ﬁ SCNSors m\py

Article
GRC-Sensing: An Architecture to Measure Acoustic
Pollution Based on Crowdsensing

Willian Zamora >* (0, Elsa Vera > (, Carlos T. Calafate ! (' and Juan-Carlos Cano !
and Pietro Manzoni !

1 Department of Computer Engineering (DISCA), Universitat Politecnica de Valéncia, 46022 Valencia, Spain;

elsa.vera@uleam.edu.ec (E.V.); calafate@disca.upv.es (C.T.C.); jucano@disca.upv.es (J.-C.C.);
pmanzoni@disca.upv.es (P.M.)
2 Faculty of Computer Science (FACCI), Universidad Laica Eloy Alfaro de Manab{, 130802 Manta, Ecuador
* Correspondence: wilzame@posgrado.upv.es; Tel.: +34-64-0939864

check for
Received: 2 July 2018; Accepted: 3 August 2018; Published: 8 August 2018 updates

Abstract: Noise pollution is an emerging and challenging problem of all large metropolitan areas,
affecting the health of citizens in multiple ways. Therefore, obtaining a detailed and real-time map
of noise in cities becomes of the utmost importance for authorities to take preventive measures.
Until now, these measurements were limited to occasional sampling made by specialized companies,
that mainly focus on major roads. In this paper, we propose an alternative approach to this problem
based on crowdsensing. Our proposed architecture empowers participating citizens by allowing
them to seamlessly, and based on their context, sample the noise in their surrounding environment.
This allows us to provide a global and detailed view of noise levels around the city, including places
traditionally not monitored due to poor accessibility, even while using their vehicles. In the
paper, we detail how the different relevant issues in our architecture, i.e., smartphone calibration,
measurement adequacy, server design, and client-server interaction, were solved, and we have
validated them in real scenarios to illustrate the potential of the solution achieved.

Keywords: mobile crowdsensing; smartphone; machine learning; noise-sensing; smart cities; weka

1. Introduction

The degradation of the environment is currently one of the most critical problems affecting human
beings. Industrial development, the increase of vehicles in circulation, demographic expansion, and
large urban concentrations, create a whole series of conditions that affect, to a lesser or greater extent,
the quality of the environment [1]. One of these factors is environmental noise. Investigations carried
out in this field [1,2] show that, at a certain level of noise, this can be a serious problem affecting
health both physically and psychologically, with irreversible effects. Also, different organizations and
countries have regulated and stressed the importance and direct relationship between the control of
environmental noise and the life quality of the population [2—4]. In particular, they have set forth
policies regarding the permissible noise levels for society in general.

Regarding this issue, there are traditional solutions [5] that measure acoustic pollution through
the use of professional sound level meters [6] that, although of considerable cost and size, offer high
precision and sensitivity. Typically, these measurement sessions are not flexible and cannot be
configured, taking place only in a few available points, and for short time intervals. In addition
to the current solutions for measuring noise pollution, the pervasiveness of smartphones, together with
the increasing integration of new sensors (e.g., ambient light, accelerometer, proximity, etc.) has
initiated a new paradigm called mobile crowdsensing [7,8].

Sensors 2018, 18, 2596; d0i:10.3390/s18082596 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0215-4460
https://orcid.org/0000-0003-3515-9903
https://orcid.org/0000-0001-5729-3041
https://orcid.org/0000-0002-0038-0539
http://www.mdpi.com/1424-8220/18/8/2596?type=check_update&version=1
http://dx.doi.org/10.3390/s18082596
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 2596 2 of 25

The concept of crowdsensing is that users of mobile devices participate by contributing some
environmental data obtained through their devices, being these measurements then stored and
subsequently handled using data fusion and data analysis techniques. The goal is to create a potential
for data collection with great granularity in space and time. A general example of mobile crowdsensing
for noise pollution analysis is shown in Figure 1.

Cloud Data Collection

Transmission Network

Figure 1. General architecture for noise assessment based on crowdsensing.

In the literature, we find initial solutions that use smartphones to measure ambient noise in urban
areas [9-13]. Many of these solutions have a participatory sensing [14,15] approach, detailing their
architecture and integration with real-time collection solutions. Anyway, to the best of our knowledge,
little research efforts have addressed the automatic reception of environmental noise collection tasks
via smartphones.

Determining the sampling rate to be used, and the right time to gather the data by accounting
for the context of smartphones, are both critical issues to consider when aiming at a widespread user
adoption, as an excessive resource usage would make any application worthless. In fact, the sampling
rate directly affects the use of the hardware resources in the smartphone, while smartphone context
awareness is decisive to determine the best time and place to capture the noise, avoiding samples
with limited or no representativeness. For example, it would be incorrect to measure noise when the
smartphone user is playing music using the loudspeakers, or when the user is talking on the phone.
Also, an extra factor to consider in the design of smartphone applications is battery power consumption.
By avoiding to take noise samples at times where conditions are inadequate, it is possible to achieve
significant energy savings, thereby extending the battery lifetime. Considering the issues mentioned
above, solutions based on crowdsensing for ambient noise readings require new approaches to data
collection that can reduce the level of authorization required by users and maximize energy efficiency.
Another issue to consider is the impact of network usage in the process of recollection and distribution
of sensing tasks within urban areas. Proposals such as [16] evaluate the performance of a vehicular
crowdsensing application by assessing the number of packets delivered to road side units (RSUs)
through realistic simulations in urban scenarios. In this paper, these types of issues are not tackled,
and will be considered as future research.

We focus on application design issues; specifically, we attempt to detect which is the most
appropriate time and context to obtain these noise samples, while simultaneously minimizing power
consumption. Concerning the quality of the measurement, in a previous work [17] we describe the

Sensors 2018, 18, 2596 3 of 25

main characteristics that influence the design and implementation of candidate solution techniques
for the assessment of noise pollution levels using smartphones. In this work, new processes related
to (i) the precise time to capture the noise sample in an outdoor environment; and to (ii) achieving
an optimization of the consumed battery resources, are evidenced.

The main contributions of our paper are: First, we propose an integrated architecture to measure
noise pollution based on crowdsensing. In addition, we detail the main characteristics of each component
our proposed architecture. Second, we propose a decision tree capable of simultaneously maximizing the
precision of sampling decisions, while keeping time resource usage to a minimum. Third, we conduct
the extensive experimental evaluation to demonstrate the significant performances of our decision tree.
Finally, we validate our proposed architecture in real scenarios. Experimental results show that our
optimized decision tree is able to reduce smartphone resource consumption by 60%. The actual scenario
results show that our architectural proposal is adapted to a reliable and real-time solution for ambient
noise sampling while introducing little development and deployment time overheads.

The rest of this paper is organized as follows: in Section 2 we present some related surveys on this
topic. In Section 3 we provide an overview of the proposed architecture. Then, in Section 4, we define
the contexts and algorithms used to determine the best sampling time automatically, and we describe
the tool applied to obtain the candidate trees. Additional, we describe the procedure followed to take
an alternative decision tree able to optimize resource consumption while maintaining the desired
decision accuracy. Also, we describe the tests performed using a wide variety of smartphones models.
The evaluation of our architecture in real scenarios is described in Section 5. Finally, in Section 6,
we present our conclusions and future work.

2. Related Works

In the literature, we can find several solutions where smartphones are used as mobile sensing
devices to make noise pollution measurements. For instance, works such as [9,10] propose
noise-sensing solutions where the developed applications include a real-time (only smartphone)
sound-level data logger that also includes Global Positioning Systems (GPS) data to generate a map.
However, these works fail to provide details about the sensing task itself.

NoizCrowd [12], and Ear-Phone [11,18] study noise levels using different spatial and temporal
interpolation techniques. In particular, Ear-Phone [18] proposes an algorithm that attempts to
optimize noise sampling by detecting when the phone is placed in the trouser’s pocket, or in a bag.
NoizCrowd [12] uses GPS to determine the users’ locations, but fails to determine when and how the
collection task is performed.

SoundOfTheCity [13] is a proposal that uses several sensors to provide context-awareness.
This context-awareness allows distinguishing between situations where the user is located, outdoor,
indoors, moving, or if the smartphone is in the user’s pocket (using GPS, Wi-Fi, and proximity) in
order to determine the right instant to trigger the measurement. Later, NoiseSense [19] proposed
a semi-supervised sensor completion algorithm for inferring noise levels for locations in an urban area
where smartphone users are unable to provide measurements. This article does not present details on
the data collection process, focusing solely on the sending of raw data to a server.

In general, previous solutions provided a few of the processes associated to data collection for
environmental noise-sensing at a specific time and place. Alternatively, Usense [20] presented a generic
middleware for developing and deploying crowdsensing applications. Also, it added a module that
evaluates the precise moment of capture using a rule-based approach. This solution does not present
specific details regarding the noise calibration process, nor does it describe or evaluate the windows
size used for data collection.

In [21] authors describe a platform based on MCS called City Soundscape, which allows the
use of smartphones (Android) as a tool for portable acoustic monitoring. Mobile users collect
acoustic measurements through built-in microphones on smartphones and then, through a web-based

Sensors 2018, 18, 2596 4 of 25

application, provide information to city managers to enable corrective measures to be taken
whenever appropriate.

Our work, in addition to adding new features, differs from the previous ones by focusing on
optimizing the sensing procedure to minimize resource consumption. Besides, we have proposed
a unique crowdsensing architecture for reading ambient noise, which differs from previous proposals
by requiring minimal user intervention and allows the display of real-time heat maps. Also, our solution
offers an automatic module to distribute tasks to mobile devices, allowing to capture environmental
noise only in specific urban areas, and at specific times/dates. In Table 1 we show characteristics
of existing solutions in the literature regarding the elements related to smartphone, transmission,
and task specification.

Since energy efficiency is a critical issue for smartphones, several authors have addressed
energy-efficient solutions. In [22] authors use a predictive model to find the optimal time interval
to perform the sensing task. This module, called sensing decision engine, contributes to the overall
cost-reduction. In [23] a middleware for crowdsensing is proposed where the main idea is that it
suppresses the transmission of sensor readings from smartphones, and filters out the data which is
not needed by the application logic. Other works [24-26] propose to reduce energy consumption
by focusing on the use of GPS. In [27] the authors described a power modelling and measurement
methodology to achieve model-based energy profiling for smartphones.

Regarding classification algorithms, in [28] the authors introduce a crowdsensing framework for
location recognition. Specifically, they use algorithms based on Hidden Markov Models, as well as
Gaussian models, for speech recognition and sound classification, respectively. Works such as [29]
show how classification algorithms can be used for human activity recognition systems using wearable
sensors. Shoaib et al. [30] present a review of the works using recognition systems on smartphones
based on their on-board sensors. The works surveyed presented some considerations when designing
applications having sensor-based activity recognition. In particular, we observed that, from the
30 reviewed papers, 60% of them did not address battery consumption analysis, and only 27% of them
have performed a Central Processor Unit (CPU) usage analysis.

In view of the previous research studies, it becomes clear that, in spite of the many advances
in the field of mobile crowdsensing in recent years, there are still a number of issues that must be
addressed adequately for solutions to become more effective and, from the user perspective, it is clear
that these tasks should not become a burden. Therefore, it is necessary to consider new crowdsensing
architectures; in particular, proposals that include the management of context assessment to accelerate
the discarding of unwanted samples. The energy consumption and network resources are also critical
issues that can be carefully managed by intelligent algorithms capable of correctly determining the
best sampling times, while simultaneously avoiding CPU-intensive tasks.

Sensors 2018, 18, 2596

Table 1. Characteristics of crowdsensing-based noise assessment platforms.

5of 25

Smartphones

Cloud Server Task Specification

Publication Data Transmission Networks
Noise Calibration Procedure Data Collection Inteligent Context Awareness Selection Area/Date Real Time Data Task Share Maps
NoiseTube [9] Linear interpolation Participative interaction No offline Manual No Yes
NoiseSPY [10] Correlation calibrated Participative No online (cache store) Manual No No
NoiseMap [31] Few details Participative No detail offline No detail No Yes
NoiseHound [32] Few details Participative Strategy area for spatio-temporal Offline ad hoc nework No No Yes
Usense [20] No-detail Automatic by Server Yes Rule-based attributes No detail Automatic Area and between date Yes No detail
WideNoise [33] No detail Participative No detail Offline Manual area No Yes
NoizCrowd [12] No detail Participative No Offline No detail task area No Yes
SoundOfTheCity [13] No detail Participative Yes Offline (SOAP) No No Yes
Sense2health [34] Few details Participative sensing No detail Yes (publish/subscribe RabbitMQ) No No Yes
Ear-Phone [11,18] Regression lineal Participative Yes No No No Unclear
OnoMe@p [35] Cross calibration Participatory No detail No detail No details No Yes
Soundscape@p [21] Few details Participatory Yes Online No details No Yes
GRC-Sensing Regression lineal and others ~ Automatic Only Install Yes Online Yes Yes Yes

Sensors 2018, 18, 2596 6 of 25

3. Crowdsensing Architecture Overview

In a previous work [36] we have presented a generic client-server architecture for crowdsensing
solutions. The main difference towards our present work is that we actually propose a global crowdsensing
solution that focuses exclusively on noise-sensing in urban environments, where the different components
are described, from the web platform to the capture process details. In particular, our proposed architecture
defines a set of elements that can be adapted to any crowdsensing task, which in the scope of this work is
monitoring the environmental noise in real time. Our design includes both the Mobile Noise-Sensing
Client (MNSC), and the Cloud Data Collection (CDC). Those two elements are connected to each other
through a data transmission network. The data transmission network works on the full scope of our
architecture, and it provides support for iterative CDC and MSNC. In general, the MNSC is composed
by mobile phones that will provide sound sensing operations by capturing noise data which will be
delivered in real time to the CDC. In addition, the CDC can be a single server or a server farm that allows
receiving, processing, analyzing and sharing the sensed data. Our complete architecture is shown in
Figure 2. In the following part, we will detail the proposed architecture.

,,

Mobile Noise-Sensing Client | Cloud Data Collection
Client User Interface (CUI) Front-End Server Back-End Server
v i
! Web-Based A
Client Sensor Task Manager (CSTM) | Administration Web-Based /i:imlmstranon
Sensor Controller Noise capture ! i
Microphone |
GPS 3
erver
jentati | Server Task
Orientation Context 1 Interactive Real Time Manager) Data
Validation | Database Manager
Software event | (ST™)
! (SDMm)
detector
Client Data Manager (CDM) | Server
| e Communications «---» Communications Manager
Y _pDataTransmission i (M)
Client el Network <~

Communications Manager(CCM)

Figure 2. Proposed crowdsensing architecture for mobile noise analysis.

3.1. Mobile Noise-Sensing Client (MNSC)

In this section, we detail the client-side solution. Our solution allows the ambient noise to be
sampled with little user intervention. Once activated, the mobile application seamlessly integrates
and autonomously performs the noise reading through a service running in the background. Besides,
once the smartphone is in the desired context, the noise is known and forwarded to the server for further
processing. Figure 2 shows the main components of the Mobile Noise-Sensing Client. These are Client
User Interface (CUI), Client Sensor Task Manager (CSTM), Client Data Manager (CDM), and Client
Communications Manager (CCM). Each of these four components has a controller responsible for
supporting either bidirectional or unidirectional interactions between the different system elements.
We now proceed to describe each of the client components in detail.

3.1.1. Client User Interface (CUI)

This component allows applications to interact with the user, and allows us to configure the
different permissions associated with the operating system, such as: storage, audio, and location.
After a startup, the splash screen closes and the main service is activated. Once the service has

Sensors 2018, 18, 2596 7 of 25

been activated, and the necessary permissions have been enabled, the application switches to the
background, and the graphical interface is cleared from memory.

3.1.2. Client Sensor Manager Task (CSTM)

The CSTM is the main component responsible for the noise-sensing task. In general, the process
is the following: once the CSTM is activated, and the server provides a new task, the CSTM is
responsible for validating the different environments where the smartphone is located. Once this is
done, the noise value is read and then sent to the server. The CSTM has three sub-components: Context
Validate, Sensor Controller, Noise capture, and Software Event Detector. Below we describe each of its
sub-components.

e Context Validate—This sub-component aims to determine the optimal strategy for collecting
noise pollution data through smartphones. In general, it integrates an algorithm-based decision
tree that interacts synchronously with the Sensor Controller (SC) and the Software Event Detector
(SED). The purpose of the interaction with CDM is to read the data of the task that is stored in the
local database (SQLite). Regarding the interaction with SC and SED, its function is to obtain the
previously processed values of the sensors (i.e., GPS, Orientation, etc.), and to perform calls to the
operating system (i.e., determine whether the phone has the music player active), respectively.
Once the answer is true for all cases, the algorithm proceeds to sample the noise. Also, the Context
Validate has an algorithm that balances the use of tasks that are in the same range of date and time.
Besides, to minimize energy consumption, Context Validate enforces a minimum time between
trial and collected samples. Those times are given in the task from the CDC. In Section 4, we show
the implementation details of our collection strategy.

e Sensor Controller—This component implements the access to the different sensors proposed in
our architecture, thus providing access to gyroscope, accelerometer, microphone, and GPS.

e Noise capture—This component allows the data to be preprocessed before interacting with
Validate Context. In particular, we process raw sound data and then store only a numeric dB(A)
value to protect the privacy of users. In Section 4 we show the details and strategies to obtain a
correct and calibrated measurement.

e Sensor Event Detector—This component allows to determine the different status of the
smartphones (i.e., playing music, speaker on, and smartphone performing active call) through
a call to the operating system.

3.1.3. Client Data Manager (CDM)

The CDM performs two functions: (i) it allows us to store the tasks provided by the server; and (ii)
it supports Structured Query Language (SQL) queries to the CSTM. In particular, the tasks are received
in one direction by the CCM. Also, to avoid data redundancy, the tasks are previously consulted
and, if they do not exist, then they should be stored. Once the tasks are registered, they are available
through a query based on the starting date and time, and the final date and time for the CSTM.

3.1.4. Client Communications Manager (CCM)

The main purposes of this component are interaction with the server such as receiving the tasks
and forwarding the captured noise data to the server (CDC). In the first task, once the listener service
is activated, the tasks on the Front-End Server (Interactive real-time database) are replicated for each
mobile device that is registered in the Front-End Server. Each new task is verified for later storage in
the local database. In the second case, the Front-End Server automatically offers the synchronization
option between MNSC and Back-End Server. Figure 2 shows the direction of the communications that
the proposed architecture components use.

Sensors 2018, 18, 2596 8 of 25

3.2. Cloud Data Collection (CDC)

The CDC is our server-side solution. The server provides a web interface that allows the
administrator to control the tasks, and it also allows us to have complete access to the information
regarding trace management, processing and visualization. Once logged in, the administrator can
create a new collection task, or display the noise data provided by smartphone clients using heat maps.
The architecture is composed of two servers: (i) Front-End Server; and (ii) Back-End Server, as shown
in Figure 2. In general, the Front-End Server acts as an intermediary between the Back-End Server
and the MNSC, while the Back-End Server provides the processing and delivery of collection tasks.
Below we provide more details about the specified components.

3.2.1. Front-End Server

The Front-End Server is responsible for carrying out the communications for sending/receiving
data from mobile devices and the Back-End Server. In general, it performs the intermediary functions
relating the proposed components. In particular, once the Back-End Server provides the task, it is
replicated to all client devices that have the application activated. In contrast, once the clients supply
the noise data, this is automatically sent to the Back-End Server. In our architecture, the Front-End
Server includes three components: (i) Web-Based Administration; (ii) Interactive Real-Time Database;
and (iii) Communication; these components are described below.

o Web-Based Administration—It is the administration console provided by Firebase [37]. Firebase
is a Google solution that is integrated with our architecture in a simple and transparent manner
through their Application Programming Interface (API). Among other options (i.e., hosting,

analytic, etc.), it allows us to manage the database in real time.
e Interactive Real Time Database—It is our real-time (NoSQL) database, whose format is

JavaScript Object Notation (JSON). In general, it is a gateway responsible for automatically
sending/receiving sensing tasks towards smartphones. The tasks are previously defined in
the Back-End Server, and are sent to this database whenever the administrator user requires it.
The data sent and received are temporarily saved for the duration of the date range defined in
each task. In particular, we maintain two “DataNoise” and “DataTask” objects within our JSON
object. The first one stores the values of the task, and the second one stores the values of the

captured noise. Figure 3 shows the attributes of our JSON objects.
¢ Communications—Firebase uses a push communications model for sending data to specific

recipients registered in its database. Generally, Firebase maintains a two-way open socket-based
communications channel for the CDC and MNSC.

= DataTask = DataNoise
L1 | &4 -KuOdD1NZdeBaF0JygJz
L. area || |- date: "2017-89-19 12:17:52
L 0 o beidr 2
- path: "_g}oFrodAze@kmD~1@tWsg@~r | | noise: 37.3€
type: “polygon | 1 I phone_id: "504f872d8983f6ff
end_day: "2017-10-10 1 pos_lat: 39.48268¢
end_time: "23:59:00 i i b pos_Ing: -0.34697¢
id: 1)
- name: “ejemplo
- number_between_test: 5
- number_of_samples: 5
- Start_day: “2817-10-01
start_time: "06:00:00

task_id: 1
Figure 3. Format of a JSON data message.

3.2.2. Back-End Server

The Back-End Server provides a web interface which allows the administrator to have full access
to the information gathered concerning trace handling, processing, and visualization. Additionally,

Sensors 2018, 18, 2596 9 of 25

it allows us to define, schedule, and store the noise-sensing data collection task. The Back-End Server
has four components: Web-Based Administration, Server Task Manager (STM), Server Data Manager
(SDM), and Server Communications Manager (SCM). Below, we describe in more detail the different
components on the server side.

Web-Based Administration: This component allows the user to manage and schedule
noise-sensing tasks interactively. It also supports the visualization of charts (heat-map)
relative to the sensed data. Both functionalities are performed using a web-based graphical
interface, meaning that the system manager can operate remotely. The site is available at
http:/ /www.grcsensing.net, and its design is shown in Figure 4, where the administrator (among
other users) can create sensing tasks in specific areas, as shown in Figure 4a,b; in the latter, an
example of a heatmap in the previously defined area is shown.

Server Task Manager (STM): Task Management is one of the main components of the Back-End
Server according to our proposed architecture, being responsible for scheduling planning, and the
pushing of crowdsensing noise tasks. For the definition of the tasks, we have created two
attributes: one for the waiting time between attempts, and another one for the time between
samples. The purpose of these features is to minimize the consumption of resources in the
tasks handled by smartphones. Also, we have enabled three types of geographic areas selection
(polygons of n sides, rectangle, and circle) for the capture of environmental noise. Finally,
once created, the tasks are stored by the SDM, and they can be forwarded to the Front-End Server
when the user administrator considers it necessary. Figure 4 shows an example to create the task
for the gathering of noise, and the area selection using a circle.

Server Data Manager (SDM): This component is responsible for the processing, storage, query,
and analysis of the noise-sensing task.

Server Communications Manager (SCM)—The SCM is the Rest API that supports the
communication between the Back-End Server and the Front-End Server. In our architecture,
we used a unidirectional interaction between SCM and STM, and a bidirectional one between
SCM and SDM. The interaction with STM is unidirectional since we have transmission towards
the Front-End Server when pushing new noise-sensing tasks. The communication with the SDM
is bidirectional since, when the API is notified of the existence of a new registry (data capture),
it is first consulted before being inserted. Once the record has been inserted into the database,
the SCM proceeds to delete the record in the Front-End Server. In particular, we have used
Pyrebase [38], which is an API written in Python. Figure 2 shows the communication between
these components.

GRCSENSING

(b)

Figure 4. GRCSensing Web-based application. (a) Area definition using a polygon of n sides.;
(b) Example of a heatmap detailing the noise distribution.

http://www.grcsensing.net

Sensors 2018, 18, 2596 10 of 25

3.3. Data Transmission Network

This is the element responsible for the actual communication between the Cloud Data Collection
(CDC) and the Mobile Noise-Sensing Client (MNSC) devices through the establishment of end-to-end
connections. Typically, reliable TCP connections are established. In particular, we use the Firebase
API, which supports high-level communications, by automatically opening sockets. At the client side,
Firebase establishes its communication through generic sockets, so that it guarantees compatibility with
all smartphones, while at the server the connection relies on a REST service, which specifically uses
the “Pyrebase” library, a simple Python wrapper for the Firebase API. Additionally, Firebase includes
in its API the persistence option on disk, which means that, if the mobile device loses the network
connection, Firebase will cache the captured noise registers and, when the connection is again available,
it will synchronize the data that was previously cached with the server. Finally, Table 2 shows the size
of the message when the clients send data (DataNoise), and when the server sends the task (DataTask).
We have used a Google library to encode and decode polygons in an n-sided data stream. This means
that the adoption of this type of selection has little impact on the overall transmission load.

Table 2. Size of the message with different selection area and data captured noise.

Data JSON Description Type Message Size (Bytes)
DataNoise Normal data 236
With a polygon of 5 points 363
With a polygon of 10 points 404
DataTask With a polygon of 20 points 411
With a circle (unencoded) 461
With a rectangle (unencoded) 509

3.4. Implementation

Our MSNC app, called GRCSensing, was developed using Android Studio 6.01. Besides, a set of
Google dependencies (i.e., maps, firebase) have been used for the coding and decoding details of GPS
positions and Firebase APIs. Once the mobile application is installed, and the required permissions are
granted, it automatically starts capturing ambient noise data. Those samples are sent in real time to
the CDC. We use SQLite as the local data structure for storage.

Regarding the Server solution, specifically the Back-End Server, it is designed following the Model
View Controller paradigm, and using the Django platform [39]. Also, we make use of JavaScript to add
several functionalities, like those using Google maps, and to draw the different types of areas required.
The database used is MariaDB, and the Pyrebase API is used for communications. For statistical
analysis and reporting, we use the R Graph tool [40], which includes the generation of heat maps for
captured noise.

4. Sampling Process Optimizations

During the design process of the mobile app, the developer defines different procedures to
determine, e.g., when the sensors should be activated. Besides, certain conditions should be considered
when using smartphones as a noise measurement tool. For instance, several situations make it
inadequate to sense environmental noise, as user intervention is affecting the overall result. Examples of
such situations include: talking on the phone, listening to music using the loudspeaker, or keeping
the smartphone in a pocket/purse. On the other hand, a correct and calibrated reading of the values
obtained by the smartphones is indispensable. In this section, we present the process we followed to
ensure a suitable context for noise capture, and detail the calibration procedure used to make sure that
the samples obtained are accurate. Both these elements are implemented as part of the Client Sensor
Manager Task (CSMT).

Sensors 2018, 18, 2596 11 of 25

4.1. Attribute Context Classification

In this subsection, we seek to assess the adequacy of a particular situation to take environmental
noise samples. Specifically, we want to optimize the sequence followed to access the different built-in
states and sensors (i.e., GPS, accelerometer) for such assessment to be made. We define a series of
attributes that contribute to determining whether the ideal conditions for environmental noise sampling
are met. These attributes are shown in Table 3, and were classified according to the conditions and
characteristics of the smartphone in three different categories. For the first category, we consider the
tasks as a set of actions to be taken by the smartphone at a specific time and location with the aim of
measuring noise pollution (e.g., measure the noise level in the downtown area of Valencia, on Sunday
the 11 October, between 12:00 and 13:00). In particular, it defines the task of sensing. Regarding the
second category, it refers to the attributes that produce a sound phenomenon, and that can cause the
noise reading to be inaccurate. The third category, refers to the conditions of the smartphones (e.g.,
the smartphone can be active or idle). These two last categories refer to the optimal instant to perform
the noise measurement. The attributed associated to the different task categories are detailed below:

o TaskDate. This attribute allows you to validate the existence of a new sensing task pushed by the
server, and to check the range of dates and times associated with a particular task.

e TaskArea. This attribute allows determining whether the smartphone is within any of the target
areas considered of interest to the task. In this study, we have defined the target area as a generic
polygon of n sides, or as a circle.

Table 3. Attribute candidates according to their category.

Categories Attribute
Task TaskDate, TaskArea
Sound Speaker, Music, ActiveCall, MicroPhone, ActiveApplication
Status PhoneStatus, Blocked, Camera, Keyboard, Location

Proposed attributed for the sound category:

e Speaker. This attribute allows checking whether the smartphone’s built-in speakers are on or off.
We make use of a call to the system audio administrator to obtain this state information.

e Music. This attribute allows determining when the smartphone is playing music. This information
is made available through a call to the operating system. Such playback can be triggered by
an event produced by WhatsApp, Spotify, Youtube, or similar applications.

e ActiveCall. This attribute allows determining whether the smartphone has an active call through
the telephony management API, which allows determining the specific state of the device.

e PhoneStatus. This attribute refers to the four main states of a smartphone: on the hand, on a flat
surface facing upwards/downwards, in a pocket, and in a bag. If the smartphone is being held,
or if the smartphone is on a flat surface facing upwards, this is considered a favorable context.
We have discarded the options where the smartphone is inside a bag, in a pocket, and over a flat
surface facing downwards. Section 4.2 provides details about the classification method adopted
for PhoneStatus.

e ActiveApplication. This context allows determining whether the smartphone is making use of
some type of social network application or similar (i.e., WhatsApp, Instagram, Facebook, etc.).

Proposed attributed in the status category:

Block. This attribute allows determining whether the smartphone’s screen is locked or unlocked.
Microphone. This attribute allows determining whether the microphone integrated in the
smartphone is activated or not.

Sensors 2018, 18, 2596 12 of 25

o KeyBoard. This attribute allows determining whether the screen keyboard is activated or not. In
general, this can be an indicator that the user is actively using an application, and it can be a good
moment to perform a noise sample.

Camera. This attribute allows determining whether the smartphone’s camera is activated or not.

e Location. This attribute allows determining whether the smartphone is indoors or outdoors,
as only outdoor measurements are targeted. This is assessed by accounting for the satellite
visibility, which is quite reduced when indoors.

Overall, a smart combination of the aforementioned attributes should allow an adequate
assessment of the adequacy of sampling conditions. Also, notice that the first two attributes (TaskDate,
and TaskArea) are in fact defined by system managers themselves using the cloud server application.
So, each time a user is notified about a new crowdsensing task, the application should collect these
attributes, validating and processing them. Based on these 12 nominal attributes defined above,
we have created a list of all possible combinations (16,384 cases), being all of them tagged as admissible
or not from the perspective of environmental noise assessment.

Using as input the 16,384 cases referred above, we relied on the Weka tool [41] to provide
an automatic classification of these different cases. As an output, Weka generated two decision trees,
one using the J48 algorithm [42], and another one using the RandomTree algorithm [43]. Figure 5 shows
the obtained decision trees. Regarding their accuracy, the J48 algorithm achieves a 100% accuracy, while
for the RandomTree algorithm, the accuracy achieved is slightly reduced (99.89%), with an absolute
error of 0.001. Overall, it is worth mentioning that attributes ActiveApplication, Block, Microphone,
Keyboard, and Camera have been discarded, as they are considered unnecessary by both algorithms.

PhoneStatus TaskDate

Py No Yes
________________________ No Location <i[|
No Location <,E|]] indoor. outdoor 3
3 Outdoor hdoor ¥ mmm e e S —
No

=
a3
@
T Speaker %
3 L) am No 2
@
= Yes No
& 4 AN =
E 2
° ActiveCall No o
®
o 5 No Yes
g
Music No
6 Active off
No Speaker
7 on off
No Yes
(@)

Figure 5. Visualization of the automatically generated trees. (a) J48 algorithm; (b) Random
Tree algorithm.

From a resource consumption perspective, we can observe that the location-related attributes are
positioned in the fourth node of both trees, as signalled by the beige arrows. This leads us to think that
the resource consumption associated with these decision trees can be excessively high. Additionally,
for our study, the “TaskDate” attribute should be considered at the beginning of each tree since this is
a basic requirement to check for the existence of a new task. In short, these two proposed decision
trees offer a viable theoretical solution, but they are not optimal from a software design perspective,
and they are not at all optimal regarding time and energy consumption. So, in the next section, we will
analyze the different issues involved to optimize the decision process properly; in particular, we will

Sensors 2018, 18, 2596 13 of 25

propose an alternative decision tree that is more resource efficient than its automatically generated
counterparts. For more details refer to the Section 4.2.3.

4.2. Task Sequencing Optimization

Once the candidate trees were obtained, our next objective was to determine the optimal strategy
for collecting noise pollution data through smartphones. To achieve this purpose, in this section we
will analyze the computation time associated with each tree element, as well as its level of accuracy.
Secondly, we will analyze the energy consumption required. Finally, we will present our proposal for
a balanced tree in terms of computation time and energy savings.

4.2.1. Computation Time

To analyze the computation time associated to each particular task, a specific application was
developed to allow evaluating each attribute individually, and following a repeatable and reliable
procedure. In general, 100 independent readings were obtained for each attribute to be measured,
and we took their average value. A Samsung S7 Edge model running the Android 7.0.2 operating
system was used for testing. Below we detail some relevant characteristics of the most critical attributes:

For the TaskDate, and TaskArea attributes, the developed application reads the data from an
internal database (i.e., SQLite), and then these values were instantiated in a class for later use. We
assume that the server application had previously sent these tasks to the smartphone, and so they
are available for processing. In particular, the TaskArea attribute was implemented as a class that
compares a polygon of n sides with the current position given by the GPS sensor. This class returns
true if the smartphone is located inside such polygon.

Regarding the Speaker, Music, and ActiveCall, attributes, the developed application works by
making calls to the corresponding API offered by the operating system. The implementation of the
PhoneStatus attribute was carried out through a service that reads the proximity, light, and accelerometer
sensors. In particular, this service ends when the results are obtained. Notice that we rely on the results
of a previous study [18,30] to determine, based on the sensor feedback, whether the smartphone is
being held, it is stored in a backpack, or it is in a pocket. So, those previous results allow us to estimate
the complexity of such predictions.

The location attribute is considered a critical factor because of its high consumption and processing
time. To evaluate this attribute, we implemented a service where we read the latitude and longitude
of the GPS sensor embedded in the smartphone. Also, we recorded the prediction accuracy to have
a greater control of the positions obtained. A time-stamp was recorded when the GPS obtained the
first coordinate. In particular, the design of our solutions aims at outdoor locations alone, meaning that
we will also use the GPS to discriminate between both cases (indoor vs. outdoor). To assess the
ability of the GPS sensor to differentiate between both environments, we first analyzed the accuracy
results achieved inside a building (near to a window to get worst-case conditions), as well as outdoors,
in an open environment. For each case, 30 records were taken at two different times: mid-morning,
and mid-afternoon. Our goal is to check whether the obtained readings through our application show
differentiating features for these environments.

Figure 6a shows that, in outdoor environments, 99% of the location measurements were obtained
in less than 4000 ms, with just sporadic values found in the four to six seconds duration range. Besides,
to ensure that the smartphone is indeed in an outdoor environment, Figure 6b shows that a GPS
accuracy (error) of 40 m or less is typically only obtainable outdoors, while indoors the accuracy
(error) is typically much higher, thus allowing to discriminate between both contexts quite easily.
Nevertheless, in terms of estimated error, the location API will converge to very low errors in a few
seconds only when outdoors, situation where the GPS signal is available to obtain a reliable location fix.
Instead, when indoors, the error cannot be reduced due to lack of GPS signal, meaning that it remains
high throughout time, as only wireless networks’ data are available to provide a coarse location
estimation. Hence, based on these results, we can validate the attribute location in the scope of our tree,

Sensors 2018, 18, 2596 14 of 25

and we will set its duration to 4000 ms, as it provides the necessary trade-off between consumption
and accuracy. Finally, Figure 6¢c shows the computation times associated to each key element of the
tree (excluding the Location parameter). In this Figure, it is noticeable that the PhoneStatus attribute
is the one consuming more resources in our tree, i.e., 185 ms, followed by the ActiveCall attribute,
that needs about 9 ms.

200 10°

:o outside ; T T
L= Inside] I

16000 [Taskpate (2)
[TaskArea (3)
[speaker (3)
[Music (4)
[ActiveCalled (5)
I PhonesStatus (6)

180

14000 1 160

140
12000

e
N}
S

10000

- i—i|

6000

100

GPS accuracy (m)
8

Time stamp (ms)

@
3

IS
S

4000

+

2000

inside outside 0 10 20 30 40 50 60 1 2 3

Place Time (min) Leaves

(@) (b) (c)

4 5 6

Figure 6. Block size analysis. (a) GPS accuracy analysis: indoor vs. outdoor measurements; (b) GPS
error range; (c) Processing time for the different tree elements.

Regarding the PhoneStatus attribute, our goal was to determine, with a certain level of accuracy,
whether the phone is on the user’s hand (phone either in the normal vertical position, or with left or
right turn), or in a desk, but with the front facing upwards. As stated earlier, we have considered these
options as the ideal moment to capture environmental noise. The idea of the different states is that
there are particular user preferences when used in those positions. The capture of our training dataset
was produced as shown in Table 4, and our main goal was to determine the actual phone position:
held on the hand, or at a desk facing upwards. We have developed an application to capture the
different proposed states in a supervised way. The application reads the sensors: calibrated gyroscope,
proximity sensor, linear acceleration, and light sensor. The capture frequency was three samples per
second during one minute. After completing our learning set, the data were extracted, and we used
Matlab as the tool for the handling and validation of the data.

Table 4. Details of the training dataset.

Label Status Orientation Movement Response Total Dataset
Hand (1) Left, Vertical, Right North, South, West, East ~ Static/Walking X 4320
Pocket and bag (2) Up/Down; Vertical /Horizontal North Static/Walking 1440
Desk up (3) Up North, South, West, East Static X 720
Desk down (4) Down North, South, West, East Static 720

In particular, we proceeded with the following methodology: (i) we used the K-means algorithm
to classify the output from the linear acceleration sensor and the light sensor into three groups. For the
linear acceleration, a single value was taken for its three axes; (ii) Once the previous classifications were
obtained, a single matrix was made along with the gyroscope values in “x”, “y”, “z”, and the proximity
sensor; (iii) Finally, our resulting set was processed using three different classification algorithms,
and using the k-fold cross-validation on ten observations. Regarding their accuracy, MatLab shows that
the Decision Tree achieves a 99.70% accuracy, while for the linear support vector machines algorithm,
the accuracy achieved is slightly reduced (86.20%). The same performance occurs when using the
algorithm of discrimination with a 67.90% accuracy. Table 5 shows the confusion matrix when using
the Decision Tree. We can recognize that the different states that we want to validate using our tree are
clearly differentiated.

Sensors 2018, 18, 2596 15 of 25

Table 5. Confusion matrix associated to phone status recognition.

Recognized Value

Label
(U] (2) B @
Hand (1) 4310 9 1 -
Pocket and bag (2) 5 1434 - 1
Desk up (3) 2 - 718 719
Desk down (4) - 2 - 718

4.2.2. Energy Consumption

After determining the computation times associated with each decision attribute, we then
proceeded to analyze the energy consumption of the different decisions trees. Our methodology relies
on Event-based models [27]. Specifically, a background service was implemented on the smartphone
that is periodically reading the different attributes of the proposed tree; for all cases, we set the sampling
period to 4 s. Before each test, we check that the smartphone’s battery is at 100%, and that Internet
access is disabled. To obtain representative results, the evaluation lasted for 1 h. The smartphone used
for testing is the same as above, having a battery capacity of 3600 mAh. In general, three different types
of readings were made for comparison, all of them having the smartphone in the suspended mode.
The situations under comparison were: (i) without the application installed; (ii) with the developed
application running and testing the different attributes (but without activating the location attribute);
and (iii) with the application running, but only the attribute that activates the GPS (location) is enabled.
The idea of separating the location attribute from the rest is to have a better insight about the values
associated with the different elements. Notice that the high amount of time and resources associated
with the location attribute would blur the values related to the other attributes (typically lasting less
than 200 ms), thus making such measurements less reliable and representative.

Experimental results show that the one-hour consumption estimation without the application
running is of 36 mAh. Then, when turning on our developed application and running it in the
background, energy consumption increases to 108 mAh. Finally, if the GPS value is obtained through
the location attribute, energy consumption further raises to 180 mAh. Based on the measurements
made, it was possible to assess the energy consumed (iAh) by each attribute in our tree. The equation
used for this purpose is the following:

_ b Bk
‘x4 N

)

In this equation, E. represents the energy consumed during 1 s, ¢; represents the time overhead
associated with each tree attribute, and E, and E, represent the reference value for the energy consumed
with and without the application, respectively. N is the total number of occurrences recorded in an hour.
Table 6 summarizes the energy consumption estimation associated with each attribute on the tree.
In particular, we can observe that the attributes corresponding to the GPS and PhoneStatus present the
highest energy consumption values.

Table 6. Energy consumption estimation for each tree leaf.

Tree Element Random Tree (u Ah) J48 (1 Ah)

1 0.0354 5.2761
2 0.0076 0.0354
3 160.00 160.00
4 0.0168 0.0076
5 5.2761 0.2479
6 0.2479 0.0176
7 0.0176 0.0168

Sensors 2018, 18, 2596 16 of 25

4.2.3. Proposed Tree and Performance Improvement

Once we obtained the computation time overhead and the energy consumption associated with
each attribute, our next goal was to propose an alternative decision tree that is more resource efficient.
For this purpose, we designed a tree in such a way that its elements are organized and balanced
according to the desired objective of reducing time and energy overhead. In particular, for the TaskDate,
Speaker, Music, ActiveCall, PhoneStatus, and Location attributes, we followed a sequential order by
considering the computation time calculated earlier. Figure 7 shows the proposed decision tree which,
similarly to the J48 algorithm, can achieve a decision accuracy of 100%. Notice that, in this alternative
tree, the location attribute is located near the tree bottom, thereby optimizing the overall system
resources whenever a previous attribute allows discarding the noise sampling procedure by not
meeting the required conditions. Besides, we can observe that the area attribute remains just below the
location attribute due to its direct dependency, being this an attribute with a lower computation time,
but nevertheless highly relevant in terms of the final decision.

TaskDate
1 Ye: No
Speaker No
2 N _____
No Music
—_ 3 Active Off
QO —— — — — - - — — —_— N — — e — =
>
Q0
"qc: No ActiveCall
5 4 Yes No
T ————————————= N _
3
= PhoneStatus No

Figure 7. Proposed resource-efficient decision tree.

To gain further insight into the performance gains achieved, Figure 8 shows a comparison of
the accumulative computation time and energy consumption for both our proposed tree and the
automatically generated trees. Increasing tree element Ids correspond to progressing along the tree,
from top to bottom. In particular, Figure 8a shows that our proposal presents a much lower time
overhead compared to the two candidate trees, being that high periods of activity only take place
whenever it becomes indispensable (near the bottom of the tree); specifically, the first tree elements
introduce a lower time overhead compared to the others. In Figure 8b we find a behaviour that is
similar to the previous one, although it now represents the overall energy consumption associated
with the proposed and automatically generated trees.

Sensors 2018, 18, 2596 17 of 25

10* F— T 10°
[Proposed tree [Proposed tree
[RamdomTree [RamdomTree
[Juss [uss
10?
103 L
=
E
2 .41
B - c 1
o 10° 5
E 2
[Q
8
3 10°F
=
o
a
10t
10 F

Tree element ID Tree element ID

(a) (b)

Figure 8. Time and energy consumption corresponding to the different tree levels. (a) Time overhead
analysis; (b) Energy consumption analysis.

Finally, Table 7 summarizes the performance benefits introduced by our alternative decision
tree. In particular, it shows both the accumulated and average values for the time overhead and
energy consumption associated with the three decision trees being compared. We find that our
tree is 57.81% and 58.70% lower than the RandomTree algorithm regarding computation time and
average energy consumption, respectively. For the J48 tree, improvements are further boosted by 60%,
while maintaining the same decision accuracy.

Table 7. Estimation of computational requirements and energy consumption for the different
decision trees.

Total . CPU Time (ms) Energy (nAh)
Elements Algorithm)) r 3
7 Proposed tree 3483.89 897.72 165.60 42.16
7 RandomTree 3483.89 2127.84 165.60 102.09
7 J48 3483.89 224444 165.60 105.41

Overall, we consider that the process followed in this paper to achieve a tree that is both precise
and resource efficient is critical to enable the development of a crowdsensing application aiming at
a widespread adoption and usage, a problem to be discussed in the next research steps.

4.3. Accurate Ambient Noise Assessment Using Smartphones

Once a decision tree has been proposed that adapts to an acceptable energy consumption, and with
a low level of computation, we now focus on the capture of the ambient noise. Based on previous
work [17], we analyzed the characteristics that influence the design and implementation of reliable
systems for the evaluation of noise pollution levels using smartphones. In particular, we examine the
behaviour of three different noise measurement algorithms, and we determine the best approach based
on a professional and calibrated class II Sound Level Meter [44]. For each algorithm, we evaluated the
effect of different sampling frequencies and block sizes. The algorithms and evaluation methodology
are described in more detail in [17]. In the following sections, we will describe the tests performed
using different smartphone models, and also tests using similar smartphones.

Sensors 2018, 18, 2596 18 of 25

4.3.1. Analysis Using Different Smartphone models and Calibrations

In this section, we evaluate the accuracy of our measurements when obtaining samples using
different smartphone models. All smartphones run the Android 6.1 operating system, and can correctly
run the developed application.

In our experiments, we injected pink noise in the range from 35 to 95 dB, and each test lasted
30 s. Figure 9a shows the obtained results. In general we find that, except for smartphone model BQ
Aquaris (AQ), all other smartphones models (5S4, J5 and S7) present a linear behaviour regarding result
accuracy; however, we find that only the results for the Samsung S7 device are near the reference
values. Such near-optimal accuracy is expected since the experiments performed earlier on relied
on this same device. Thus, we find that the results achieved using the proposed algorithm show
model-specific variations, which are in general expected due to hardware differences.

100 100 20
-4+ Sonometer A ~++#-+- Sonometer o —+ AQ
—+ AQ 2] [|[—+ AQ e 18F |—0- 35
90 o35 73 90T | —o- 35 T - —o- s4
—o- 54 _H= —o- s4 o 16] [= 87
gol 7787 vt % p e st s
R 7 80 e A
% .
R s o7 14
A e _ o~ =
g P .7 g S 12
=1 . 77 = 24 5
S a7 = e g
3 60 o -~ ;/0 © 60 ot 210
2 s .° 3 & 2
s _ kg sz s <
1} s y:2 o 8
= 50 g ~ = 50t & »
P 47 X ~ +
X VARES ;
[z z 6 \ ~
7 y:2 2 \ / x /
407 47 4of f \ { \ /
z 2
’ % ¢ 4r])/ N /
z
30 ¥ 2 N ¢ N /
30 Y - /
27 2 Ny = NS
27 . _ R LR Vg
=BT O———o- _ _o _
20 L L L L L L 20 0 It I —_ == e g
40 50 60 70 80 90 40 50 60 70 80 L) 30 40 50 60 70 80 9 100
Injected (db) Injected (db) Injected (db)
(@) (b) (0)

Figure 9. Estimation accuracy for the different smartphone models with and without linear regression.
(a) default sampling; (b) values adjusted using linear regression; (c) estimation error.

To solve the problem detected, our next step was to apply linear regression techniques with
respect to the reference dataset; the latter was obtained with the sound level meter at the same time
instants. Our goal was to adjust the results achieved with the different smartphones models so that
they resemble the reference ones as much as possible. The results of this curve adjustment process are
shown in Figure 9b. It quickly becomes evident that the output results for most of the models fully
agree with the reference value, with more pronounced differences for the BQ Aquaris smartphones
case in the range from 65 to 75 dB (A). Finally, Figure 9c shows that, after the adjustment procedure,
the error is less than 2% in Samsung phones, being the BQ Aquaris model the one showing the highest
error values. Anyway, the error is always less than 8%, which is a reasonable value.

4.3.2. Analysis for a Same Smartphone Model

We now proceed to compare the differences between smartphones of the same model and provider,
determining the differences among them. Notice that, in general, differences are expected, especially for
low-range market devices, where cheaper hardware is used. Figure 10a shows the smartphones of
a same model being evaluated. We picked four BQ Aquaris smartphones for our tests since these are
the cheapest ones used. Figure 11a shows the results of our noise-sensing tests before applying any
curve adjustment. The experiment was performed under the same conditions detailed earlier. We can
see that there are some differences between smartphones, although the shape of the curve is similar in
all cases, with a loss of linearity for values above 75 dB. Figure 11b shows the output after performing
the linear regression procedure. We can now see how values tend to resemble the reference values

Sensors 2018, 18, 2596 19 of 25

better, showing differences for inputs of 85 dB and above due to the non-linearity detected earlier.
Figure 11c shows the value of the estimation errors, which are below 8% in most of the cases.

Figure 10. Smartphone same models used for testing.

20
g | [# Sonometer a0 [# Sonometer —+ AQ1
— AQ1 —— AQ1 18} |—0- AQ2
—0- AQ-2 —0- AQ2 —o AQ3
—0— AQ-3 —0- AQ-3 16 AQ-4
go | (T2 AQ4 go| (T2 AQ4
14t
_ -
~ = s .| /
S0t S0t <12 e
g g 5 1P
B 3 S 10f I
2 5 g . A
860t 860t k| AN 74
2 < c 8 ~/. ~ /
14 / N S /
aZ \
50 i i 50 ? o ¢ DR /
L 7 L
JH 77, AN \\ v /
27 % 7 4+ \ A\ N
%/ - Py \ \o \
- 7 \ & \ N/
Fe M RN AR V744
w0 w7 SR SE e N\ e
* g// -/
0 L L L L + L L
40 50 60 70 80 9% 40 50 60 70 80 90 30 40 50 60 70 8 9 100
Injected (db) Injected (db) Injected (db)
(a) (b) (c)

Figure 11. Estimation error analysis when using similar smartphones. (a) before regression; (b) after
regression; (c) estimation error.

Concerning the variations in the microphones’ sensitivity, it is possible to reduce such variations by
modifying the sensitivity levels through programming the gain and the bias voltage [45]. Additionally,
we consider that the estimated error in the sensitivity of each individual microphone can be
compensated through proper calibration in dedicated environments for noise analysis, such as
laboratories endowed with a reverberant acoustic chamber. Another factor that affects the estimated
error obtained in measurements is the position and distance of smartphones towards the noise source
(injected dB), an issue that must be considered in both indoor and outdoor studies [46—49].

5. Validation of the Proposed Architecture

The current noise-sensing infrastructure, based on professional sonometers, allows measuring
noise pollution levels in cities with high accuracy, although with a very low time and spatial resolution
due to the limited number of devices available. In contrast, when adopting our proposed crowdsensing
approach, we can achieve much higher time and spatial resolution by relying on the microphones of
commercial of-the-shelf smartphones.

Sensors 2018, 18, 2596 20 of 25

In a previous work [17] we validated our calibration process in real urban environments. In this
section, we validate the effectiveness of our approach in two scenarios: (i) a shopping mall; and (ii) our
university campus. The idea of the first scenario is to show that our solution can be used in
an environment that is far from the nearest city, and for which there is in general no data regarding
noise levels. Concerning the second test scenario, we want to demonstrate that the noise values
obtained within our Technical University of Valencia (UPV) campus, in Valencia, Spain, differ from
those delivered by the Valencia City council, which takes no actual measurements inside the campus.

In the first scenario, we evaluated our proposal in a shopping mall characterized by having free
pedestrian circulation and open aisles. To perform this test, we first defined the task on the server,
and set it so that the noise capturing takes place during the weekend, specifically on a Saturday from
12:30 to 13:00 PM. The task definition is made through our web platform (http://www.grcsensing.
net), and it is shown in Figure 12. Figure 13a shows the coverage area for our first test scenario.
Concerning users, this first validation was made with four people who took a random and simultaneous
tour on the interior facilities (hallway) and outside of the shopping mall. Each of them used different
smartphones with the application installed and activated. Figure 13b shows the result of processing the
results at the server to obtain a heat map. It is observed that the places where highest noise values are
detected correspond to vehicular parking areas, while in interiors much lower values are measured.

GRCSENSING

3 EditTask

Figure 12. Task specification at the back-end server for noise distribution analysis at the Bonaire

shopping mall.
o del Are \\
Building Materials store | NoTse 90 1
E Brico Depo
2 & Quart de Poble
2} &) (<] 5
x oS 80 b
5 7 A oster's
g e — ©. Bonaire) " Hioliywood Al
g Xy » O
H T une
sacK'&.Jones 18
Leroy Merlin
. Y () 70 > Sparting G
= @ Maisons du Monde Masslmo Digg 8
a e,
(o] @ McDonald
Hote\ibis Sporting Goods Store e 0 5
Valencia Bonite Shopping Mall Decathlon Aldaia 60 L+ Zgra ito Repair
Centto Comerci)
A\ S :
))
‘) oM erdeje Pz
men's,glotning Stor
50 |
0 .
N
o0® 40 4 ch
h
. o5
Factory
— 30 g
quer Tur
o\ koquer-Tur
NGO @ Map cata @2017 Google,ns. Geogr Nacional obal Z Valor 01t
(a) (b)

Figure 13. Analysis of the environmental noise in a shopping mall. (a) Task specification at the back-end
server; (b) Noise distribution of the shopping mall (Bonaire).

http://www.grcsensing.net
http://www.grcsensing.net

Sensors 2018, 18, 2596 21 of 25

In the second scenario, we evaluated the noise at the UPV campus. The idea of this evaluation
is to compare our proposed architecture solution with the noise analysis provided on the website
of the City Hall of Valencia [50]. In Figure 14a we show the noise map for the area surrounding the
campus as provided by the City Hall. In general, it is noticeable that high noise levels are located in
places of high traffic, like main avenues. We can also see that this figure represents with the white
colour (<50 dBA) the facilities of our university. Also, the static noise monitoring systems available,
which provide constant measurements, are depicted in the figure. As we can see, they are scarce and
located at strategic places only.

o

eﬁ '*

MapaRuido

Ruido Total Lden
O <ssdea

[J ss-60 dsa
[J 60-65 dBa
Il s5-70 dea
B 70-75 dea

Camy |

ETSII - Escuela Téenica
'?' Superior de Inqbruero ’g

cmeg'ro Mayor Galileo
lilel * *alencia

Centre
d'Autoaprenentat

*8ron.

(b)

Figure 14. Comparison of the distribution of environmental noise according to official data and using
our architecture. (a) Analysis of the noise distribution by the city council; (b) Analysis of the noise
distribution by our proposed approach.

In view of the above, we proceeded to generate a sensing task on the server covering an hour
during which many students gather to take a break or coffee (between 17:15 to 17:45 p.m.). Specifically,
we define a target area sized 800 x 600 square meters. In particular, this test was performed with two
people simultaneously walking, one at each end, allowing to cover the interior parts of the campus.

Sensors 2018, 18, 2596 22 of 25

The smartphones used were Samsung S7 devices. Figure 14b shows the results obtained. In general,
when compared with Figure 14a, we find a very representative difference concerning the noise values
found during that hour of the day, especially regarding data within the campus. Also, the heat map
shown in Figure 14b indicates a high-level noise zone in areas near the coffee shop and restaurants
around the campus. Regarding the actual amount of data read on smartphones, the Samsung G930F
had a 99.94% effectiveness regarding noise sampling opportunities, while the Samsung G935F device
had an effectiveness of 94.5%. In the latter, the value varied because in a small part of his test the user
walked through areas covered with a ceiling, thereby failing GPS accuracy tests. Overall, the total
number of samples was 382.

Finally, these results show that our crowdsensing solution for environmental noise analysis can
benefit different public or private institutions by providing a real-time data with high spatial and
temporal granularity. Based on the information obtained, authorities can detect locations where
noise limits are not within the bounds regulated by local laws, and better plan the development in
areas of high environmental risk, including the distribution of bus lines, the location of leisure areas,
among others. Also, our solution provides an easy interface for the administrator to define tasks,
and visualize the outcome of such tasks in the form of heat maps, allowing to see how noise evolves
throughout time, and thus assess if any corrective measures taken were effective, and to which extent.

6. Conclusions and Future Work

Currently, crowdsensing solutions have become an enabling technology for Smart Cities by
empowering users to participate in the monitoring process of their environment through their mobile
devices. In this scope, studies of noise pollution over densely populated areas is not an exception,
with different works pointing in this direction.

In this paper, we proposed a complete architecture for environmental noise monitoring that
combines smartphones and cloud services to measure noise pollution levels with high spatial
granularity. In detail, we use smartphones as mobile sensors to provide noise pollution measurements,
and rely on Firebase as a gateway technology, allowing the interaction between the sending of sensing
tasks at back-end servers, and the noise capture (by smartphones) at client devices. Once the task is
delivered, the smartphone decides the optimum time for capturing data, and it provides real-time
feedback on the given noise quality conditions; finally, the back-end server provides services for
storage, processing, and data visualization.

Once the architecture was defined, we analyzed different issues related to the sampling process:
(i) An attribute set to determine the ideal context conditions for noise sampling, based on which we
obtained candidate decision trees; (ii) The computation time required for each node of the candidate
trees and the energy consumed was analyzed; (iii) A proposal was made for a balanced tree in terms
of computing and energy overhead associated with each attribute; and (iv) The impact of having
different types of smartphones on noise measurements was analyzed. Experimental results show that
a theoretical classification does not necessarily provide an optimal decision tree regarding computation
overhead and energy consumption. In particular, our proposal obtained relative savings of nearly
60% regarding both energy consumption and computing overhead. Concerning the quality of the
measurements gathered, we find some differences between smartphones, even those from a same
model, although these differences are in general negligible.

Finally, we validated our architecture evidencing that, compared to static solutions for
environmental noise monitoring, it can provide a much higher time and spatial granularity. As future
work, we plan to add new functionalities that include minimizing the number of users required to
cover specific areas by exploiting Firebase features for real-time communications.

Author Contributions: Data curation, W.Z.; Formal analysis, W.Z. and C.T.C.; Funding acquisition, W.Z. and
E.V,; Investigation, W.Z. and E.V.; Methodology, C.T.C.; Project administration, C.T.C.; Resources,].-C.C. and
PM.; Software, E.V.; Supervision, C.T.C.,].-C.C. and PM.; Validation, W.Z. and C.T.C.; Visualization, W.Z,;
Writing—original draft, W.Z. and E.V.; Writing—review & editing, W.Z., C.T.C., J.-C.C. and PM.

Sensors 2018, 18, 2596 23 of 25

Funding: This work was partially supported by Valencia’s Traffic Management Department, by the “Ministerio
de Economia y Competitividad, Programa Estatal de Investigacién, Desarrollo e Innovacién Orientada a los Retos

dela

Sociedad, Proyectos I + D +12014”, Spain, under Grant TEC2014-52690-R, and the “Universidad Laica Eloy

Alfaro de Manabi, and the Programa de Becas SENESCYT”de la Reptblica del Ecuador.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this paper:

GPS
CPU

Global Positioning System
Central Processor Unit

MNSC Mobile Noise-Sensing Client

CDC

CUI

Cloud Data Colletion
Client User Interface

CSTM Client Sensor Task Manager
CDM Client Data Manager
CCM Client Communications Manager (CCM)

STM

SDM
SCM

SED
API

Server Task Manager

Server Data Manager

Server Communications Manager
Software Event Detector
Application Programming Interface

JSON JavaScript Object Notation

SQL

Structured Query Language

RESTful Representational State Transfer

SC Sensor Controller

urv Technical University of Valencia

References

1. NIOSH. CDC-NIOSH Publications and Products—Occupational Noise Exposure (98-126). 2013. Available
online: https://www.cdc.gov/niosh/docs/98-126 (accessed on 30 June 2016).

2. Agency, E.E. Noise European Environment Agency. 2016. Available online: http://www.eea.europa.eu/
themes/noise/intro (accessed on 10 November 2016).

3. Parliament, E. Legislation—Directive 2002/49/EC of the European Parliament and of the Council of 25 June
2002 relating to the assessment and management of environmental noise. Off. |. Eur. Commun. 2002,
45, 12-25.

4. Parliament, E. Directives—Commission Directive (EU) 2015/996 of 19 May 2015 establishing common noise
assessment methods according to Directive 2002/49/EC of the European Parliament and of the Council. Off.
J. Eur. Union 2015, 58, 1.

5. Zannin, PH.T.; Ferreira, A.M.C.; Szeremetta, B. Evaluation of Noise Pollution in Urban Parks.
Environ. Monit. Assess. 2006, 118, 423-433, doi:10.1007 /s10661-006-1506-6. [CrossRef] [PubMed]

6. Commission, LE. Electroacoustics—Sound Level Meters, Part 1: Specification. 2005. Available online:
https:/ /webstore.iec.ch/publication /5708 (accessed on 7 January 2017).

7. Ganti, R.; Ye, F; Lei, H. Mobile Crowdsensing: Current State and Future Challenges. IEEE Commun. Mag.
2011, 49, 32-39, d0i:10.1109/mcom.2011.6069707. [CrossRef]

8. Guo, B.; Wang, Z.; Yu, Z.; Wang, Y.; Yen, N.Y,; Huang, R.; Zhou, X. Mobile Crowd Sensing and Computing.
ACM Comput. Surv. 2015, 48, 7, doi:10.1145/2794400. [CrossRef]

9. Maisonneuve, N.; Stevens, M.; Niessen, M.E.; Steels, L. NoiseTube: Measuring and mapping noise pollution
with mobile phones. In Environmental Science and Engineering (Subseries: Environmental Science); Golinska, P,
Fertsch, M., Marx-Gémez, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 3, pp. 215-228.

10. Kanjo, E. NoiseSPY: A Real-Time Mobile Phone Platform for Urban Noise Monitoring and Mapping.

Mob. Netw. Appl. 2010, 15, 562-574, doi:10.1007/511036-009-0217-y. [CrossRef]

https://www.cdc.gov/niosh/docs/98-126
http://www.eea.europa.eu/themes/noise/intro
http://www.eea.europa.eu/themes/noise/intro
https://doi.org/10.1007/s10661-006-1506-6
http://dx.doi.org/10.1007/s10661-006-1506-6
http://www.ncbi.nlm.nih.gov/pubmed/16897555
https://webstore.iec.ch/publication/5708
https://doi.org/10.1109/mcom.2011.6069707
http://dx.doi.org/10.1109/MCOM.2011.6069707
https://doi.org/10.1145/2794400
http://dx.doi.org/10.1145/2794400
https://doi.org/10.1007/s11036-009-0217-y
http://dx.doi.org/10.1007/s11036-009-0217-y

Sensors 2018, 18, 2596 24 of 25

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Rana, R.K.; Chou, C.T;; Kanhere, S.S.; Bulusu, N.; Hu, W. Ear-Phone: An End-to-End Participatory Urban
Noise Mapping System. In Proceedings of the 9th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN "10), Stockholm, Sweden, 12-16 April 2010; ACM Press: New York,
NY, USA, pp. 105-116.

Wisniewski, M.; Demartini, G.; Malatras, A.; Cudre-Mauroux, P. NoizCrowd: A Crowd-Based Data
Gathering and Management System for Noise Level Data. In Lecture Notes in Computer Science, Proceedings of
the 10th International Conference Mobile Web Information Systems (MobiWIS 2013), Paphos, Cyprus, 26-29 August
2013; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8093, pp. 172-186.

Ruge, L.; Altakrouri, B.; Schrader, A. SoundOfTheCity-Continuous noise monitoring for a healthy city.
In Proceedings of the 2013 IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), San Diego, CA, USA, 18-22 March 2013; pp. 670-675.

Lane, N.; Miluzzo, E.; Lu, H.; Peebles, D.; Choudhury, T.; Campbell, A. A survey of mobile phone sensing.
IEEE Commun. Mag. 2010, 48, 140-150, doi:10.1109/mcom.2010.5560598. [CrossRef]

D’Hondyt, E.; Stevens, M.; Jacobs, A. Participatory noise mapping works! An evaluation of participatory
sensing as an alternative to standard techniques for environmental monitoring. Pervasive Mob. Comput. 2013,
9, 681-694, doi:10.1016/j.pmcj.2012.09.002. [CrossRef]

Masini, B.M.; Bazzi, A.; Zanella, A. Vehicular Visible Light Networks for Urban Mobile Crowd Sensing.
Sensors 2018, 18, 1177, d0i:10.3390/s18041177. [CrossRef] [PubMed]

Zamora, W.; Calafate, C.; Cano,].C.; Manzoni, P. Accurate Ambient Noise Assessment Using Smartphones.
Sensors 2017, 17,917, doi:10.3390/s17040917. [CrossRef] [PubMed]

Rana, R.; Chou, C.T.; Bulusu, N.; Kanhere, S.; Hu, W. Ear-Phone: A context-aware noise mapping using
smart phones. Pervasive Mob. Comput. 2015, 17, 1-22, doi:10.1016/j.pmcj.2014.02.001. [CrossRef]

Qin, Z.; Zhu, Y. NoiseSense: A Crowd Sensing System for Urban Noise Mapping Service. In Proceedings of
the 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS), Wuhan, China,
13-16 December 2016; pp. 80-87.

Agarwal, V,; Banerjee, N.; Chakraborty, D.; Mittal, S. USense—A Smartphone Middleware for Community
Sensing. In Proceedings of the 2013 IEEE 14th International Conference on Mobile Data Management, Milan,
Italy, 3-6 June 2013; Volume 1, pp. 56-65.

Zappatore, M.; Longo, A.; Bochicchio, M.A. Crowd-sensing our Smart Cities: A Platform for Noise Monitoring
and Acoustic Urban Planning. J. Commun. Softw. Syst. 2017, 13, 53-67, do0i:10.24138/jcomss.v13i2.373.
[CrossRef]

Lane, N.D.; Chon, Y; Zhou, L.; Zhang, Y.; Li, F; Kim, D.; Ding, G.; Zhao, F,; Cha, H. Piggyback CrowdSensing
(PCS): Energy Efficient Crowdsourcing of Mobile Sensor Data by Exploiting Smartphone App Opportunities.
In Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems (SenSys), Rome, Italy,
11-14 November 2013; p. 7.

Zarko, LP; Antonic, A.; Pripuzic, K. Publish/subscribe middleware for energy-efficient mobile crowdsensing.
In Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication
(UbiComp 13), Zurich, Switzerland, 8-12 September 2013; ACM Press: New York, NY, USA, pp. 1099-1110.
Thiagarajan, A.; Ravindranath, L.; LaCurts, K.; Madden, S.; Balakrishnan, H.; Toledo, S.; Eriksson, J. VTrack:
Accurate, Energy-aware Road Traffic Delay Estimation Using Mobile Phones. In Proceedings of the 7th
ACM Conference on Embedded Networked Sensor Systems (SenSys 09), Berkeley, CA, USA, 4-6 November
2009; pp. 85-98.

Oshin, T.O.; Poslad, S.; Ma, A. Improving the Energy-Efficiency of GPS Based Location Sensing Smartphone
Applications. In Proceedings of the 2012 IEEE 11th International Conference on Trust, Security and Privacy
in Computing and Communications, Liverpool, UK, 25-27 June 2012; pp. 1698-1705.

Zhang, L.; Liu, J.; Jiang, H.; Guan, Y. SensTrack: Energy-Efficient Location Tracking With Smartphone
Sensors. IEEE Sens.]. 2013, 13, 3775-3784, doi:10.1109/jsen.2013.2274074. [CrossRef]

Hoque, M.A; Siekkinen, M.; Khan, K.N.; Xiao, Y.; Tarkoma, S. Modeling, Profiling, and Debugging the
Energy Consumption of Mobile Devices. ACM Comput. Surv. 2015, 48, 39, doi:10.1145/2840723. [CrossRef]
Chon, Y.; Lane, N.D.; Li, F; Cha, H.; Zhao, F. Automatically characterizing places with opportunistic
crowdsensing using smartphones. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing
(UbiComp), Pittsburgh, PA, USA, 5-8 September 2012; p. 481.

Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition using Wearable Sensors. IEEE Commun.
Surv. Tutor. 2013, 15, 1192-1209, d0i:10.1109/surv.2012.110112.00192. [CrossRef]

https://doi.org/10.1109/mcom.2010.5560598
http://dx.doi.org/10.1109/MCOM.2010.5560598
https://doi.org/10.1016/j.pmcj.2012.09.002
http://dx.doi.org/10.1016/j.pmcj.2012.09.002
https://doi.org/10.3390/s18041177
http://dx.doi.org/10.3390/s18041177
http://www.ncbi.nlm.nih.gov/pubmed/29649149
https://doi.org/10.3390/s17040917
http://dx.doi.org/10.3390/s17040917
http://www.ncbi.nlm.nih.gov/pubmed/28430126
https://doi.org/10.1016/j.pmcj.2014.02.001
http://dx.doi.org/10.1016/j.pmcj.2014.02.001
https://doi.org/https://doi.org/10.24138/jcomss.v13i2.373
http://dx.doi.org/10.24138/jcomss.v13i2.373
https://doi.org/10.1109/jsen.2013.2274074
http://dx.doi.org/10.1109/JSEN.2013.2274074
https://doi.org/10.1145/2840723
http://dx.doi.org/10.1145/2840723
https://doi.org/10.1109/surv.2012.110112.00192
http://dx.doi.org/10.1109/SURV.2012.110112.00192

Sensors 2018, 18, 2596 25 of 25

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Shoaib, M.; Bosch, S.; Incel, O.; Scholten, H.; Havinga, P. A Survey of Online Activity Recognition Using
Mobile Phones. Sensors 2015, 15, 2059-2085, d0i:10.3390/s150102059. [CrossRef] [PubMed]

Schweizer, I; Bartl, R.; Schulz, A.; Probst, F.; Miihlduser, M. NoiseMap-real-time participatory noise maps.
In Proceedings of the Second International Workshop on Sensing Applications on Mobile Phones, Bethesda,
MD, USA, 28 June-1 July 2011; pp. 1-5.

Muratori, L.A.; Salomoni, P,; Pau, G. Feeling the pack: Strategies for an optimal participatory system to
sense and recognize noise pollution. In Proceedings of the 2011 IEEE International Conference on Consumer
Electronics-Berlin (ICCE-Berlin), Berlin, Germany, 6-8 September 2011; pp. 17-21.

Becker, M.; Caminiti, S.; Fiorella, D.; Francis, L.; Gravino, P; Haklay, M.M.; Hotho, A.; Loreto, V.; Mueller, J.;
Ricchiuti, F; et al. Awareness and Learning in Participatory noise-sensing. PLoS ONE 2013, 8, 81638,
doi:10.1371/journal.pone.0081638. [CrossRef] [PubMed]

Hachem, S.; Mallet, V.; Ventura, R.; Pathak, A.; Issarny, V.; Raverdy, P.G.; Bhatia, R. Monitoring Noise
Pollution Using the Urban Civics Middleware. In Proceedings of the 2015 IEEE First International Conference
on Big Data Computing Service and Applications, Redwood City, CA, USA, 30 March-2 April 2015; pp. 52-61.
Ztvala, R.; Fiserové, E.; Marek, L. Noise mapping based on participative measurements. Open Geosci. 2016,
8, 140-156, doi:10.1515/geo-2016-0023. [CrossRef]

Zamora, W.; Calafate, C.T.; Cano, J.C.; Manzoni, P. A Survey on Smartphone-Based Crowdsensing Solutions.
Mob. Inf. Syst. 2016, 2016, 9681842, d0i:10.1155/2016/9681842. [CrossRef]

Platform, G.C. Firebase. 2017. Available online: https://firebase.google.com/products/ (accessed on 2
October 2017).

Childs-Maidment,]J. Pyrebase A Simple Python Wrapper for the Firebase API. 2017. Available online:
https://pypi.python.org/pypi/Pyrebase (accessed on 7 July 2017).

Foundation, D.S. About the Django Software Foundation. 2017. Available online: https://www.
djangoproject.com/foundation/ (accessed on 7 July 2017).

R-Foundation. R Project. Available online: https:/ /www.r-project.org (accessed on 1 November 2015).
University of Waikato. Weka 3-Data Mining with Open Source Machine Learning Software in Java. 2017.
Available online: http://www.cs.waikato.ac.nz/ml/weka/ (accessed on 04 April 2017).

Salzberg, S.L. C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc.,
1993. Mach. Learn. 1994, 16, 235-240, doi:10.1007 /BF00993309. [CrossRef]

Bouali, H.; Akaichi,]. Comparative Study of Different Classification Techniques: Heart Disease Use Case.
In Proceedings of the 2014 13th International Conference on Machine Learning and Applications, Detroit,
MI, USA, 3-6 December 2014; pp. 482-486.

Ltd, PI1.U. Noise meter PCE-322A. 2013. Available online: http://www.industrial-needs.com/technical-
data/datalogging-sound-level-meter-sl322.htm (accessed on 7 June 2016).

Walser, S.; Loibl, M.; Winter, M.; Siegel, C.; Feiertag, G. Sensitivity Recalibration of MEMS
Microphones to Compensate Drift and Environmental Influences. Procedia Eng. 2016, 168, 1759-1762.
doi:10.1016/j.proeng.2016.11.508. [CrossRef]

Kardous, C.A.; Shaw, P.B. Evaluation of smartphone sound measurement applications. J. Acoust. Soc. Am.
2014, 135, EL186-EL192, d0i:10.1121/1.4865269. [CrossRef] [PubMed]

Kardous, C.A.; Shaw, P.B. Evaluation of smartphone sound measurement applications (apps) using external
microphones A follow-up study.]. Acoust. Soc. Am. 2016, 140, EL327-EL333, do0i:10.1121/1.4964639.
[CrossRef] [PubMed]

Amin, N.; Gross, T.; Rosenthal, S.; Borschbach, M. Blind Source Separation Performance Based on
Microphone Sensitivity and Orientation Within Interaction Devices. In Proceedings of the XVI International
Conference on Human Computer Interaction, Vilanova i la Geltrt, Spain, 7-9 September 2015; ACM: New
York, NY, USA, p. 26.

Hawley, S.H.; McClain, R.E. Visualizing Sound Directivity via Smartphone Sensors. J. Acoust. Soc. Am. 2016,
140, 2987, doi:10.1121/1.4969250. [CrossRef]

Valencia City, C. Heatmaps noise of Valencia, Spain. 2017. Available online: https://aytovalencia.maps.
arcgis.com/apps/webappviewer/index.html (accessed on 16 July 2017).

@ (© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

https://doi.org/10.3390/s150102059
http://dx.doi.org/10.3390/s150102059
http://www.ncbi.nlm.nih.gov/pubmed/25608213
https://doi.org/10.1371/journal.pone.0081638
http://dx.doi.org/10.1371/journal.pone.0081638
http://www.ncbi.nlm.nih.gov/pubmed/24349102
https://doi.org/10.1515/geo-2016-0023
http://dx.doi.org/10.1515/geo-2016-0023
https://doi.org/10.1155/2016/9681842
http://dx.doi.org/10.1155/2016/9681842
https://firebase.google.com/products/
https://pypi.python.org/pypi/Pyrebase
https://www.djangoproject.com/foundation/
https://www.djangoproject.com/foundation/
https://www.r-project.org
http://www.cs.waikato.ac.nz/ml/weka/
https://doi.org/10.1007/BF00993309
http://dx.doi.org/10.1007/BF00993309
http://www.industrial-needs.com/technical-data/datalogging-sound-level-meter-sl322.htm
http://www.industrial-needs.com/technical-data/datalogging-sound-level-meter-sl322.htm
https://doi.org/https://doi.org/10.1016/j.proeng.2016.11.508
http://dx.doi.org/10.1016/j.proeng.2016.11.508
https://doi.org/10.1121/1.4865269
http://dx.doi.org/10.1121/1.4865269
http://www.ncbi.nlm.nih.gov/pubmed/25236152
https://doi.org/10.1121/1.4964639
http://dx.doi.org/10.1121/1.4964639
http://www.ncbi.nlm.nih.gov/pubmed/27794313
https://doi.org/10.1121/1.4969250
http://dx.doi.org/10.1121/1.4969250
https://aytovalencia.maps.arcgis.com/apps/webappviewer/index.html
https://aytovalencia.maps.arcgis.com/apps/webappviewer/index.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Crowdsensing Architecture Overview
	Mobile Noise-Sensing Client (MNSC)
	Client User Interface (CUI)
	Client Sensor Manager Task (CSTM)
	Client Data Manager (CDM)
	Client Communications Manager (CCM)

	Cloud Data Collection (CDC)
	Front-End Server
	Back-End Server

	Data Transmission Network
	Implementation

	Sampling Process Optimizations
	Attribute Context Classification
	Task Sequencing Optimization
	Computation Time
	Energy Consumption
	Proposed Tree and Performance Improvement

	Accurate Ambient Noise Assessment Using Smartphones
	Analysis Using Different Smartphone models and Calibrations
	Analysis for a Same Smartphone Model

	Validation of the Proposed Architecture
	Conclusions and Future Work
	References

