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Abstract: In recent years, attention has been paid to wireless sensor networks (WSNs) applied
to precision agriculture. However, few studies have compared the technologies of different
communication standards in terms of topology and energy efficiency. This paper presents the
design and implementation of the hardware and software of three WSNs with different technologies
and topologies of wireless communication for tomato greenhouses in the Andean region of Ecuador,
as well as the comparative study of the performance of each of them. Two companion papers describe
the study of the dynamics of the energy consumption and of the monitored variables. Three WSNs
were deployed, two of them with the IEEE 802.15.4 standard with star and mesh topologies (ZigBee
and DigiMesh, respectively), and a third with the IEEE 802.11 standard with access point topology
(WiFi). The measured variables were selected after investigation of the climatic conditions required
for efficient tomato growth. The measurements for each variable could be displayed in real time
using either a laboratory virtual instrument engineering workbench (LabVIEWTM) interface or an
Android mobile application. The comparative study of the three networks made evident that the
configuration of the DigiMesh network is the most complex for adding new nodes, due to its mesh
topology. However, DigiMesh maintains the bit rate and prevents data loss by the location of the
nodes as a function of crop height. It has been also shown that the WiFi network has better stability
with larger precision in its measurements.

Keywords: wireless sensor networks; tomato; greenhouse; ZigBee; WiFi; DigiMesh; LibeliumTM

1. Introduction

The agricultural zone in Ecuador is one of the leading sectors of the country economy. According
to the Survey of Surface and Agricultural Continuous Production (ESPAC 2015) [1], the total national
agricultural labor was 5.67 million hectares, of which 0.95 million were dedicated to the cultivation
of varieties that are harvested at specific times of the year, known as transient products. The species
Solanum lycopersicun, popularly known as tomato, is a plant native to the Andean region of South
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America, and it is one of the high production transient products in the provinces of Azuay, Carchi,
Chimborazo, Loja, and Tungurahua. In 2015, the survey reported an annual production of 47,837 metric
tons. This vegetable is one of the most cultivated worldwide due to its high nutritional content,
which makes it a food consumed daily [2]. The most outstanding tomato varieties are Graciela,
Daniela, Dominique, Bright, Katherine, and Electra, and all of them are grown in greenhouses [3].
It can be grown in open fields in tropical areas and valleys, and also in Andean regions under
greenhouse conditions.

The greenhouses for growing tomatoes can be located from sea level up to 3200 m, and the
crop requires an air temperature of 18–30 ◦C, which can be controlled with proper management
of greenhouse climate control systems. The climatic conditions of the crop significantly influence
its efficient growth, and, in the case of the tomato, the most relevant variables are air temperature,
air humidity, wind direction, solar radiation, soil moisture, and CO2. Their inadequate management
can cause diseases and pests, and it can reduce the product size [4]. Greenhouses are used to minimize
the influence of adverse factors limiting production and crop quality. They can support environmental
variables and make efficient use of water [5], hence achieving better optimization in agricultural
production. Although not all geographic areas meet the conditions required to grow tomato, there is
a need for technological help to provide viable conditions for it. Research and development in science
have introduced management systems for agricultural greenhouse which keep the indoor climate
controlled for suitable crops growth [6,7]. The crops grown under greenhouses can be affected by
adverse environmental conditions, such as high solar radiation, high air temperature, low air relative
humidity during the day, high air relative humidity at dawn and dusk, poor ventilation, and limited
CO2 concentration, which generally occur by aspects related to the timing day, the geographical area
climate, or the greenhouse material type. Therefore, it is essential to include high-precision systems
for the environmental monitoring both inside and outside of the greenhouses, in order to avoid the
occurrence of the above-mentioned adverse climatic conditions. The implementation of this systems
will minimize the producer’s economic losses due to the plants deterioration or death [8]. In recent
years, the agricultural sector has benefited from the use of monitoring networks, which are used to
increase the production efficiency [9,10]. Data corresponding to environmental conditions, such as
air temperature, wind speed, wind direction, soil moisture, and chemical and physical soil properties
(e.g., pH), are usually acquired [11].

Today, wireless technologies are a relevant complement to the implementation of monitoring
systems, because they have advantages such as low power consumption, adaptable network topology,
economic maintenance, capacity of expansion with new nodes, or ability to operate in harsh
environments [12–15]. The usual disadvantages in these networks are security and electromagnetic
interference, which in the case of monitoring systems of greenhouses can be considered as secondary
aspects. This is due to the fact that the type of information that is transmitted does not require a high
level of encryption, and the network can be configured in a channel of low saturation. The main
wireless technologies currently used for monitoring greenhouses are Radio Frequency combined with
GSM [16–19], WiFi [20–22], and ZigBee [23–28]. At present, the latter two technologies are widely
used in WSNs, both have strengths and weaknesses, and their applicability depends or the type
of information to be transmitted [29,30]. Few works have been developed in the field of WSNs for
monitoring tomato greenhouses, and most of them focus on the analysis of air temperature and air
humidity by using networks with star [31] and mesh [32] topology. In these studies, the objective is
the design of the network nodes, as well as the design of human–machine interface (HMI) for the
visualization of each variable. However, those studies do not analyze all the climatic variables that
influence the tomato growth. There are very few comparative studies of the performance of ZigBee
and WiFi technologies applied in WSNs for agriculture, and they do not always analyze in detail
which of them is the most efficient in terms of configuration complexity, of transmission speed, or of
energy consumption.
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The objective of this work is to design and implement the hardware and software of the nodes of
three WSNs, with different communication technologies, for the wireless monitoring of environmental
variables in tomato greenhousesr to analyze and compare the benefits and limitations of each network,
and to identify which of them yields the best performance for the optimal monitoring of agricultural
environments. For this purpose, the following methodology was addressed. Three WSNs were
designed and implemented: (1) ZigBee technology in star topology; (2) ZigBee with mesh topology
(referred to here as DigiMesh); and (3) WiFi technology (access point topology). The environmental
variables air temperature, air relative humidity, CO2 concentration, luminosity, wind direction, wind
speed, solar radiation, and ultraviolet radiation (UV) were monitored in real time. The networks were
in test mode for three months, and time data transmission rates were studied in different scenarios
during this time. Processing, storage, and visualization of data were engineered in LabVIEWTM

software, and a mobile application was implemented for smartphones with Android operating system.
Our case study was a tomato greenhouse located in the town of Rumipamba of Navas, Canton of
Salcedo, and Province of Cotopaxi, Ecuador. In the companion papers to this work, we also analyzed
the dynamics of the energy consumption signals in each node and network, as well as the time-varying
signals of the monitored environment variables [33,34].

The rest of this first article is organized as follows. Section 2 summarizes the state of the art,
focused on communication technologies applied to greenhouse monitoring. Section 3 presents
the software and hardware designed for the deployment of the three WSNs, as well as the HMI
development and the mobile application, as tools for the visualization of monitored variables. Section 4
describes the results of the analysis of the prescriptions of each network. Finally, Section 5 presents the
discussion and conclusions of this first part.

2. Related Work

Monitoring networks in greenhouses can be implemented through wired or wireless technologies.
Wired networks communicate through wires, which connect them to computers and to other devices
that form networks, whereas wireless networks consists of the interconnection of devices through
radio-wave propagation technologies, without the need for structured wiring. Both technologies
have strengths and weaknesses, and their use depends on the type of application. From the scientific
literature review, not many studies can be found about the implementation of monitoring networks for
greenhouses, and sometimes they use wired communication technologies such as CAN bus [35,36],
MODBUS [37], and RS-485 bus [38]. The positive aspects of wired networks are larger bandwidth,
maximum possible performance, and higher transmission speed, whereas the negative aspects are
complex wiring structure, fixed network topology, high cost of installation and maintaining, high power
consumption, and limitations to increase nodes. Wired technology is rarely used for greenhouse
monitoring because of the indicated limitations. In the field of the monitoring of agricultural
environments, wireless communication networks are increasingly used because their implementation
does not require the installation of wiring over the crop. The most applied communication technologies
for this purpose are ZigBee and WiFi, since their performance is high, in terms of reach, scalability and
energy efficiency, and in addition they can be readily coupled to the user needs.

As the cost trend for sensors and wireless communication infrastructure goes down,
more producers are implementing these systems. Monitoring of environmental variables through
WSN allows the farmer to know the real-time weather status, its use is practical and effective, and they
are an easily scalable option when adding new communication nodes [39]. The geographical location
and type of crop determine the appropriate climatic conditions for greenhouses, hence contributing
to rapid growth and without the presence of pests that cause disease. For example, farmers in the
Andean region of Ecuador face the problem of frost, which occurs on nights when the air temperature
near the surface of the ground decreases to 0 ◦C or lower, for a time greater than four hours, causing
partial or total destruction of the crops [40]. Recent research in the field of precision agriculture has
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shown that the use of information and communication technologies optimizes the crop monitoring
and its automation.

During the last years, WSNs have represented one of the most suitable and widely used options
for this purpose. The remarkable evolution of WSNs has allowed the implementation of new systems
for sensing, processing, and data communication from remote locations, in real-time variables such as
air temperature, air relative humidity, luminosity, or wind speed. A significant amount of scientific
literature has focused on greenhouse monitoring systems, and Table 1 summarizes some studies in
this area, showing that ZigBee is the technology used in most research cases, while WiFi and LORA
are sparsely applied. Most jobs use ZigBee wireless technology in the 2.4 GHz band, and focus on the
hardware and software development of network nodes, but there are few networks configured in mesh
topology. In addition, all the reported works consider air temperature and air relative humidity as
environmental conditions for the productivity of crops in greenhouses. The literature review concludes
that there is little basic research analyzing the behavior of WSN networks in different topologies,
and that WiFi and LORA technologies are scarcely applied.

Table 1. Summary of related work for WSNs in agriculture.

Geographical Location,
Case Study, and
Cultivation Area

Monitored
Variables

Communication
Technology Network Topology Store and

Visualization Data Objective

Iwata-Center Japan
Tomato greenhouse

(not specified area) [13]

Air temperature
Luminosity

Air relative humidity

Wireless
ZigBee 2.4 GHz
and 400 MHz

Star
(3 sensor nodes) Not specified

Comparative study of
quality wireless

communication in
400 MHZ and
2.4 GHz bands

Cotopaxi-Ecuador
Rose greenhouse

(50 m2) [27]

Air temperature
Air relative humidity

CO2
Soil moisture
Luminosity

Wireless
ZigBee 2.4 GHz

Star
(3 sensor nodes) LabVIEWTM

Hardware and software
development

Data analysis of variables

Southern Italy
Tomato greenhouse

(100 m2) [41]

Air temperature
Air relative humidity

Wireless
ZigBee 2.4 GHz

Mesh
(6 sensor nodes) LabVIEWTM

Hardware and software
development

Data analysis of variables

Chongqing-Center China
Vegetables greenhouse

(424.4 m2) [37]

Air temperature
Luminosity

Air relative humidity
CO2

Wired
Modbus

Bus
(1 master—1 slave) C&S System

Hardware and software
development

Data analysis of variables

Hubei-North China
Vegetables greenhouse

(100 m2) [42]

Air temperature
Luminosity

Air relative humidity

Wireless
ZigBee 2.4 GHz

Star
(20 sensor nodes) Mobile app

Hardware and software
development

Data analysis of variables

Narpio-Western Finland
Vegetables greenhouse

(1440 m2) [43]

Air temperature
Luminosity

Air relative humidity
CO2

Solar irradiance

Wireless
ZigBee 2.4 GHz

Star
(4 sensor nodes) Not specified

Hardware and software
development

Data analysis of variables

Perlis-Nortwets Malasia
Mango garden
(520 m2) [44]

Air temperature
Air relative humidity

CO2

Wireless
ZigBee 2.4 GHz

Star
(3 sensor nodes) LabVIEWTM

Hardware and software
development

Data analysis of variables

Mauritius-Africa
Potato field

(5000 m2) [45]

Air temperature
Air relative humidity

Luminosity
Soil pH

Soil moisture

Wireless
WiFi

Tree
(6 sensor nodes) Java

Hardware and software
development

Data analysis of variables

Yingde-North China
Tea plantation

(not specified area) [46]

Air temperature
Soil water content

Air relative humidity

Wired / Wireless
Ethernet and GPRS

Mesh
(20 sensor nodes) Not specified

Hardware and software
development

Data analysis of variables

Yucatán-Southeast Mexico
Habanero pepper garden

(482.4 m2 ) [47]

Air temperature
Air relative humidity

Soil moisture

Wireless
ZigBee 2.4 GHz

Star
(6 sensor nodes) Arduino

Fuzzy logic control of
the irrigation system

Colima-Mexico
Not specified

(Not specified area ) [48]

Air temperature
Air relative humidity

Soil moisture

Wireless
LORA-CBF

Star
(5 sensor nodes) Not specified

Evaluate a new WSN
applied in agriculture
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3. Proposed System for Tomato Greenhouse Monitoring with WSNs

To identify the performance of the ZigBee and WiFi standards for monitoring greenhouses,
three WSNs were implemented. The number of network nodes, the type of installed sensors, and the
configured topology are shown in the block diagrams of Figure 1. In this section, we provide the system
design and implementation to monitor environmental variables inside the greenhouse. We describe
next the methods and elements used for the analyzed WSNs. First, the suitable ranges of the
variables that influence tomato growth are described, as well as the sensing, packaging, and processing
techniques that were used. Second, the relevant hardware features and configuration parameters of the
ZigBee, DigiMesh, and WiFi networks are described. Third, the design of the HMI and web application
for variables visualization are explained. Finally, the physical characteristics of the greenhouses,
the location of the elements of the networks, and the startup of the monitoring system are presented.

(a)

(b)

(c)

Figure 1. Schemes of the sensors and network topology of the studied WSNs: (a) ZigBee; (b) DigiMesh;
and (c) WiFi.
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3.1. Data Acquisition and Processing

The environmental variables to be monitored were identified in the early phase of data acquisition,
through the review of the available scientific literature, and also according to the information supplied
by local farmers to define the suitable climatic conditions for efficient tomato growth. As a result
of this survey, we concluded that the variables shown in Table 2 are the most influential in the crop
evolution [4,49–51]. The appropriate ranges were defined for each variable, as well as the possible
negative effects that affect the crop when the actual values differ considerably from the suggested.
Since the greenhouses under study are geographically located in an area with frequent and considerable
winds (altitude about 2700 m), we included the wind speed and direction, because they are related to
the air relative humidity, and hence to the greenhouse ventilation [52].

The sensors were selected based on the variables and measuring ranges presented in Table 2,
and relevant technical criteria such as low power consumption, compatibility with processing cards,
and linear response curve where achieved. Table 3 summarizes the main technical specifications of the
sensors used for each variable.

Table 2. Compilation of the required climatic conditions for growing tomatoes.

Variable Normal Ranges Level Effect

Air temperature Day (20–25 ◦C)
Night (15–18 ◦C)

Higher
It affects fruiting (fall flowers, limitation on the mincemeat) (>30 ◦C),
and bad fertilization of fruit and therefore evil fruit filling

Less Short blade syndrome and fertilization problems (<10 ◦C)

Air relative humidity 50 y 60 %

Higher
Fruit cracking, difficulty fertilization, reduces the
absorption of nutrients, and poor fruit set

Less
Securing the pollen to the stigma of the flower, water stress,
stomatal closure, and reductions photosynthesis

Soil moisture 50%
High

Accelerated growth in plants, slows ripening of fruits,
and increases the relative humidity

Low Fruit cracking, and water stress

Solar radiation 0.85 MJ/m2 Excess Burnt fruit and plants

Decrease Lost productivity

Luminosity 8–16 h
Higher Higher crop biomass, and increased density of plants

Less Fall Flower, insufficient pollination, and fruit size smaller

CO2 500–2000 ppm
High Best plant development, and increased productivity

Low Photorespiration

Table 3. Technical features of the used sensors.

Variable Sensor Model Range of measuring Output signal Power consumption

Carbon dioxide Solid electrolyte TGS4161 350–10,000 ppm Linear 5 mA
Wind direction Wind vane WS-3000 16 positions Discrete <300 µA

Air relative humidity Capacitor polymer 808H5V5 0–100% RH Linear 0.38 mA
Luminosity Photoresist LDR 0–130,000 lux Exponential 0 µA

Solar radiation Apogee quantum SQ-110 410–655 nm Pulses 0 µA
UV radiation Photodiode SU-100 250–400 nm Sinusoidal 0 µA

Air temperature Thermistor MCP9700A −40 ◦C to +125 ◦C Linear 6 µA
Wind speed Anemometer WS-3000 0–240 Km/h Digital <400 mA

The acquired measurements were processed through sensor nodes, whose structure is shown
in Figure 2. They consisted of an agricultural or gas data acquisition card depending on the type of
connected sensors, a data processing card (known as Waspmote), an omnidirectional antenna, a battery
of 10 amperes per hour of load capacity, and a (ZigBee, DigiMesh, or WiFi) wireless communication
module, according to the network type.
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Figure 2. Structure and view of the sensor nodes.

Data acquisition was performed using the agriculture PRO 2.0 card for measuring with sensors
of air temperature, solar radiation, luminosity, air relative humidity, wind speed, wind direction,
and UV radiation. Gases PRO 2.0 card was also used for the CO2 sensor. The energy consumption
was approximately 106 micro amps. These cards were mounted on the processing card for recognition
and configuration.

The Waspmote processing card was selected for the low power consumption, which is below seven
micro amps, and also the modular architecture facilitated the integration of sensors and communication
modules of different technologies and manufacturers. The data acquired by the sensors were stored in
the internal memory of the Waspmote card in floating point format. The data acquired in the ZigBee
and DigiMesh networks were multiplied by a constant to transform them into integer values of five
positions, because this is a valid format for the communication modules. In the case of WiFi networks,
this procedure was not required, since the transmitted frames accept both data types.

The structure of the packages transferred from the Waspmote card to the communication modules
of each network is shown in Figure 3. In the ZigBee and DigiMesh networks, the transfer was via
UART serial controller, and it was necessary to create packages with the ID field using string format
representing the node identifier. The next field is integer type and it corresponds to the measurements
of each sensor. The last field is string type and it contains the name of each variable. For the WiFi
network, the transfer was in frame format using the HTTP protocol. In each frame, it was specified the
send start identifier, the destination IP address, the node identifier, the data of each sensor, and the
send-end identifier. Both packaging techniques facilitated the reception and display of data processes.

Figure 3. Structure of data transfer packages: (a) ZigBee and DigiMesh networks; and (b) WiFi Network.

3.2. Transmission and Reception of Packages for ZigBee and DigiMesh Networks

The XBEE communication modules were chosen to send and receive packages, since their cost
and energy consumption are low. The ZigBee network was implemented with XBEE ZB S2 PRO
modules, whose firmware allows creating networks with tree topology. In the case of the DigiMesh
network, the XBEE ZB S1 PRO modules were used, because the firmware facilitates the configuration
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of networks with mesh topology. The XBEE modules were configured with the X-CTU software,
which provides a friendly graphical user interface. For the communication between nodes to be
successful, the XBEE modules were configured with the consideration that all modules operate in the
same network group PAN ID, channel CH, and transmission BD. The parameters that were configured
in each module are shown in Table 4. The source and destination addresses were assigned based on the
serial number printed on the modules. Since the type of communication was broadcast, the destination
address was the same on all nodes and corresponded to DH = 13A200 and DL = FFFF. The transmission
speeds BD were configured to different values for analysis of energy consumption and according to
the operating rates of the Waspmote modules. Each network was configured in a different channel CH
to avoid electromagnetic interference affecting the signals.

Table 4. Configuration parameters for the communication modules.

Module Node MAC Destination PAN ID Channel Baud Rate

XBee ZB Pro S2

Node 1 0013A20040B5B798

DL: 13A200
DH: FFFF

4321 18

9600
19,200
57,600

Node 2 0013A20040B5B7C2
Node 3 0013A20040B5B794

Coordinator 0013A20040B5B339

DigiMesh Xbee Zb Pro S1

Node 1 0013A20040BDA364

1234 C
Node 2 0013A20040BDA365
Node 3 0013A20040BBB3D7
Node 4 0013A20040BDA364

Coordinator 0013A20040BBB3FA

The programming code of the sensor nodes was developed in the ID PRO software of LibeliumTM.
The logic that was used in the sensor nodes of both networks was similar, except for the routing process
for sending data. Appendix A shows some technical details of the flowcharts of the programming of the
sensor and coordinator nodes for the ZigBee and DigiMesh networks. The programming flowchart that
was created for the sensor nodes of the ZigBee network is shown in Figure A1 (Appendix A). The flow
diagram that was implemented for the DigiMesh network is shown in Figure A2 (Appendix A).
The coordinating node structure shown in Figure 4 was implemented for the ZigBee and DigiMesh
networks, and they differed only in the type of XBEE wireless communication module that they
incorporated. This modules were also configured with the X-CTU software and they used the same
parameters as in Table 3. The programming of the coordinating nodes of the ZigBee and DigiMesh
networks were the same, and the flow diagram is shown in Figure A3 (Appendix A).

Figure 4. Structure of the coordinator nodes of the ZigBee and DigiMesh networks.

3.3. Transmission and Reception of Packages for WiFi Network

The transmission and reception of WiFi network packages was designed using a client–server
architecture, where the sensor nodes are the clients and the coordinating node is the server.
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The packages of the sensor nodes of the WiFi network were transmitted to the coordinator through the
RN-XV wireless communication module. The module was selected for its low power consumption,
and it is also ideal for migrating from an 802.15.4 architecture network to TCP/IP. If a specific
application is configured with XBee modules, and if it needs to be adapted to a WiFi network, then we
simply need to configure the communication module and replace it on the Waspmote card, without
changing the hardware architecture. The coordinator node corresponds to the Libelium MeshliumTM

router, which is compatible with wireless technologies such as ZigBee and Bluetooth. It has several
programming environments that are based on Linux, and it stores the data directly in a MySQL
database. The relevant parameters configured in the sensor and the coordinator nodes are identifier
network (SSID), protocol, password, IP address, communication port, and type of security. For the
configuration of the RN-XV modules, we used Arduino Mega 2560 and Xbee Shield. In this process,
the microprocessor of the Arduino card was disabled by placing a bridge between GND and the board
reset. The MeshliumTM router was configured in the Manager System software. The access to the
router is via the RJ 45 network port and is accessed with the IP address designated by default 10.10.10.1.
The received data are automatically stored in a database with the start up time, and node identifier.
This device also allows identifying all the clients (sensor nodes) that are connected, which facilitates
the network management. Sending and receiving packages on the WiFi network is simple compared
to the other two networks, since its configuration is similar to that of a WiFi network for domestic use.
The potential offered by the router facilitates the data reception and storage.

3.4. HMI Design

Graphical interface was developed in LabVIEWTM, which is a well known platform and
development environment of virtual instruments (VI). The programming language was type G
(Graphic/visual) for monitoring and control applications. LabVIEWTM enables a convenient connection
to the Internet, which provides an ideal resource for real-time data acquisition and monitoring [53].
The developed graphical interface was similar for the three networks, with back-end differences in the
communication link, its coordinator nodes, and in the software, as well as the data acquisition method.

DigiMesh and ZigBee networks transfer data to LabVIEWTM via COM (USB); hence, they were
stored in byte format in a software created table. The table was initialized for stored data, and the
transmission speed was set at different values for the analysis of energy consumption. WiFi network
was wirelessly linked to the computer, and the information was stored in the database that is
automatically created in the MeshliumTM router. The access to data was done by creating a link
between MeshliumTM and LabVIEWTM. The MYSQL ODBC driver allowed the access to the database
from any Windows application. The database was read and stored in LabVIEWTM through toolkits
for creating, opening, and closing the communication channel, as well as for calling and storing data
tables. Once data were available in LabVIEWTM, the stages of design of the interface considered for
the three networks corresponded to data separation, error detection, alarm generation, and variables
monitoring. The data were separated by identifiers A, B, C, and D, for nodes 1, 2, 3, and 4, respectively,
with LabVIEWTM case structures. The data were subsequently converted into floating numbers
dividing them by a constant of 10,100 or 1000. Finally, data were entered and stored in a table with
date, sensor node, and magnitude. The letters indicated that data were not received from the sensor
node that produced the error. The design of alarms was done with normal ranges for tomato growing
described in Table 2. The data variables displayed in the HMI were designed for each network.
The program was able to indicate the HMI of the three networks according to user manipulation.
Figure 5 shows some parts of the monitoring screen, such as greenhouse variables, battery condition,
alarms, data rate, and table. The developed interface was user-friendly and allowed the user to know
in real time and with accuracy the values of each variable, and to apply timely corrective actions in
the greenhouse.
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Figure 5. Monitoring of greenhouse variables, battery condition, alarms, data rate, and table for the
WiFi network.

3.5. Mobile Application Development

The objective of the mobile application was that the environmental measures acquired by the
three WSNs could be accessible from any geographical location by means of smartphones or tablets.
The variables may be viewed in real time (trend), and through tables or graphs of a determined time
interval (historical). In recent years, the most popular platforms in the mobile devices market are
Android, Windows Phone and iOS, whose features were evaluated to select the most suitable for this
application [54]. The comparative analysis of these platforms was oriented to aspects such as software
architecture, accessibility to Web application programming environments, platform capabilities, and
limitations. According to [55], Android is the platform with the best features to develop apps for
mobile devices. On this basis, our Mobile Application was designed to be accessible from a device
with Android Version 4 or higher operating system.

Figure 6 shows the main phases of the mobile application. The data acquired by the three networks
were previously stored in LabVIEWTM, and subsequently transferred to the Apache Web Server
through the MySQL Connector/ODBC driver [56]. The data in the web server were distributed in
tables using the multi-platform XAMPP software [57]. For each node of the three WSNs, we configured
a table with floating data type for the environmental measurements and string for the dates. If a client
(smartphone or tablet) requests the server, a PHP file is immediately executed, which contains the
script code to manage the connection and to access to the MYSQL databases [58]. Every query type
(trend or historical) was associated to a PHP script.

The web application was designed in the Eclipse Integrated Development Environment (IDE),
currently considered the most popular framework among programmers. In addition, we used the
software development kit (SDK) for the Android environment. The development of the application
was divided into two parts. The first one was the design of the user interface through the configuration
of graphical layouts in an XML script. The name, color, size, location and functionality of the interface
buttons were assigned in this file. The second part was the programming of the buttons using JAVA to
establish the communication between them, as well as the data visualization in real time or historical
reports. Figure A4 (Appendix A) shows the flowchart of the programming logic developed for the
mobile application.
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Figure 6. Mobile application development.

3.6. Startup

The experiments took place in Salcedo town, located at coordinates −1.018373, −78.583888 in
Ecuador. The agrarian area that corresponds to this study was 100 × 150 m and it is usually dedicated
to the tomato cultivation. Our WSNs were implemented in two greenhouses, here denoted as A
and B, with slightly different characteristics shown in Table 5. DigiMesh network was implemented
in greenhouse A, and ZigBee and WiFi networks in greenhouse B. Sensor Nodes 1, 2, and 3 were
installed at the ends of the greenhouses for variables air temperature, air relative humidity, luminosity,
and radiation. The gas sensor in Node 4 was installed in the center to register the highest concentration
of CO2 overnight, and the coordinator node was located at 30 m from the greenhouse. Figure 7
depicts the distribution networks and the location of the sensors and coordinator nodes, and Figure 8
shows the scenario where the networks were deployed and the location of some sensor nodes in the
two greenhouses.

Table 5. Characteristics of tomato greenhouses.

Feature Greenhouse A Greenhouse B

Type Sawtooth Curve
Dimensions Height: 5 m, length 80 m, width 50 m. Height 5 m, length 70 m, width 50 m.

Phenological state [59] Flowering Harvest
Crop Bulky Less bulky

Once the networks were implemented, the startup of the LabVIEWTM graphical application was
executed. Data were collected during three consecutive months, and the user was able to consult the
real-time graphs of the variables of each node individually when needed. These databases were also
used to analyze the power consumption of the three networks (in terms of different data transmission
rates), the operation mode of wireless communication modules, and the distances among sensors
and nodes of each network coordinators. Note that the designed system can be readily scaled to
larger areas.
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Figure 7. Map of WSNs distribution and node locations.

(a) (b)

(c) (d)

Figure 8. WSNs test scenario. (a) Node 4 of WiFi network; (b) Node 2 of WiFi network; (c) Node 1 of
DigiMesh network; (d) Node 1 of ZigBee network.
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4. Results

According to preliminary experience during the configuration and implementation process of
the three WSNs, we considered that some of relevant parameters for the performance analysis of each
network are the complexity of configuration of a node to an eventual network expansion, and the
data transmission speed. In addition, the dynamics of the energy consumption of each node and
of the monitored variables were studied with detail, but their analysis is further discussed in the
companion papers [33,34].

4.1. Node Configuration Complexity in the Case of Network Scalability

Based on the structure of each network, it was determined that the design of the DigiMesh
network was the most complex, since the mesh topology was configured by redundant links between
sensor nodes, and their programming included a more lines of code. Considering that this network
does not include the option of link auto-configuration (ad-hoc), the addition of an element in the
network would require extensive programming not only in the new node, but also in the existing ones.
In the case of the ZigBee network that was configured with the star topology, redundancy does not
exist, so fewer lines of code are used and their configuration complexity is reduced. However, if the link
between the sensor node and its coordinator fails, the data would be permanently lost. The difficulty
to add nodes would be intermediate, since the programming and configuration is executed in the new
node and in the coordinator, but the rest of elements of the network are not modified.

The WiFi network was configured as Access Point (AP) topology, so that the clients (sensor nodes)
were linked only to the MeshliumTM router, and they did not communicate with each other.
The difficulty in programming the sensor nodes was lower compared to the other networks, since the
data transfer uses the IP protocol, the frame of each transmission is created automatically, and it
is not necessary to pack the data with the technique used in the ZigBee and DigiMesh networks.
The configuration of the coordinating node was simple, since being a WiFi router, and the parameters
were set as in the creation of any domestic use network. The data received in the router were
automatically stored in a database, through the software that includes the device, a feature that
facilitates data processing. In the other two networks, data acquisition is more complex because
unpacking techniques were initially required, and then the database was created with additional
software. The degree of complexity when adding a new element to the network would be relatively
low, since the configuration of the existing nodes does not change.

4.2. Data Transmission Speed

The information transfer speed of each sensor node was an important parameter in the analysis
of the performance of the three networks, since any communication system it is required to transmit as
much information in a short time, without any possibility of data loss and with minimal error rate.
The transmission rate was determined from the bit rate which is defined as the number of bits received
by the coordinating node in a time interval. The binary speed is a parameter that varies according
to the type of communication protocol, the number of nodes in the network, and the type of sensors
installed in each of them. This parameter was obtained by programming LabVIEWTM.

The number of bits received by the coordinators of the DigiMesh and ZigBee networks was
updated in an average of three seconds. However, in the test phase, we identified that this time
increased between 10 s and 20 s for the DigiMesh network when one or several sensor nodes were
inactive, and therefore the bit rate was reduced. This effect was caused by the redundant links
configured on this network. The update time between each packet received in the WiFi was around 8 s,
because as explained in the previous sections, the coordinator node is a MeshliumTM router, and the
preliminary data processing was carried out in the device software and later transferred to LabVIEWTM.
The upload time between the receipts of every data is larger in the WiFi network, because, as explained,
the coordinating node of this network is a MeshliumTM device, the same that before establishing
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communication with LabVIEWTM performs the data preprocessing, hereby generating a higher update
time between each reading.

The transmission rate ST of the three networks was calculated in LabVIEWTM through the quotient
between the total bit rate BT and the update time of each measure TM. This parameter was analyzed
with all the active nodes and with some of them out of service. The results of ST for the three networks
are shown in Table 6. These values revealed that the failure of one or more nodes of the ZigBee and
WiFi networks does not influence the transmission speed, since its topology does not include the
possibility of linking between sensor nodes. In the Digimesh network with mesh topology, the data
transmission rate decreases as the number of inactive nodes increases, due to the redundant links that
were configured in each network element.

From the tests performed at different heights of the sensor nodes, we conclude that this parameter
affects the transmission speed. The results are observed in Table 7. For heights up to one meter, the
bit rate of the WiFi and ZigBee networks decreased compared to the results shown in Table 6. This
is because the height of the tomato crop in some cases exceeded one meter, losing line of sight with
the coordination node, and in these circumstances some data were lost and the bit rate decreased.
Redundant links from the DigiMesh network decreased the probability of data loss and the bit rate
remained almost constant.

Table 6. Network transmission speed.

Network Sensor Node Transmission Rate (Bits) BT (Bits) Approximate TM (Seconds) ST (bps)

DigiMesh

Node 1 318

974
3 (All active nodes)
10 (1 Faulty node)
20 (2 Faulty nodes)

324.667 (All active nodes)
97.4 (Faulty node)

48.7 (2 Faulty nodes)

Node 2 278
Node 3 318
Node 4 60

ZigBee
Node 1 334

970 3 (All cases) 323.333 (All cases)Node 2 318
Node 3 318

WiFi

Node 1 318

696 8 (All cases) 87 (All cases)Node 2 318
Node 3 318
Node 4 60

Table 7. Bit rate vs. height sensor nodes.

Height (m)
BT (Bits)

DigiMesh ZigBee WiFi

0 974 625 984
0.5 974 625 984
1 974 625 984

1.5 974 970 1044
1.8 974 970 1044

5. Discussion and Conclusions

This paper scrutinizes the design and implementation of three WSNs for the monitoring of
environmental variables of interest in tomato greenhouses. Two networks used ZigBee technology,
and they had different topologies (star and mesh), whereas, in the third, network WiFi technology with
access point topology was used. The sensor nodes were classified according to the acquisition card
used. Agricultural nodes were equipped with transducers of air temperature, air relative humidity,
wind direction and speed, solar and UV radiation, and luminosity, while the gas nodes included a
CO2 concentration sensor. The elements that integrated each node were configured in a low level
programming language, except for the coordinator of the WiFi network that corresponded to the
MeshliumTM router, whose network parameters were set in the device software. The coordinating
nodes collected and sent measurements of the variables to a database configured on the system
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computer. The data were visualized with HMI designed in LabVIEWTM, and with the mobile
application created for smartphones with Android operating system. The networks were installed
and put into operation in two greenhouses, and they were tested over three months. Their behavior
was studied during this time interval by considering aspects such as scalability, changes of data
transmission speed, error rate, and relation between the bit rate and the location node. In addition,
this study has been the basis for two separate works, which describe in detail the dynamics of
energy consumption measurements [33], and the dynamics of monitored environmental variables [34],
acquired in each node of the three networks.

From the experience gained during the design, implementation, and startup of each network,
we can conclude that the DigiMesh network is complex to redesign, because, to add a new sensor
node, it is necessary to modify the programming of all the network elements. In the case of ZigBee
network, the complexity is average, because it involves the configuration of the new nodes and of the
coordinator. The difficulty of scalability of WiFi network is minimal, as the addition of new clients
(sensor nodes) is performed by configuring the network identifier (SSID), and the parameters of the
coordinator node do not need to be modified.

Regarding the bit rate, we obtained that it was greater for the WiFi network due to the type
of IP communication protocol used by the coordinating node and the preliminary phase of data
processing that is executed in the MeshliumTM device software, and these factors increase the time
update between received packets. In the event that a node in the DigiMesh network is out of service,
the bit rate will decrease considerably, because redundant links will be required and the data refresh
time in the coordinator will be higher. This feature minimizes the possibility of data loss, but it also
slows down the transmission rate.

Finally, we have shown that the location of the sensor nodes and the height of the crops strongly
influence the data transmission rate, especially if the line of sight with the coordinator has been
lost. The sensor nodes of the three networks were located at a lower height than the tomato crops,
and we checked that the bit rate decreases considerably in networks with star topology. In the
network with mesh topology, redundant links avoid data loss, so that the bit rate is not significantly
affected. Our analysis of the different communication configurations allows determining the optimal
parameters for the deployment of these types of networks within greenhouses. This research can be
further extended with the development of a Machine learning system that allows to characterize and
predict the behavior of the environmental variables registered by the WSNs. Specifically, in the future,
we plan to apply our study to cooperate in research related to frost prediction in scenarios of the
Andean region dedicated to large-scale cultivation, since this is a climatic factor that is unpredictable
and it represents a major threat to crops.
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Appendix A

In this Appendix, we show the flow diagrams applied to nodes for the ZigBee and DigiMesh
networks (Figures A1, A2, A3), and the mobile application (Figure A4). The programming logic of the
WiFi network nodes is not shown, because the sensor node was programmed very similarly to the
ZigBee network, and the coordinating node (MeshliumTM router) was configured using the device
own interface.

The data from the sensor nodes were sent to the coordinating node only if the node identifier
entry corresponded to one of the letters defined in the package creation. In the case of no coincidences,
a communication error counter was implemented for the quantification of the transmission error rate.
The disadvantage of the topology of this network was that, if one of the nodes loses communication
with the coordinator, then it would be permanently out of service.

The mesh topology of this network was implemented through redundant links, where each
sensor node can communicate directly with the coordinator or through another sensor node.
The programming that was developed in the sensor nodes of this network is more complex; however,
the advantage was the low probability that some node was out of service, thus reducing the
transmission error rate.

The programming of the sensor nodes of both networks included two entries of type string as
indicators of important events in the network. The S and F indicators are characters sent from the
coordinator to the sensor nodes. The S character represented the acknowledgment of receipt of the
packet and the authorization of emptying the data bus. The F character symbolized the closing of the
communication and the deactivation of the sensor nodes.

The sensor nodes and coordinator nodes were linked by the question–response sequence.
The coordinator sends a data request to each sensor node, which in turn transfers the packet. If the data
are successfully received in the set timeout, then the coordinator sends a successful link confirmation
through the S character, and it sequentially erases the bus and makes a new data request. Otherwise,
the rate error counter is incremented. Packet transmission ends when the coordinator sends the F
character to each sensor node.

Figure A1. Flowchart of logic programming sensor nodes of the ZigBee network.
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The programming of the mobile application was conditioned by the appropriate configuration of
the PHP (request for connection to the Web server), and using XML (design and functionality of the
user interface buttons) files, as well as the proper databases routing of every network hosted on the
server. The programming sequence was executed according to the type of request, which may be either
trend (data in a single time slot) or historical (data from a time slot); in both cases, it was necessary to
convert the JSON data (typical database format) to string to later be represented as a single character
(real time data), table, or graphic, as required in each case.

Figure A2. Flowchart of logic programming sensor nodes of the DigiMesh network.
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Figure A3. Flowchart of logic programming coordinator nodes of the of ZigBee and DigiMesh networks.
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Figure A4. Flowchart of logic programming mobile application.
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