(e) is integrated over the interval d ∈ (0, 1) and the absolute
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value is taken. The threshold that can minimize this value is referred to as T*, which can be described
as follows:

T∗ = argmin
∣∣∣∣∫ 1

0
E(e)dd

∣∣∣∣, (40)

where Ps(e) is divided into four types. The integral interval according to Ps is derived from the ranges
in Equations (34)–(37), and E(e) is divided by xL = 0.5 to simplify the calculations.

1
g

∫ 1

0
E(e)dd =

{ ∫ 1−2xL
0 P1(e)e dd +

∫ 1−xL
1−2xL

P2(e)e dd +
∫ 1

1−xL
P3(e)e dd, for xL ≤ 0.5∫ 1−xL

0 P2(e)e dd +
∫ 2−2xL

1−xL
P3(e)e dd +

∫ 1
2−2xL

P4(e)e dd, for xL ≥ 0.5
(41)

∣∣∣∣∫ E(e)
∣∣∣∣ = |g(−2.0xL + 1.0)|, (42)

where the absolute integral mean error is described as a function of g and xL, and the value of xL that
minimizes the absolute integral error is 0.5. Therefore, the threshold value T that minimizes the mean
error E(e) can be found using Equation (31).

T∗ =
A + B

2
. (43)

From Equation (43), it can be seen that the threshold value minimizing the error is defined by the
intensity of the foreground and background.

Figure 6 shows the relationship between the threshold value and the mean error, and it also shows
that a minimum value exists. In the results, it can be seen that the mid-point between background A and
foreground B intensities is the threshold value T* that minimizes the mean error, and as the threshold
value approaches the background or foreground intensities, the mean error increases. Additionally,
when only the ground resolution is considered, the line width measurement error is between the GSD
g and zero.
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Figure 6. The threshold value vs. absolute integral mean error.

5. Results and Discussion

An artificial image was used to verify the error and the probability distribution of the error caused
by the derived threshold value. The sampling process employed on the artificial image simulated a
process of creating a high resolution original image and then downsampling it to digitize the image.
The original image is shown in Figure 7a. The intensity of the background in the original image was set
at a mean of 200 with a standard deviation of 1, and the intensity of the crack was set at 0. The width
of the crack was set at 35 pixels. The previously presented equation has no limitations to the input
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values, including intensity, width, and GSD, except for the condition where the intensity of the crack is
lower than that of the background. Therefore, the intensity, width, and GSD of the sample image were
randomly determined and do not have any special meaning. In the original image, there is a diagonal
line of pixels extending from the upper left to the lower right. This made it possible to observe the
intensity changes in the boundary pixels based on the positions of the sampling pixels.

The original image was downsampled at a ratio of 1/10 to simulate sampling at a ground
resolution where the GSD was 10 pixels/pixel. The result is shown in Figure 7b. Note that the
downsampling was only performed on the rows. In the figure, it can be seen that the intensities
of the boundary pixels on either side increased or decreased slightly. A thresholded image of the
sampled image in Figure 7b is shown in Figure 7c, in which the identified crack is shown in white.
The theoretical values of the measurement error in the crack width (w) and the probability distribution
of the error based on the threshold value T are shown in Table 1, in which the measured crack width
wm is shown as wm + e(P(e)).
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Figure 7. The artificial images used for crack width measurement verification: (a) original image,
(b) 1/10 downsampled image, and (c) the results of the thresholding image.

Table 1. The theoretical estimations of measurement values, error and error probability distributions
due to threshold values.

Threshold Value Measurement Value (wm) Error Type (ei)

40
20 + 15(0.1) e0
30 + 5(0.9) e1

60
30 + 5(0.9) e1
40 − 5(0.1) e2

100
30 + 5(0.5) e1
40 − 5(0.5) e2

160
40 − 5(0.9) e2
50 − 15(0.1) e3

The measurement error of the crack width and the probability distribution of the error when the
simulated image was thresholded are shown in Table 2. The standard deviation of the background
intensity was computed to determine the probability distribution of the error that occurred in
five measurements.
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Table 2. The error type and probability distribution based on the threshold value of the virtual image.

Threshold Value
P(e)

Error Type (ei)
1 2 3 4 5 Mean

40
0.11 0.12 0.08 0.8 0.12 0.10 e0
0.89 0.88 0.92 0.92 0.88 0.90 e1

60
0.9 0.86 0.89 0.91 0.85 0.88 e1
0.1 0.14 0.11 0.09 0.15 0.12 e2

100
0.5 0.5 0.49 0.53 0.49 0.50 e1
0.5 0.5 0.51 0.47 0.51 0.50 e2

160
0.9 0.87 0.89 0.9 0.89 0.89 e2
0.1 0.13 0.11 0.1 0.11 0.11 e3

Graphs of the theoretically estimated and measured values of the error and associated probability
distribution are shown in Figure 8, where it can be seen that the actual measured values were almost
the same as the theoretical values. In addition, the difference between the measured and estimated
values at other GSDs are given in Appendix A. Figure 8a–d correspond to probability distribution types
P1, P2, P3, and P4, respectively, and the probability distribution type according to the threshold value
can be found via Equation (28). The process of calculating the error and its probability distribution is
as follows.

Before the error is found via Equations (17)–(20), d is found using Equation (10) as follows:

d = mod(35, 10)/10 = 0.5.

The crack width measurement error can be calculated using Equations (17)–(20) as follows:

e0 = 10(0.5 + 1) = 15,

e1 = 10(0.5) = 5,

e2 = 10(0.5 − 1) = −5,

e3 = 10(0.5 − 2) = −15.

When the width is 35 pixels and the GSD is 10 pixels, the maximum error is ±15 pixels and the
minimum error is ±5 pixels. In the case of the minimum error, the GSD is not an integer multiple of
the width, so an error with a magnitude of d is unavoidable as this is the remainder when dividing the
width by the GSD. The maximum error occurs in conditions when all of the left and right boundary
pixels are either extracted or not extracted. For example, if none of the pixels from the two boundaries
are extracted, a 2 × 10, or 20, pixel error occurs. This is reduced by d to a 15 pixel error.
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Figure 8. The theoretically estimated values and simulation measurement values of crack width
measurement error and error probability distribution according to threshold value: (a) threshold value
of T = 40; (b) threshold value of T = 60; (c) threshold value of T = 100; and (d) threshold value of T = 160.

The probability distribution of the error can be found using Equations (34)–(37). To find the
probability distribution of the error, t1, t2, and xL must first be calculated using Equations (29)–(31).
Since t1 and t2 are functions of d, they can be found from the crack width and GSD, as follows:

t1 = (1 − 0.5)/2 = 0.25,

t2 = −0.5/2 + 1 = 0.75.

The value of xL varies depending on the threshold value, and determines the probability
distribution of the error. Examples of how the error occurs depending on the threshold value probability
distribution of the error are as follows.

When the threshold value is T = 40,

xL = (40 − 0)/(200 − 0) = 0.2,

which satisfies the conditions of Equation (34), and the probability distribution of the corresponding
error is:

P(e0) = 2(0.25 − 0.2) = 0.10,

P(e1) = 1 − 0.1 = 0.9.

When the threshold value is T = 60,

xL = (60 − 0)/(200 − 0) = 0.3,
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which satisfies the conditions of Equation (35), and the probability distribution of the corresponding
error is:

P(e1) = 1 + 2(0.25 − 0.3) = 0.9,

P(e2) = −2(0.25 − 0.3) = 0.1.

When the threshold value is T = 100,

xL = (100 − 0)/(200 − 0) = 0.5,

Which satisfies the conditions of Equation (36), and the probability distribution of the
corresponding error is:

P(e1) = 2(0.75 − 0.5) = 0.5,

P(e2) = 1 − 0.5 = 0.5.

When the threshold value is T = 160,

xL = (160 − 0)/(200 − 0) = 0.8,

which satisfies the conditions of Equation (37), and the probability distribution of the corresponding
error is,

P(e2) = 1 + 2(0.75 − 0.8) = 0.9,

P(e3) = −2(0.75 − 0.8) = 1.

As shown in the examples above, if the crack width to be measured, the GSD and the background
and foreground intensities are known, the error in the width measurement and the probability
distribution of that error occurring can be calculated.

Figure 9 shows the measured and estimated values using Equation (42) to compute the mean error
according to the threshold value. In the figure, it can be seen that the measured and estimated values
were almost the same. It can also be seen that the mid-point between the foreground and background
values is the threshold value at which the error is minimized, as is predicted by Equation (43).
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Figure 9. The measured and theoretically estimated values of the mean error E(e) based on the
threshold value.

Equation (42) for the mean crack width is also valid in situations where the width is variable.
The actual crack width and other lines do not appear at an even width anywhere in the entire section.
In such cases, the variable width is averaged to find the mean width. Figure 10 shows a virtual image
for confirming that the relationship equation for the mean error according to the threshold value is
valid when the mean width of a variable-width crack is found. Figure 10a was created with the width
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evenly distributed from 100 to 110, and the mean width was 105. The background intensity had a
mean of 200 and a standard deviation of 1, and the foreground intensity was 0.Sensors 2018, 18, x 14 of 17 
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Figure 10. The virtual images for verifying mean crack width measurement: (a) original image; (b) 1/10
downsampled image; and (c) results of thresholding image.

Once created, the original image in Figure 10a was downsampled by 1/10 to simulate the image
digitization process. The corresponding downsampled image is shown in Figure 10b. Figure 10c shows
a thresholded image of the sampled image.

Figure 11 shows the mean width measurement results for the threshold values of the virtual
image with a variable width. It can be seen that the theoretically estimated and measured values
were almost the same, and the error became smaller at the median value between the intensity of the
background and foreground (crack).

Additionally, an experiment using real images was performed to verify the proposed theory.
In the experiment, printed cracks were drawn and printed with the desired width for precise crack
width control. The printed crack, with a width of 3 mm, was measured using a scanner (iR ADV
C5540i, Canon Inc, Tokyo, Japan) with a resolution of 600 dpi. The scanner was used to minimize
external influences.
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Figure 11. The mean error (E(e)) of the variable crack width according to threshold value in measured
values and theoretically estimated values.

Figure 12 shows a printed crack image measured using the scanner. The intensity of the
background and the foreground in the measured image were 245 and 45, respectively. The measured
image is affected by the blurring of the lens during the sampling process. To reduce the effects of
uncontrollable elements, the measured images were downsampled to 1/10 and analyzed. The results
of the theoretical estimates and the measurements are listed in Table 3. From the table, it can be seen
that the measured values were almost the same as the theoretical values.
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6. Conclusions 

In this study, the effects of the ground resolution and thresholding values on crack width 

measurement errors are analyzed from a theoretical perspective. An equation was derived to show 

the changes in the intensities in the left and right boundary pixels due to the mixed pixel 

phenomenon, an equation describing the probability distribution of the error was derived, and an 

equation describing the relationship between the threshold value and mean error was derived. The 
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intensity was defined, and was then downsampled to simulate the image digitization process. The crack 

width in the simulated image was then measured, and a comparison was made with the results of the 

proposed equations, which indicated the theoretical and measured values were almost the same.  
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Figure 12. Printed crack image measured with digital scanner.

Table 3. The theoretically estimated values and measured values of error probability distribution using
real image (∆P(e) = Estimation −Measurement).

Threshold Error Type
P(e)

∆P(e)
Estimation Measurement

100
e0 0.35 0.37 −0.02
e1 0.65 0.63 0.02

180
e1 0.55 0.6 −0.05
e2 0.45 0.4 0.05

6. Conclusions

In this study, the effects of the ground resolution and thresholding values on crack width
measurement errors are analyzed from a theoretical perspective. An equation was derived to show the
changes in the intensities in the left and right boundary pixels due to the mixed pixel phenomenon,
an equation describing the probability distribution of the error was derived, and an equation describing
the relationship between the threshold value and mean error was derived. The results showed that the
threshold value that minimizes the error is the mid-point between the foreground and background
intensities, and the mean measurement error was seen to increase as the threshold value approached
the background or foreground intensity values.

The proposed theory was validated using artificial images. A virtual line with a set width
and intensity was defined, and was then downsampled to simulate the image digitization process.
The crack width in the simulated image was then measured, and a comparison was made with the
results of the proposed equations, which indicated the theoretical and measured values were almost
the same.

In the case of continuous signals, the cracks are measured in a standard way regardless of the
threshold value; however, in the case of digital sampling, it was demonstrated that the measured
values are distributed probabilistically based on the threshold value. It was also proven that it is
possible to mathematically predict this probability distribution, and when the crack width is repeatedly
measured and an equation for producing the mean is used, it is theoretically possible to ensure the
measurement error is equal to zero.

This study only dealt with the ground resolution and threshold for the causes of line width
measurement errors from using digital images. In order to accurately predict the actual crack width
measurement errors, the effects of factors such as edge roughness and lens blurring on the intensity of
boundary pixels must be considered as well. However, it is very difficult to mathematically model
these phenomena. Furthermore, the proposed equations were derived by assuming one dimension.
However, two-dimensional factors such as the measured crack angle and shape can affect the prediction
of measurement errors.

Therefore, the proposed theory could be used to estimate the theoretical limits of the measurement
errors by using the approximated information of the cracks to be measured. In future, it is expected
that more accurate error prediction is available if the effects of factors such as lens blurring and
two-dimensional shapes are considered.
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Appendix A

Table A1. The theoretically estimated values and measured values of error probability distribution
depending on GSD(∆P(e) = Estimation −Measurement).

GSD (Pixels/Pixel) Threshold Error Type
P(e)

∆P(e)
Estimation Measurement

5

40
e0 0.6 0.63 −0.03
e1 0.4 0.37 0.03

60
e0 0.4 0.4 0
e1 0.6 0.6 0

100 e1 1 1 0

160
e1 0.4 0.402 −0.002
e2 0.6 0.598 0.002

20

40
e0 0.85 0.848 0.002
e1 0.15 0.152 −0.002

60
e1 0.65 0.648 0.002
e2 0.35 0.352 −0.002

100
e1 0.25 0.246 0.004
e2 0.75 0.754 −0.004

160
e2 0.65 0.662 −0.012
e3 0.35 0.338 0.012

Table A1 lists the theoretically estimated values and measured values of error probability
distribution depending on the GSD. It can be seen that the estimated and measured values are
similar, regardless of the GSD. Here, a GSD 5 and 20 were implemented by down-sampling the images
in Figure 7 to 1/5 and 1/20, respectively.
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