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Abstract: Vehicle counting from an unmanned aerial vehicle (UAV) is becoming a popular research
topic in traffic monitoring. Camera mounted on UAV can be regarded as a visual sensor for collecting
aerial videos. Compared with traditional sensors, the UAV can be flexibly deployed to the areas
that need to be monitored and can provide a larger perspective. In this paper, a novel framework
for vehicle counting based on aerial videos is proposed. In our framework, the moving-object
detector can handle the following two situations: static background and moving background.
For static background, a pixel-level video foreground detector is given to detect vehicles, which can
update background model continuously. For moving background, image-registration is employed
to estimate the camera motion, which allows the vehicles to be detected in a reference coordinate
system. In addition, to overcome the change of scale and shape of vehicle in images, we employ
an online-learning tracker which can update the samples used for training. Finally, we design a
multi-object management module which can efficiently analyze and validate the status of the tracked
vehicles with multi-threading technique. Our method was tested on aerial videos of real highway
scenes that contain fixed-background and moving-background. The experimental results show
that the proposed method can achieve more than 90% and 85% accuracy of vehicle counting in
fixed-background videos and moving-background videos respectively.
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1. Introduction

With the rapid development of intelligent video analysis, traffic monitoring has become a key
technique for collecting information about traffic conditions. Using the traditional sensors such as
magnetometer detectors, loop detectors, ultrasonic sensors, and surveillance video cameras may cause
damage to the road surface [1–4]. Meanwhile, because many of these sensors need to be installed in
urban areas, the cost of this work is high. Among them, surveillance video cameras are commonly used
sensors in the traffic monitoring field [5–7], which can provide video stream for vehicle detection and
counting. However, there are many challenges for using surveillance video cameras, such as occlusion,
shadows, and limited view. To address these problems, Lin [8] resolved the occlusion problem with
occlusion detection and queue detection. Wang [9] detected shadows based on shadow characteristics
such as lower lightness and the lack of textures. Douret [10] used a multi-camera method to cover large
areas for avoiding occlusion. In [11], two omnidirectional cameras are mounted on vehicle, performing
binocular stereo matching on the rectified images to obtain a dynamic panoramic surround map of
the region around the vehicle. Further, many researchers apply vehicle detection and tracking to
vehicle counting. Srijongkon [12] proposed a vehicle counting system based on ARM/FPGA processor,
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which uses adaptive background subtraction and shadow elimination to detect moving vehicle and
then counts the vehicles in video screen. Prommool [13] introduced a vehicle counting framework
using motion estimation (block matching and optical flow combination). In [13], the area box is set
at the intersection to determine whether the vehicle passes through. Swamy [14] presented a vehicle
detection and counting system based on color space model, which uses color distortion and brightness
distortion of image to detect vehicle and then counts vehicle using a pre-defined line. Seenouvong [15]
used background subtraction method to detect foreground vehicles in surveillance video sequence and
calculates centroid of objects in virtual detection zone for counting. Although researchers improve the
traditional traffic monitoring methods and apply vehicle detection and tracking on vehicle counting,
the traditional surveillance camera still cannot be applied for monitoring large areas, which is very
restrictive for vehicle counting. Besides, the research in [12–15] does not use a multi-object management
system to confirm the uniqueness of vehicles, which is unreliable for long sequence vehicle counts
and effects the efficiency of vehicle counting. In contrast to traditional traffic monitoring sensors,
the UAV can be flexibly deployed to the regions that need to be monitored. Moreover, the UAV is
a cost effective platform that can monitor a large continuous stretch of roadway and can focus on
a specific road segment. In addition, to focus on large area monitoring, the UAV provides a wider
top-view perspective. By achieving a large top-view perspective, the UAV can provide efficient data
acquisition for intelligent video analysis.

In recent years, several methods for traffic monitoring from aerial video are presented. Ruimin
Ke [16] developed an approach for vehicle speed detection by extracting interest points from a pair
of frames and performs interest-point tracking from aerial videos by applying Kanade–Lucas optical
flow algorithm. Shastry [17] proposed a video-registration technique for detecting vehicles using
KLT (Kanade–Lucas–Tomasi) features tracker to automatically estimate traffic flow parameter from
airborne videos. Cao [18] proposed a framework for UAV-based vehicle tracking using KLT features
and a particle filter. The research in [16–18] uses KLT features tracker which detects moving-object by
extracting optical flow of interest points and can be used in case of moving background. The interest
points are used to efficiently extract the feature of interest region, which can reduce the amount
of computation. However, because of the complexity of scene in aerial videos, some background
points may be extracted as interest points, which brings noises to the subsequent tracker. Pouzet [19]
proposed a real-time method for image-registration dedicating to small moving-object detection from a
UAV. The techniques in [17,19] are both equipped with image-registration, which segments the moving
vehicles by transforming the previous frame to the current frame from aerial videos. Image-registration
allows for the comparison of the images in a reference frame, so the scene can be analyzed in a
reference coordinate system. Freis [20] described an algorithm for the background-subtraction based
vehicle-tracking for vehicle speed estimation using aerial images taken from a UAV. Chen [21] proposed
a vehicle detection method from UAVs which integrated of Scalar Invariant Feature Transform(SIFT)
and Implicit Shape Model(ISM). Guvenc [22] proposed a review paper for object detection and tracking
from UAVs. Shi [23] proposed a moving vehicle detection method in wide area motion imagery, which
constructs a cascade of support vector machine classifiers for classifying object and can extract road
context. Further, LaLonde [24] proposed a cluster network for small object detection in wide area
motion imagery, which combines both appearance and motion information. However, the research
in [23,24] focuses on small object detection in wide area motion imagery which is captured at very
high altitude and is hard to capture with an universal UAV. For vehicle counting from UAV, Wang [25]
proposed a vehicle counting method with UAV by using block sparse RPCA algorithm and low rank
representation. However, the UAV only works on hovering mode and captures static background
images. In addition, without a multi-object tracking and management module, the method cannot
distinguish the direction and uniqueness of the vehicle, which can easily lead to counting error.

In this paper, a multi-vehicle detection and tracking framework based on UAV is proposed, which
can be used for vehicle counting and can handle both fixed-background and moving-background.
First, the UAV collects the image sequence and transmits it to the detector which is divided into two
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parts: static background and moving background. To confirm the unique identity of the vehicles in
long sequence video, all detected vehicles are tracked by the tracker. To manage the tracked vehicles
efficiently and avoid tracking chaos, we design a multi-object management module which manages the
tracked vehicles under a unified module and provides status information of each tracked vehicle for
subsequent intelligent analysis. In addition, to improve the computational efficiency, we incorporate
parallel processing technology into the multi-objective management module. In summary, our method
mainly includes four components: moving-vehicle detection, multi-vehicle tracking, multi-vehicle
management module, and vehicle counting.

The rest of this paper is organized as follows. Section 2 describes the architecture of the vehicle
counting system from aerial videos. Section 3.1 focuses on vehicle detection. Sections 3.2 and 4 mainly
discuss the tracking algorithm framework and multi-object management module. Section 5 mainly
introduces the vehicle counting module. In Section 6, we present the experimental results. Finally,
we give a brief conclusion in Section 7.

2. Architecture of the System

Our framework is based on the platform of UAV. In Figure 1, the video stream is captured by a
camera mounted on the UAV. The detector can deal with two situations(static background and moving
background). We distinguish whether the background is moving or not according to the motion
mode of the UAV. For static background, a samples-based algorithm for background subtraction is
employed in our framework, which can detect moving vehicle by modeling background and can
update the background model continuously. By updating the background model, the parameters of
model are more suitable to describe the real-time scene. For moving background, the camera platforms
move with UAV. In this case, image-registration is used in our framework to transform the camera
coordinates of adjacent frames to a reference coordinate system. Thus, the movement of camera
can be compensated in the adjacent frames, so that we can detect vehicles from the reference frame.
Images captured by UAV are characterized by complex background and variable vehicle shape, which
leads to discontinuity of detector, and thus affects the accuracy of vehicle counting. Thus, to address
this problem, an online-learning tracker is used in our framework, which can update the samples
used for training. Further, considering that traditional tracker can only track one object, we design
an efficient multi-object management module by using multi-threading technology, which can assign
multi-object tracking task to parallel blocks and can analyze and validate the status of the tracked
vehicles. Finally, the status of the tracked vehicles is used to count the number of vehicles.

Figure 1. Framework of the proposed method. It consists of vehicle detection, multi-vehicle tracking,
multi-vehicle management, and vehicle counting. The UAV is equipped with a visual sensor. Vehicles
are detected by the detector which can handle two situations: static background and moving
background. Then, the detected vehicles are tracked by tracking module. By analyzing the results of
the tracker, we can count the number of vehicles.
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3. Vehicle Detection and Tracking

3.1. Vehicle Detection

3.1.1. Static Background

Vehicle detection is an essential process for vehicle counting. In this section, we mainly discuss
how the UAV works in hovering mode. In the case of fixed background, we can extract moving
vehicles by using background modeling. ViBe [26] for vehicle detection is employed in our framework
with the following advantages. One of the advantages of the ViBe foreground detection algorithm
is that the background model can be updated. By updating the background model, the noise points
caused by slight variations of brightness can be effectively suppressed in images. Another advantage
is that ViBe first selects a certain area in image for background modeling, rather than modeling the
entire image, which greatly reduces the computational load.

An overview of ViBe algorithm is given in Figure 2. The first step of ViBe is to initialize the
background. Each background pixel is modeled by a collection of N background sample values
[v1, v2, ..., vN ]. We randomly select the pixel values of its neighbours as its modeling sample values.
To classify the pixel v(x), a difference D between pixel values in the field centered at the point v(x) is
defined. The value of D for gray image is defined in Equation (1):

D = |v(x)− vi| , (1)

and D for RGB image is

D = |vr(x)− vri|+
∣∣vg(x)− vgi

∣∣+ |vb(x)− vbi| . (2)

The vi in Equation (1) is a background sample value. In Equation (2), the center pixels vr(x),
vg(x), and vb(x) correspond to three channels. The vri, vgi, and vbi are background sample values
corresponding to three channels. We use the gray-scale image as an example to analyze the principles of
the algorithm. Here, three parameters about pixels classification are defined. Dt is the pixel difference
min threshold. S and St are the number of points above the pixel difference min threshold Dt and the
min value of S. If S > St, the point vx is classified into background.

Figure 2. The overview of ViBe algorithm. Given a UAV video stream, the first step of ViBe is to
initialize the background. After initialization of the background model at the first frame, the algorithm
begins extracting foreground at the second frame. For updating model, sample points are selected
randomly, and then the probability of updating is calculated.

To improve the detection performance on moving objects under background changes, an updating
model method is employed. In the method, the probability of updating each background point is 1

/
ϕ.

The probability of updating neighbour’s points is 1
/

ϕ. Updating the neighbour’s sample pixel values
takes advantage of the spatial propagation characteristics of the pixel values. Then, the background
model gradually diffuses outwards. When a pixel is judged to be a background point, the probability
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of updating the background model is 1
/

ϕ. In general, updating process is composed of three steps:
randomly selecting the sample update, randomly deciding whether to update the background model,
and randomly deciding whether to update the field pixels.

3.1.2. Moving Background

In this section, we mainly discuss how the UAV works in moving mode. The overview of this
section is shown in Figure 3. SURF feature [27] points are extracted to describe the features of frames.
We use fast approximate nearest neighbour search approach to match the feature points. We aim at
finding a transformation W which can warp the image It to image It+1. We assume the eight-parameter
transformation W is the following:

W =

 m1 m2 m3

m4 m5 m6

m7 m8 1

 , (3)

where the m1, m2, m3, m4, m5, m6, m7, and m8 are parameters of warping. We can define the final
transformation formula as follows:  x′

y′

1

 = W

 x
y
1

 (4)

where (x, y) and (x′, y′) are pixel points on It and the warped image I′, respectively. To estimate W,
we assume that the transformation between frames can be modeled by a homography and use the
Random Sample Consensus (RANSAC) algorithm [28].

Figure 3. Moving background detector. SURF feature points are extracted firstly, which are used to
match two frames. RANSAC algorithm is employed to estimate the transformation between the two
frames. After that, we transform the camera coordinates of adjacent frames to a reference coordinate
system. Then, image difference method is used to extract foreground. The final results are processed
by morphological method.

After estimating the warped image I
′
, we use the image difference method to extract the

moving vehicle,
δ = I′(x′, y′)− I(x, y), (5)
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where the δ denotes the pixel difference value of each point of image I. We set µ as the threshold of
δ. If δ > µ, we determine that the point (x, y) is foreground point. To partially suppress the ghost
problem, we conduct morphological post-processing for foreground objects. During this process,
foreground objects are dilated and then eroded to suppress noise around the object.

3.2. Vehicle Tracking

Compared with other tracking-by-detection methods, such as TLD [29] and STRUCK [30],
the speed of KCF [31] has been greatly improved. Because of the complexity of ground conditions in
UAV videos, the multi-scale and shape changes of vehicles will affect the effect of tracker. To address
this issue, we employ the online-learning tracker, which considers the process of tracking as a ridge
regression problem and trains a detector in tracking process. The detector is used to detect the
location of the object in the next frame. During training, the inputs are samples and labels, such as
(x1, y1), (x2, y2), ..., (xn, yn). To determine the label value yi, which is a number in [0, 1], we calculate
the distance between the object center and the sample center. If the sample is close to the object, yi
tends to 1, and if not tends to 0. The goal of training is to find a function f (z) = wTz, z = [z1, ..., zn]

that minimizes the squared error over samples,

min
w ∑

i
( f (xi)− yi)

2 + λ‖w‖2, (6)

where λ is a regularization parameter that controls over-fitting.
The KCF tracking process can be mainly divided into the following steps. First, for frame t,

a classifier is trained using the tracker samples selected near the prior position Pt, which calculate the
response of a small window sample. Then, in frame t + 1, samples are obtained near the previous
frame’s position Pt, and the response of each sample is judged by the classifier trained in frame t.
The strongest response of the sample is the predicted position Pt+1. As shown in Figure 4, in frame
t, the red dashed box is the initial tracking box which is expanded by a factor of 2.5 as a prediction
box (blue). The black boxes around the object are sample boxes obtained after the blue box has been
cyclically shifted. We use these sample boxes to train a classifier. In frame t + 1, we first sample in
the predicted area, that is, the blue solid-line box area. Then, we use the classifier to calculate the
responses of these boxes. Obviously, the No. 1 box receives responses the most. Thus, we can predict
the displacement of the object.

2

3 4

1

t

(a)

1

2

3
4

t+1

(b)

Figure 4. Tracking process diagram. It shows that, during tracking process, we train a regression by
finding samples near the object in frame t and use the regression to estimate the displacement of the
tracked object in frame t + 1: (a) the object’s state in frame t; and (b) the object’s state in frame t + 1.
The tick symbol means that No. 1 box receives responses the most.
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There are two options for extracting the features of object: one is the gray feature and the other is
the HOG feature [32]. Here, we use the HOG feature.

4. Multi-Vehicle Management Module

Considering that the original KCF tracker can only track one object, we design a multi-vehicle
management module by using multi-threading technology, which can assign multi-object tracking task
to parallel blocks and can efficiently analyze and validate the status of the tracked vehicles. We assume
that the objects detected by the detector are O1, O2, ..., On. As shown in Figure 5, first, the detection
results are all given to the tracker for initialization. We present the initialized objects as Oi

1, Oi
2, ..., Oi

n.
After that, the detected vehicles O1, O2, ..., On in each frame are given to the new object module to
determine. We describe the new object module with n = 2. As shown in Figure 6, in frame t, we
detect two new blobs O

′
1d and O

′
2d represented by green ellipses. In frame t + 1, we use two yellow

ellipses to represent the two blobs O
′
1t and O

′
2t that have been tracked. In frame t + 2, by analyzing the

overlap between the detection box and the tracking box, a new blob O
′
new can be determined by new

object module. In our experiments, we use γ to indicate the overlap ratio between tracking box and
detection box. If γ < 0.1, the new blob will be added to the tracker. We denote the final tracked objects
as Ot

1, Ot
2, ..., Ot

m. In fact, it can be time consuming for algorithm to handle multiple objects. To address
this problem, we design a multi-objective processing mode of recurrent multi-thread. Each object
can be automatically assigned to a separate thread to process. At the same time, the system allocates
separate memory space to each object. If the target disappears, the algorithm automatically retrieves
the thread and the corresponding memory space, which are provided for subsequent new object to use.
In this way, threads can be allocated and reclaimed in parallel, which can deal with multiple objects
efficiently. In Figure 7, the results of detector O1, O2, ..., On are processed by different trackers that are
handled by different threads. S threads are divided into one block and the whole thread network is
composed of multiple thread blocks. By applying the multi-threading technology, the computational
load is greatly reduced.

Figure 5. Multi-vehicle management module. Inside the dashed box is tracking module which connects
detector and tracker. It consists of new object module, blob analysis and multi-object tracking.

In the multi-vehicle management module, all errors of trackers are analyzed according to the
response of regression to avoid these errors in the future. We define the response of regression as
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Fti, where i is the blob number and t is the frame number. During tracking, the average regression
response of the blob i can be expressed as following,

Fi =
N

∑
n=1

Fni, (7)

where N is the current total number of frames. We define the confidence threshold of the blob as σ.
If Fi > σ, blob i will be tracked continuously. If Fi ≤ σ, blob i will be reinitialized by detector. The
final tracked results are used to count vehicles. We mainly discuss the vehicle counting module in the
next section.

Figure 6. New-object identification. Two blobs (green) are detected in frame t. In frame t + 1, two blobs
(yellow) are tracked. Then, a blob (green) is classified as new blob in frame t + 2, which will be added
to tracker.

Figure 7. The multi-object tracker. The results of detector are processed sequentially in parallel blocks
containing different numbered trackers. S denotes CPU kernel number. The numbers 1 to n are the
order of processing.

5. Vehicle Counting Module

The commonly used vehicle counting method is based on the regional mark and the virtual test
line. The former method is to count the number of connected areas, while the latter sets up a virtual
test line on the road. We define an area that is used to count vehicles. We count the vehicles in the
area below the red line. On the highway, we divide the vehicles into two directions as shown in
Figure 8. Because our method is equipped with multi-vehicle tracking and management modules,
there is no need to set up multiple lines in the area to determine whether the vehicles are passing.
In the multi-vehicle management module, the information of ID and direction of the vehicles are
stored, which can be used to directly count the vehicles in the region. For example, we assume the
number of vehicles tracked at frame t is m. If a vehicle is tracked at frame t + 1 with a different ID,
then we determine the counter plus 1.
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In summary, the proposed vehicle counting method is based on the multi-object management
module assembling the detectors and trackers to work together in an unified framework. Each tracker
tracks an independent object with no interference between the objects, which ensures that the
status information of each object is not confused. When the result of the tracker is unreliable,
the detector reinitializes the corresponding tracker. In terms of multiple tracker processing, we
employ multi-threading technology, which can greatly reduce the computational load.

Figure 8. Vehicle-counting area and direction. Below the red line is the detection area, in which the
right side of the pink line is the forward direction, and the left side is the backward direction.

6. Evaluation

In this section, we provide the results of a real-world evaluation of our method. The method
was implemented with C++ and OpenCV. We tested our algorithm on a system with an Intel Core
i5-4590-3.30 GHz CPU, 8G memory and Windows 10 64-bit operating system.

(a) (b)

(c) (d)

Figure 9. Examples showing the influence of parameter settings of detector (static background).
Four combinations of N and St were tested, showing the influence of parameters on vehicle detection:
(a) N = 10, St = 2; (b) N = 30, St = 2;. (c) N = 50, St = 6; and (d) N = 50, St = 2.
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6.1. Dataset

In our experiments, we used a UAV to record the real freeway scene videos at 960× 540 resolution.
The data were divided into two groups, one was the height of 50 m and the other was the height of
100 m. The flight modes of the UAV were set to two types in our experiments, static hovering and
linear horizontal flight. Table 1 shows the details of the test videos.

Table 1. The information of test data.

Aerial Videos Height Static Background Moving Background Total Number of Frames

TEST_VIDEO_1 50
√

5638
TEST_VIDEO_2 50

√
5770

TEST_VIDEO_3 50
√

5729
TEST_VIDEO_4 50

√
5820

TEST_VIDEO_5 50
√

5432
TEST_VIDEO_6 50

√
5533

TEST_VIDEO_7 50
√

5573
TEST_VIDEO_8 50

√
5599

TEST_VIDEO_9 100
√

5920
TEST_VIDEO_10 100

√
5733

TEST_VIDEO_11 100
√

5527
TEST_VIDEO_12 100

√
5573

TEST_VIDEO_13 100
√

5620
TEST_VIDEO_14 100

√
5734

TEST_VIDEO_15 100
√

5702
TEST_VIDEO_16 100

√
5523

Table 2. Parameter settings.

Parameters Height Background

50 100 Fixed Moving

N 50 45
√

-
Dt 15 13

√
-

St 2 2
√

-
ϕ 5 5

√
-

µ 70 60 -
√

H 100 100 -
√

Dmin 15 10 -
√

padding 2.5 2
√ √

cell 4× 4 4× 4
√ √

σ 0.2 0.3
√ √

6.2. Estimation Results and Performance

For static background, the moving vehicles were detected from each frame using the Vibe
algorithm. The settings of parameters in our experiments are displayed in Table 2. The first parameter
we set is the number of samples N, which is related to the resolution of the image and the average size
of the vehicles. Thus, if N is set too small, many background points will be mistakenly detected as a
foreground points. Some noises that are not vehicles will be detected as vehicles, because N affects the
background model and the sensitivity of the model. On the other hand, if N is too large, the processing
speed will be reduced. The parameters min match value St and the pixel difference min threshold Dt

are also related to the model and affect the sensitivity of the model. The last parameter update factor
ϕ determines the updating speed of the background, which is inversely proportional to the updating
speed of the background. An example showing the influence of these parameters is presented in
Figure 9. Comparing Figure 9a,b, we can note that the smaller parameter N resulted in many noise
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points in the background. Moreover, the larger value of St also led to many noise points in background,
as shown in Figure 9c,d. Obviously, the parameters of detector affect the results of detection. Further,
we set different parameters to test the accuracy of the vehicle counting on TEST_VIDEO_1. Figure 10
shows the effect of different parameter settings on accuracy. In Figure 10, we can find that when N is
50 and St is 2, the highest precision is achieved. Hence, setting proper parameter values is important
to accuracy. Figure 11 shows that after the morphological processing, the results of segment are
more complete.

Table 3. Accuracy analysis on test video.

Height Direction Total Number
of Vehicles

Number of
the Counted
Vehicles

Accuracy Background

50 Forward 202 193 95.54% Fixed
50 Backward 217 207 95.39% Fixed
50 Forward 164 144 87.80% Moving
50 Backward 139 122 87.77% Moving
50 Forward and background 722 666 92.24% Fixed and moving

100 Forward 174 160 91.95% Fixed
100 Backward 238 219 92.02% Fixed
100 Forward 173 148 85.55% Moving
100 Backward 147 126 85.71% Moving
100 Forward and backward 732 653 89.21% Fixed and moving

50 and 100 Forward and backward 831 779 93.74% Fixed
50 and 100 Forward and backward 623 540 86.68% Moving
50 and 100 Forward and backward 1454 1319 90.72% Fixed and Moving
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Figure 10. Accuracy of vehicle counting with different parameters (static background). We tested our
method on a video of static background scene with different parameters: (a) the effect of N on accuracy
when the value of St is fixed to 2; and (b) the effect of St on accuracy when the value of N is fixed to 50.

For moving background, H denotes the threshold of the response of the determinant of Hessian
matrix. Dmin is the distance threshold of matching point. To analyze the effect of parameter setting
on accuracy, we tested the vehicle counting accuracy on TEST_VIDEO_5 with different parameter
settings. Figure 12 shows the effect of µ and Dmin on accuracy. Because µ represents the threshold
of image segmentation, the results of segmentation are greatly affected, which in turn will affect the
accuracy of the vehicle counting. In Figure 12b, the value of Dmin greatly affects the precision of
counting, especially when the value of Dmin is too high. This is because Dmin controls the search range
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of matching points, which directly affects the accuracy of image registration. An example of the result
of matching is shown in Figure 13. In Figure 14, the warped image is overlaid on the reference image.
To detect foreground, we calculated the difference between the warped image and the reference image.
The results of vehicle detection are shown in Figure 15.

(a) (b)

Figure 11. An example of post-processing(static background). Median filter is used to post-process the
image. To suppress the noise contained in the segmented image, we chose the area of the object to be
filtered: (a) the original image; and (b) the final result of detector.
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Figure 12. Accuracy of vehicle counting with different parameters (Moving background). We tested
our method on a video of moving background scene with different parameters: (a) the effect of µ on
accuracy when the value of Dmin is fixed to 15; and (b) the effect of Dmin on accuracy when the value
of µ is fixed to 70.

Figure 13. The matching map of two consecutive images. We used different colors to represent the
corresponding matching points, and connected these points with different lines.
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Figure 14. The overlaid image of the warped image and the reference image. The weights of the
warped image and the reference image are each 0.5. The left image is the overlaid image. We circle four
vehicles as examples to show the results of warping. The right four images are large vision of the circle
vehicles which are represented in a reference coordinate system.

(a) (b)

(c) (d)

Figure 15. The results of vehicle detection(moving background): (a) a selected frame of video stream;
(b) initial difference image; (c) the result of segment; and (d) the result of post-processing.

During tracking, the confidence threshold of blob σ, area-expansion factor padding and the cell
size of the HOG feature cell need to be set, which are shown in Table 2. To test the performance
of tracker in tracking multiple objects, we recorded the processing speed of tracking 1–50 objects
simultaneously. In Figure 16, the parallel tracker shows obvious superiority relative to traditional
sequential processing in terms of processing speed.

The summary of the estimation results and performance are presented in Table 3. We used eight
videos at the height of 50 m and eight videos at the height of 100 m to test our method. The used
test videos are described in Section 6.1. As shown in Figure 17, we selected six frames from the test
videos to show the final results, which were collected at heights of 50 m and 100 m. Test videos were
manually examined frame by frame to obtain the ground-truth values of vehicle counting. ε denotes
the accuracy rate,
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ε =
Nestimated

Ntruth
× 100%, (8)

where Nestimated and Ntruth denote the estimated value and ground truth. In Table 3, the average
error rate for the height of 50 m are less than those for the height of 100 m, because some small
objects are regarded as background by detector. The accuracy of the static background is higher than
the accuracy of the moving background, which indicates that the error of the estimation of camera
motion can affect the results of vehicle detecting and the final results. By considering the results of
the analyses above, we can conclude that our method works well on both moving-background aerial
videos and fixed-background aerial videos and can achieve more than 90% and 85% accuracy of vehicle
counting, respectively.
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70

The number of objects

fp
s

 

 
Sequential processing
Parallel processing

Figure 16. Processing speed comparison (tracker). This figure shows the relationship between the
processing speed and the total number of objects (sequential and parallel processing).

(a) (b) (c)

(d) (e) (f)

Figure 17. The vehicle tracking results on test aerial video: (a–c) captured with camera fixed;
(d–f) captured with camera moving; (a,b,d,e) captured at a height of 50 m; and (c,f) captured at
a height of 100 m.
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7. Conclusions

In this paper, an efficient vehicle counting framework based on vehicle detection and tracking
from aerial videos is proposed. Our method can handle two situations: static background and moving
background. For static background, we employ a foreground detector which can overcome the slight
variations of real scene by updating model. For moving background, image-registration is used
to estimate the camera motion, which allows detecting vehicle in a reference frame. In addition,
to address the change of shape and scale of vehicle in images, an online-learning tracking method
is employed in our framework, which can update the samples used for training. In particular, we
design a multi-object management module which can connect the detector and the tracker efficiently
by using multi-threading technology and can intelligently analyze the status of the tracked vehicle.
The experimental results of 16 aerial videos show that the proposed method yields more than 90% and
85% accuracy on fixed-background videos and moving-background videos, respectively.
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