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Abstract: Accommodating massive connectivity for Internet of Things (IoT) applications is considered
an important goal of future 5G cellular systems. Nonorthogonal multiple access (NOMA),
which enables a group of mobile users to simultaneously share the same spectrum channel for
transmission, provides an efficient approach to achieve the goals of spectrum-efficient data delivery.
In this paper, we consider an uplink transmission in a sensor network in which a group of smart
terminals (e.g., sensors) use NOMA to send their collected data to an access point. We aim to
minimize the total radio resource consumption cost, including the cost for the channel usage and
the cost for all senors’ energy consumption to allow the sensors to complete their data delivery
requirements. Specifically, we formulate a joint optimization of the decoding-order, transmit-power
and time allocations to study this problem and propose an efficient algorithm to find the optimal
solution. Numerical results are provided to validate our proposed algorithm and the performance
advantage of our proposed joint optimization for the uplink data collection via NOMA transmission.

Keywords: nonorthogonal multiple access; radio resource management; uplink data collection;
optimization

1. Introduction

Accommodating massive connectivity for machine-type communications is considered one of
the crucial goals of future fifth generation (5G) cellular systems. Nonorthogonal multiple access
(NOMA), which enables a group of smart terminals (STs) (e.g., the Internet of Things devices) to share
the same frequency channel simultaneously and further utilizes successive interference cancellation
(SIC) to reduce the co-channel interference, has provided a promising solution towards achieving this
important goal [1–4]. Compared with conventional orthogonal multiple access (OMA), which allocates
orthogonal resource blocks to smart terminals and thus suffers from the limited number of available
resource blocks, NOMA has been envisioned to facilitate massive connectivity for a large number
of STs’ data deliveries in a spectrum-efficient manner. Meanwhile, NOMA also plays a vital role in
enabling ultra-high throughput and low-latency transmission in 5G systems.

However, due to allowing co-channel interference, reaping the benefits of NOMA necessitates
careful resource management which has thus motivated significant research effort in recent years.
Many studies have been devoted to investigating the power allocation for NOMA. In reference [5],
Zhu et al. investigated the optimal power allocation with a given channel assignment under
different performance criteria (e.g., the max-min fairness and the weighted sum rate maximization).
In reference [6], a two-user power allocation scheme was proposed to maximize the sum rate within
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Quality of Service (QoS) constraints. Driven by the growing demand for green communication [7–10],
in reference [11], Zhang et al. proposed a power allocation scheme for maximizing the energy efficiency
with QoS constraints for users. In addition to power allocation alone, many studies have investigated
joint power allocation and channel allocation for NOMA [12–14]. For instance, in reference [12],
Lei et al. proposed joint optimization of channel allocation and power allocation for downlink NOMA
for maximizing the total throughput. In reference [13], Fang et al. jointly optimized the subchannel
assignment and power allocation to maximize the energy efficiency for the downlink NOMA network.
In reference [14], joint sub-channel allocation, power allocation and user scheduling for downlink
NOMA throughput maximization was proposed.

Meanwhile, exploiting NOMA for different paradigms and applications has also attracted
lots of interest [15–19]. For instance, in [15], Elbamby et al. studied resource allocation for the
in-band full duplex-enabled NOMA networks. In reference [16], Sun et al. studied the MIMO
NOMA system to improve energy efficiency. In reference [17], Wu et al. studied the optimal power
allocation and traffic scheduling for relay-assisted networks via NOMA transmission. In reference [18],
NOMA-enabled mobile edge computing was proposed for 5G systems. In reference [19],
energy-efficient NOMA-enabled traffic offloading via dual-connectivity was proposed. Recently,
there has been a growing interest in exploiting NOMA for IoT applications [20–22]. For instance,
in reference [20], Shirvanimoghaddam et al. discussed the exploitation of a massive NOMA technique
as a solution to support a massive number of IoT devices in cellular networks and identified its
challenges. In reference [21], by exploiting the NOMA transmission, Mostafa et al. proposed a joint
subcarrier and transmission power allocation problem to maximize the number of served IoT devices
while satisfying the quality of service and transmission power requirements.

In this work, we consider that a group of smart terminals (e.g., sensors) are monitoring the
environment and using NOMA to send their collected data to an access point (AP) simultaneously
(e.g., the real-time data collection from smart meters in the emerging smart grids [23]). Our detailed
contributions can be summarized as follows:

• Taking into account the different data delivery requirements of the smart terminals (STs) and
their respective channel power gains to the AP, we formulate joint optimization of the SIC
decoding-order for the channel-usage time and power allocations for the STs (according to [2,3]
and Chapter 6 in [24], an arbitrary SIC decoding-order is viable for the uplink NOMA transmission.
However, different SIC decoding-orders will yield different throughputs and power consumption
levels for different STs). Our objective is to minimize the total cost for resource consumption,
which includes the channel usage and the total energy consumption of all STs, for finishing all STs’
data delivery requirements.

• Despite the non-convexity of the formulated joint optimization, we propose an efficient algorithm
to compute the optimal solution. Specifically, we exploit the layered structure of the problem
and firstly solve the optimal time and power allocation under a given SIC decoding-order.
In particular, after executing a series of equivalent transformations, we identify the convexity of
the subproblem regarding the joint time and power allocations and thus find the corresponding
optimal solution efficiently. By exploiting the optimal time and power allocations under each
given SIC decoding-order, we further propose an efficient iterative algorithm to find the optimal
SIC decoding-order.

• Extensive numerical evaluations are presented to verify the effectiveness of our proposed
algorithms. Meanwhile, we also present the results of a validation of the advantages of
our proposed optimal NOMA-enabled data collection scheme in comparison with using the
conventional orthogonal multiple access scheme.

The reminder of this paper is organized as follows. Section 2 illustrates the system model and
problem formulation. In Section 3, we propose an algorithm to find the optimal time and power
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allocations under a given decoding-order. In Section 4, we further propose an algorithm to find the
optimal decoding-order. Finally, we conclude this work in Section 5.

2. System Model and Problem Formulation

2.1. System Model

As shown in Figure 1, we consider the scenario where a group of STs I = {1, 2, ..., I} were
transmitted to an AP. Each ST, i, had a data volume of sreq

i of the collected data to be transmitted to the
AP. We consider that the STs would form a NOMA-cluster to send the data volumes, {sreq

i }i∈I , to the
AP over the same frequency channel simultaneously.

ST 1 with ST I with

Access Point
(AP)

ST j with

Uplink: STs use NOMA to send the 
             data volumes to the AP

transmission
duration t

req
1s

req
i
s

req
j
s req

I
sST i with

Figure 1. Illustration of the system model. A group of I STs use NOMA to send data to the AP
simultaneously. Each ST i has a data volume of sreq

i to be delivered. The transmission duration of the
STs’ simultaneous NOMA transmissions is denoted by t.

According to the multiuser capacity analysis in Chapter 6 of [24], for the uplink NOMA,
an arbitrary decoding order could be viable. In other words, given the group of STs I , I! different viable
decoding-orders exist (and different decoding-orders will yield different throughputs for the STs).
Figure 2 illustrates an example of I = {1, 2, 3} STs.

3-STs

1={ST 1, ST 2, ST 3} 

2 ={ST 1, ST 3, ST 2} 

3 ={ST 2, ST 1, ST 3} 

4 ={ST 2, ST 3, ST 1} 

5 ={ST 3, ST 1, ST 2} 

6 ={ST 3, ST 2, ST 1} 

Figure 2. An illustration of different decoding-orders for an example of I = {1, 2, 3} STs.
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2.2. Problem Formulation under a Given Decoding-Order

To quantify each ST’s uplink throughput, we firstly consider a given decoding-order, πm,
where m = 1, 2, ..., I!. Specifically, πm(i) means that the decoding-order of ST i under the m-th
decoding-order, πm. Given the decoding-order, πm, ST i’s throughput to AP can be given by

Rm
i = W log2

(
1 +

pm
i giA

∑j∈I ,πm(j)<πm(i) pm
j gjA + Wn0

)
, ∀i ∈ I , (1)

where W denotes the uplink channel bandwidth, and n0 denotes the spectral power density of
the background noise. {pm

i }i∈I denotes the profile of STs’ transmit-powers under the given
decoding-ordering, m, and {Rm

i }i∈I denotes the corresponding throughput of the STs. The parameter
giA denotes the channel power gain from ST i to the AP. Similar to references [11–14], we assume a
relatively static scenario in which the uplink channel power gain from each ST to the AP does not
change within the scheduling duration.

For the sake of easy presentation, given the m-th decoding-order πm, we introduce γm
i as the

received signal to noise plus interference ratio (SINR) for ST i’s uplink NOMA transmission to the AP:

γm
i =

pm
i giA

∑j∈I ,πm(j)<πm(i) pm
j gjA + Wn0

, ∀i ∈ I . (2)

As shown in Equation (2), each ST i’s received SINR not only depends on its own transmit-power,
pm

i , but also depends on the transmit-powers of those STs which are decoded before ST i in the m-th
decoding-order, πm. Thus, let us treat all STs’ {γm

i }i∈I (under the m-th decoding-order) as the auxiliary
variables which depend on the STs’ transmit-powers. Then, based on Equation (2), we express each ST
i’s minimum transmit-power to reach γm

i as follows:

pmin,m
i ({γm

j }j∈I ,πm(j)≤πm(i)) =
Wn0

giA
γm

i ∏
j∈I ,πm(j)<πm(i)

(1 + γm
j ), ∀i ∈ I . (3)

Notice that in the uplink NOMA, all STs send their data to the AP simultaneously. Thus, we use
tm to denote the transmission duration of the STs to send the data volumes, {sreq

i }i∈I , to the AP under
the m-th decoding-ordering πm. Correspondingly, we obtain

Rm
i =

sreq
i
tm = W log2 (1 + γm

i ) , ∀i ∈ I ,

which thus led to

γm
i = 2

s
req
i
tm

1
W − 1, ∀i ∈ I . (4)

By substituting (4) into (3), we obtain each ST i’s minimum transmit-power, i.e.,

pmin,m
i (tm) =

Wn0

giA

(
2

s
req
i
tm

1
W − 1

)
2

1
tm

1
W ∑I

j=1,πm(j)<πm(i) sreq
j , ∀i ∈ I , (5)

when using the m-th decoding-order, πm.
Under the given m-th decoding-order, πm, for SIC, we formulate the following optimization

problem that aims to minimize the total cost of radio resource consumption when the group of STs I
send their data to the AP (in Problem (P1-m), m means the m-th decoding-order):
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(P1-m): Om = min αtm + βtm
I

∑
i=1

pmin,m
i (tm)

subject to: tm pmin,m
i (tm) ≤ Emax

i , ∀i ∈ I , (6)

0 ≤ tm ≤ Tmax (7)

variables: tm.

In the objective function of Problem (P1-m), the expression of αtm + βtm ∑I
i=1 pmin,m

i (tm) denotes
the total cost for resource consumption, which includes the cost for the channel usage duration,
tm (with the marginal cost-coefficient denoted by α) and the cost for all STs’ total energy consumption
given by tm ∑I

i=1 pmin,m
i (tm) (with the marginal cost-coefficient denoted by β). Notice that for each ST

i, the minimum required transmit-power, pmin,m
i (tm), is given by Equation (5) before. Constraint (6)

means that each ST i’s total energy consumption for transmission cannot exceed its maximum energy
budget, denoted by Emax

i . Constraint (7) means that the channel usage duration, tm, cannot exceed the
maximum duration, Tmax. Problem (P1-m) is a typical nonconvex optimization problem [25], and thus,
no general algorithm exists that can efficiently solve Problem (P1-m).

In particular, in Problem (P1-m), we use Om to denote the minimum total cost. Then, to find the
optimal decoding-order among the I! viable orderings for the group of I STs, we only need to solve
the following problem:

(P1-Order): min
m=1,2,...,I!

Om. (8)

A straightforward approach to solve Problem (P1-Order) is to enumerate all I! decoding-orders;
however, this is computationally prohibitive. In Section 4, we propose an efficient algorithm to solve
Problem (P1-Order). As a first step, in the next section, we first provide an efficient algorithm to solve
(P1-m) under the given m-th decoding order. Please notice that in this work, to focus on minimizing
the overall resource consumption cost for finishing delivering STs’ required data volumes, {sreq

i }i∈I ,
we presume that Problem (P1-m) was feasible in this work. This assumption is viable when the
volumes of the STs’ collected data are relatively small. As an important future direction to extend our
work, we will further take into account the special case that Problem (P1-m) is infeasible, and propose
an algorithm to check its feasibility.

3. Proposed Algorithm to Solve Problem (P1-m)

In this section, we propose an efficient algorithm to solve Problem (P1-m), which thus yields the
minimum total cost under the given decoding-order, πm. To efficiently solve this problem, we introduce
a variable-change as

x =
1
tm . (9)

Notice that we do not use the script m in (9) since x is treated as an internal variable which can be
used for an arbitrary decoding-order, πm.

Using (9), we thus express ST i’s minimum required transmit-power as

pmin,m
i (x) =

Wn0

giA

(
2x

s
req
i
W − 1

)
2x 1

W ∑j∈I ,πm(j)<πm(i) sreq
j , ∀i ∈ I , (10)
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and Problem (P1-m) was equivalently transformed into (letter “E” means “equivalent”)

(P1-m-E): min α
1
x
+ β

1
x ∑

i∈I
pmin,m

i (x)

subject to: pmin,m
i (x) ≤ xEmax

i , ∀i ∈ I , (11)

x ≥ 1
Tmax (12)

variables: x.

For the sake of easy presentation, we define an auxiliary function, Hi(x), as

Hi(x) =
Wn0

giA

(
2x

s
req
i
W − 1

)
2x 1

W ∑j∈I ,πm(j)<πm(i) sreq
j , ∀i ∈ I . (13)

Recall that Hi(x) stems from (10).
The key idea in solving Problem (P1-m-E) was to introduce an additional new variable, θ,

which required

α
1
x
+ β

1
x ∑

i∈I
pmin,m

i (x) ≤ θ. (14)

Thus, by using θ, we transform Problem (P1-m-E) into

(P2): min θ

subject to:
θx− α

β
−∑

i∈I
Hi(x) ≥ 0, (15)

Hi(x) ≤ xEmax
i , ∀i ∈ I , (16)

x ≥ max{ 1
Tmax ,

α

θ
}, (17)

variables: θ.

Notice that Problem (P2) corresponds to finding the optimal value of θ (which is denoted by θ∗)
that can meet constraints (15)–(17). The value of θ∗ is the minimum cost of Problem (P1-m-E) under
the m-th decoding-order.

The rationale to solve Problem (P2) (as well as the original Problem (P1-m-E)) and to determine θ∗

is as follows. First of all, let us denote a parameterized subproblem (P2) under a given temporal value
of θ:

(P2-Sub): Vθ = min ∑
i∈I

Hi(x)− θx− α

β

subject to: Hi(x) ≤ xEmax
i , ∀i ∈ I , (18)

x ≥ max{ 1
Tmax ,

α

θ
}, (19)

variables: x.

We use Vθ to denote the optimal objective function value of Problem (P2-Sub). In particular,
if Problem (P2-Sub) output Vθ ≤ 0, then Problem (P2) is feasible under the currently given θ (which
means that θ can be reduced further). On the other hand, if Problem (P2-Sub) output Vθ > 0,
then Problem (P2) is infeasible under the current θ (which means that we need to increase θ). To solve
the original Problem (P2), we need to further find the minimum value of θ (i.e., θ∗) that would be able
to yield the corresponding Vθ ≤ 0, i.e., we need to solve the following problem
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(P2-Top): min θ, subject to: Vθ ≤ 0. (20)

It can be seen from Problem (P2-Sub) that the optimal output, Vθ , decreases in θ due to the
following reasons: (i) the objective function decreases in θ, and (ii) the feasible interval increases in θ.
As a result, we exploit a bisection search to solve Problem (P2-Top) and find the corresponding θ∗.
We present the details of our proposed algorithm in the next subsections.

Recall that we can determine the minimum total cost for resource consumption of Problem
(P1Sub-m) as

Om = θ∗. (21)

under the given decoding-order, πm.
In the next subsection, we focus on proposing an algorithm to solve Problem (P2-Sub) under a

given θ.

3.1. Proposed Subroutine to Solve Problem (P2-Sub)

To solve Problem (P2-Sub) under a given θ, we firstly compute the first-order derivative of Hi(x)
as follows:

H′i (x) =
Wn0

giA

(
2x

s
req
i
W − 1

)
2x 1

W ∑j∈I ,πm(j)<πm(i) sreq
j (ln 2)

 1
W

I

∑
j=1,πm(j)<πm(i)

sreq
j


+

Wn0

giA
2x 1

W ∑j∈I ,πm(j)<πm(i) sreq
j 2x

s
req
i
W (ln 2)

sreq
i
W

. (22)

Equation (22) shows that H′i (x) increases in x. Based on the theory of convex optimization [25],
Hi(x) is convex with respect to x.

For the sake of easy presentation, we further introduce G(x) to denote the objective function of
Problem (P2-Sub) as follows:

G(x) = ∑
i∈I

Hi(x)− θx− α

β
, (23)

and correspondingly, we obtain the first-order derivative of G(x) as follows:

G
′
(x) = ∑

i∈I
H
′
i (x)− θ

β
, (24)

which, again, increases in x (due to H′i (x) is increasing in x). As a result, G(x) is convex with respect
to x.

Based on the convexity of function Hi(x) and function G(x), we obtain the following
important property.

Proposition 1. Given θ, Problem (P2-Sub) is a strict convex optimization with respect to x.

Proof. Equations (22) and (24) together lead to the objective function of Problem (P2-Sub), i.e., G(x),
is a strictly convex function. Meanwhile, Equation (22) means that constraint (18) leads to a convex
feasible set. As a result, according the convex optimization theory [25], Problem (P2-Sub) is a strictly
convex optimization with respect to x, which finishes the proof.
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The convexity of Problem (P2-Sub) enables us to use the Karush–Kuhn–Tucker (KKT) conditions
to find the optimal solution. Exploiting the KKT conditions, the following algorithm was proposed to
solve Problem (P2-Sub). The details are illustrated as follows.

3.1.1. Procedures to Determine the Viable Interval of x for Problem (P2-Sub)

Our first step was to determine the feasible interval of x for Problem (P2-Sub), i.e., the interval of
x that could meet constraints (18) and (19) simultaneously.

To derive the upper-bound of x given by constraint (18), we notice that constraint (18) could be
separated with respect to different STs. As a result, we express the upper-bound of x as

xmax = min
i∈I
{xlargest

i }, (25)

with the value of xlargest
i given by

xlargest
i = arg max{x ≥ 0|Qi(x) ≥ 0}, ∀i ∈ I . (26)

Specifically, function Qi(x) is given by

Qi(x) = Emax
i x

giA
Wn0

−
(

2x
s
req
i
W − 1

)
2x 1

W ∑j∈I ,πm(j)<πm(i) sreq
j , ∀i ∈ I , (27)

according to constraint (18). For each ST i, xlargest
i corresponds to the largest value of x that can ensure

Qi(x) ≥ 0 (or constraint (18) is satisfied).
To find xlargest

i , we derive the first-order derivative of Qi(x) as follows:

Q
′
i(x) = Emax

i
giA

Wn0
−
(

2x
s
req
i
W − 1

)
2x 1

W ∑j∈I ,πm(j)<πm(i) sreq
j (ln 2)

 1
W

I

∑
j=1,πm(j)<πm(i)

sreq
j


−2x 1

W ∑j∈I ,πm(j)<πm(i) sreq
j 2x

s
req
i
W (ln 2)

sreq
i
W

. (28)

The above result shows that Q
′
i(x) decreases in x. In other words, for each ST i, function Qi(x)

is a typical unimodal function. By exploiting this property and an important feature of Qi(0) = 0,
we consider the following two cases to find xlargest

i ∈ [0, ∞):

• Case-I. If Q
′
i(0) ≤ 0 (i.e., Emax

i
giA
n0
≤ sreq

i ln 2), then xlargest
i = 0.

• Case-II. If Q
′
i(0) > 0 (i.e., Emax

i
giA
n0

> sreq
i ln 2), then xlargest

i ∈ [x4i , ∞) can be uniquely determined

by Qi(xlargest
i ) = 0, where the value of x4i ∈ [0, ∞) is uniquely determined by Q

′
i(x4i ) = 0.

We explain the above two cases as follows. If Q
′
i(0) ≤ 0, then Q

′
i(x) monotonically decreases for

x ∈ [0, ∞). In this case, based on the features of Qi(0) = 0, we have xlargest
i = 0 (i.e., Case-I). On the

other hand, if Q
′
i(0) > 0, then a unique point exists in the interval of x ∈ [0, ∞), such that Q

′
i(x) = 0,

since function Q
′
i(x) is decreasing and we have Q

′
i(∞) < 0 according to (28). Let us denote such a point

as x4i , i.e., Q
′
i(x4i ) = 0. Notice that, since we have Qi(0) = 0, Qi(x4i ) ≥ 0 always exists. As a result,

a unique point exists in the interval of [x4i , ∞), such that Qi(x) = 0. Such a point corresponds to

xlargest
i , i.e., Qi(xlargest

i ) = 0, which corresponds to the solution in Case-II.

The detailed procedures to find xlargest
i are shown in Steps 3–8 in our following proposed algorithm

(i.e., Algorithm 1) to solve Problem (P2-Sub). After finding xlargest
i for each ST i, thus determined

the viable interval for x as x ∈ [max{ 1
Tmax , α

θ }, mini∈I{x
largest
i }] according to constraint (19) which

corresponds to Step 12 in our Algorithm 1.



Sensors 2018, 18, 2542 9 of 17

3.1.2. Procedures to Determine Vθ for Problem (P2-Sub)

After deriving the viable interval x ∈ [max{ 1
Tmax , α

θ }, mini∈I{x
largest
i }], we then continue to solve

Problem (P2-Sub) and obtain Vθ . To this end, we exploit the convexity of function G(x) (i.e., its first
order derivative G′(x) in (24) is decreasing), and used the KKT conditions to find the minimum value
of the objective function, i.e., Vθ . To this end, we need to consider the following two cases:

• If G′(0) = n0 ln 2 ∑i∈I
sreq

i
giA
− θ

β < 0, then a unique point, µ ∈ [0, ∞), exists such that G′(µ) = 0.

• If G′(0) = n0 ln 2 ∑i∈I
sreq

i
giA
− θ

β ≥ 0, no such µ ∈ [0, ∞) exists such that G′(µ) = 0, meaning that
G(x) is increasing for x ∈ [0, ∞).

Step 16 to Step 30 in our Algorithm 1 correspond to the operations of the above two cases.

Algorithm 1 To solve Problem (P2-Sub) and output Vθ.

1: Initialization: Set i = 1, and set a sufficiently large upper-bound xuppbound for the value of x.
2: while i ≤ I do

3: if Emax
i

giA
n0

> sreq
i ln 2 then

4: Firstly, use the bisection-search method to find x4i ∈ [0, xuppbound], such that Q
′

i(x4i ) = 0.
5: Secondly, use the bisection-search method to find xlargest

i ∈ [x4i , xuppbound] such that Qi(xlargest
i ) = 0.

6: else

7: Set xlargest
i = 0.

8: end if
9: Update i = i + 1.

10: end while
11: if max{ 1

Tmax , α
θ } < mini∈I{x

largest
i } then

12: Set the viable interval for x as x ∈ [max{ 1
Tmax , α

θ }, mini∈I{x
largest
i }].

13: else

14: Output that Problem (P2-Sub) is infeasible.
15: end if
16: if n0 ln 2 ∑i∈I

sreq
i

giA
< θ

β then

17: Use the bisection-search to find µ ∈ [0, xuppbound] such that G′(µ) = 0.
18: if µ > mini∈I{x

largest
i } then

19: Set x∗ = mini∈I{x
largest
i }.

20: else

21: if µ < max{ 1
Tmax , α

θ } then

22: Set x∗ = max{ 1
Tmax , α

θ }.
23: else

24: Set x∗ = µ.
25: end if
26: end if
27: else

28: Set x∗ = max{ 1
Tmax , α

θ }.
29: end if
30: Vθ = G(x∗).
31: Output: Vθ and tθ = 1

x∗ .

Until now, we have proposed Algorithm 1 that solves Problem (P2-Sub) and obtained the value of
Vθ for the given value of θ.
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3.2. Proposed Algorithm to Solve Problem (P2-Top)

After obtaining Vθ for the given θ, we continue to solve the original Problem (P2-Top), i.e., finding
the minimum value of θ (which is denoted by θ∗) such that Vθ ≤ 0. As we have explained before, Vθ

decreases in θ, which thus enabled us to use the bisection search method to find θ∗ [26]. The details are
shown in our proposed Algorithm 2.

In our Algorithm 2, for the currently given θcur, we invoke Algorithm 1 (as a subroutine) to obtain
the value of Vθcur (i.e., Step 4). If Vθcur ≤ 0, and then we use the bisection method to further reduce
θcur (i.e., Step 6). Otherwise (Vθcur < 0), we use the bisection method to increase θcur (i.e., Step 8).
The operations of the bisection search continued until we reach convergence.

Algorithm 2 To solve Problem (P2-Top) and find θ∗.

1: Initialization: Set θuppbound as a sufficiently large number and θlowbound = 0. Set the tolerable computation

error, ε.
2: while |θuppbound − θlowbound| > ε do

3: Set θcur = θuppbound+θlowbound

2 .
4: Given θcur, use Algorithm 1 to obtain Vθcur .
5: if Vθcur ≤ 0 then

6: Set θuppbound = θcur.
7: else

8: Set θlowbound = θcur.
9: end if

10: end while
11: Set θ∗ = θcur

12: Given θ∗, use Algorithm 1 to obtain t∗ = tθ∗ .
13: Output: θ∗ = θcur.

Until now, we have proposed the Algorithm 2 that solves Problem (P2-Top) and obtained the
optimal value of θ∗. Notice that based on (21), the minimum total cost for resource consumption
Om = θ∗ is obtained for the m-th decoding-order, πm, which thus solves the original Problem (P1-m).

3.3. Numerical Results for Algorithms 1 and 2 to Solve Problem (P1-m)

In this subsection, we firstly evaluate the performance of our proposed Algorithms 1 and 2 to
solve Problem (P1-m). To this end, we set up a scenario in which the AP is located at (0 m , 0 m),
and the group of STs are uniformly distributed within a plane whose central is the AP and the radius is
100 m. We use the same method used by reference [27] to model the channel power gains from the STs
to the AP. We set each ST’s energy budget as Emax

i = 4 J, and we set Tmax = 1 sec. For simplicity, we set
the cost coefficients as α = 1 and β = 1. Other parameter settings will be provided when needed.

To test the performance of our proposed Algorithm 2 (and Algorithm 1), we use a fixed
decoding-order for the STs I , i.e., the STs executed the SIC according to descent order of the channel
power gains {giA}i∈I . Here, we emphasize that Algorithms 1 and 2 are applicable to an arbitrary
decoding-order of the STs. In the next section, we further show the performance of our proposed
Algorithm 2 (and Algorithm 1) for different decoding-orders.

Figure 3 illustrates the rationale of our Algorithm 2 to solve Problem (P2-Top). Specifically, we test
two cases, i.e., a 3-ST case and a 5-ST case. In both cases, the locations and channel power gains of the
STs are generated as described before, and we set each ST’s sreq

i to be uniformly distributed within
[2, 8] Mbits, and we use a channel bandwidth of W = 8 MHz. In both Figure 3a,b, the top-subplots
show the convergence of θ when executing the Algorithm 2, and the bottom-subplots show the
corresponding convergence of Vθ . As illustrated before, Algorithm 2 essentially executes a bisection
search on θ, with the objective of finding the minimum value of θ such that Vθ ≤ 0. Therefore, we
observe from the bottom-subplots that the value of Vθ gradually converges to zero (as indicated by the
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red-solid line), and correspondingly, in the top-subplots we observe that the value of θ converges to θ∗

(i.e., the minimum total cost) when Vθ is approaching zero.
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Figure 3. Illustration of the operations of Algorithm 2.

Figure 4 shows the effectiveness of our proposed Algorithms 1 and 2 to solve Problem (P1-m).
For the purpose of comparison, we use an enumeration method to solve Problem (P1-m) directly and
obtain the minimum total cost as a benchmark. Figure 4a shows the comparison when W = 8 MHz,
and Figure 4b shows the comparison when W = 10 MHz. Notice that in both the 8-ST and 10-ST cases,
the locations and the channel power gains of the STs are randomly generated. All the results show
that our Algorithm 2 achieves the minimum total costs which are very close to those obtained by the
enumeration method (with almost negligible error). These results validate the effectiveness of our
proposed Algorithms 1 and 2.
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Figure 4. Effectiveness of the Algorithms 1 and 2 in solving Problem (P1-m).

4. Proposed Algorithm to Find Optimal Decoding-Order

In Section 3 before, we solve Problem (P1-m) and obtained the minimum total cost, Qm, for the
m-th decoding-order πm. We next continue to solve Problem (P1-Order) in Equation (8) to find the
optimal decoding-order which yields the globally minimum cost, i.e., minm=1,2,...,I! Qm.

As we have described before, a benchmark approach to find the optimal decoding-order was
done to enumerate all the possible decoding-orders πm for m = 1, 2, ..., I! (e.g., enumerating the
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six decoding-orders for the 3-ST as shown in Figure 2). However, enumerating all the decoding-orders
is computational-prohibited, especially when the number of STs is large. For instance, for the case of
11 STs, the total number of the decoding-orders is larger than 39 million.

To tackle this difficulty, we propose a computation-efficient algorithm (i.e., Algorithm 3) to find
the optimal decoding-order. Our Algorithm 3 works as follows.

• We first initialize the currently available STs as Icur = I and the current best decoding-order
(i.e., CBS) as CBS = ∅.

• In each round of iteration, we select one ST in Icur and determine its index in the current best
decoding-order CBS, with the objective of minimizing the total cost for resource utilization after
including this selected ST into CBS. To this end, we enumerate the currently available STs in
Icur. For each selected ST (let us say ST m, i.e., the m-th ST in Icur), we further enumerate all the
possible indexes for decoding based on CBS. Specifically, if h = 0, it means that we place ST m
in front of the first ST in CBS. If h = |CBS|, it means that we place ST m after the h-th ST in CBS.
Otherwise, it means that we place ST m between the h-th ST in CBS and the h + 1-th ST in CBS.

• Given the currently constructed decoding-order Icur.test, we use our proposed Algorithm 2 to
compute the minimum total cost for resource utilization denoted by θcur,test. If θcur,test < CBV
(where CBV denotes the currently minimum total cost when enumerating the STs in Icur and
the possible indices based on CBS), then we update CBV = θcur,test and record the current best
decoding-order CBS = Icur.test. Finally, we update Icur = Iall \CBS, and then continue the next
round of iteration.

Notice that for the sake of easy presentation, in Algorithm 3, we use |Icur| to denote the cardinality
of set Icur, and use Icur(m) to denote the m-th element in set Icur, and use Icur(m : n) to denote the
subset of Icur, i.e., from the m-th element to the n-th element in Icur.

Figure 5 provides an illustrative example when executing our proposed Algorithm 3. Specifically,
we consider a 5-ST case, i.e., I = {1, 2, 3, 4, 5}. In the current iteration, shown in Figure 5, the current
best decoding-order is CBS = {4, 2} and the currently available STs are Icur = {1, 3, 5}. Thus, when we
enumerate the STs in Icur in the current round of iteration, there are three possible STs, i.e., Icur(1) = 1,
Icur(2) = 3, and Icur(3) = 5. Furthermore, when we select the first ST in Icur (i.e., ST 1), there are three
possible indices in CBS to place the ST, which correspond to Icur,test = {1, 4, 2}, Icur,test = {4, 1, 2},
and Icur,test = {4, 2, 1}.

{4,2}CBS  
cur {1,3,5}  

cur.test {1,4,2}  

cur.test {4,1,2}  

cur.test {4,2,1}  

cur.test {3,4,2}  

cur.test {4,3,2}  

cur.test {4,2,3}  

cur.test {5,4,2}  

cur.test {4,5,2}  

cur.test {4,2,5}  

cur (1) cur (2) cur (3) all {1,2,3, 4,5}  
Figure 5. An illustrative example when executing Algorithm 3.

In summary, in our proposed Algorithm 3, we try to strike a balance between achieving optimality
and reducing the complexity. Specifically, our proposed Algorithm 3 uses an iterative manner to
determine the optimal decoding-order for the STs one-by-one. In each round of iteration, given the
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currently ordered subgroup of the STs (in which the decoding-orders of the STs have been determined),
we optimally select a new ST from the remaining unordered STs and place this new ST into the
currently ordered subgroup. To reduce the complexity, we do not change the decoding-orders of the
STs in the currently ordered subgroup and aim to place the new ST at the most appropriate index
such that we can achieve the minimum overall cost after including this newly selected ST into the
currently ordered subgroup. Such an approach continues until we finish determining the decoding
indices for all STs in I . Notice that our Algorithm 3 requires the total number of iterations to be
equal to ∑I

i=1(I − (i − 1)) ∗ i, which is in order of O
(

I2). Thus, compared with enumerating all
possible I! decoding-orders, our Algorithm 3 gains a significant advantage in saving the computational
complexity, especially when the number of STs is large. Table 1 in the following text verifies this
advantage. Notice that since the computation complexity of our Algorithm 3 increases quadratically
with the number of the STs, its computation time will become non-negligible when the number of STs
is large. To address this issue, a viable approach is to jointly exploit the NOMA and TDMA; namely,
we first use TDMA to divide a large number of the STs into several nonoverlapping (small) subgroups,
with different subgroups using different nonoverlapping time-slots. Meanwhile, for the STs within
the same subgroup, we can use our proposed Algorithm 3 to determine the optimal decoding-order
efficiently.

Algorithm 3 To find the optimal decoding-order.

1: Initialization: Set Icur = Iall = {g1A, g2A, ..., gIA} and set CBS = ∅
2: while Icur 6= ∅ do

3: Set CBV is a sufficiently large number.
4: for m = 1 : 1 : |Icur| do

5: for h = 0 : 1 : |CBS| do

6: Set Icur.test = ∅.
7: if h == 0 then

8: Icur.test = {Icur(m), CBS}.
9: else

10: Icur.test = {CBS(1 : h), Icur(m), CBS(h + 1 : |CBS|)}.
11: end if
12: Given Icur.test, use Algorithm 2 to compute θcur.test.
13: if θcur.test < CBV then

14: Set CBV = θcur.test

15: Set CBS = Icur.test

16: end if
17: end for
18: end for
19: Update Icur = Iall\CBS.
20: end while
21: Output: θ∗ = CBV.

We next evaluate the effectiveness of our proposed Algorithm 3 to find the optimal decoding-order,
i.e., solving Problem (P1-Order), in Figure 6. Specifically, Figure 6a shows the results when we set
Tmax = 1, and Figure 6b shows the results when we set Tmax = 0.35 (meaning that there was a
relatively smaller freedom in adjusting the STs’ uplink transmission-duration). As a benchmark for
comparison, we enumerate all possible decoding-orders for the group of STs I . As we have explained
before, each ST’s data requirement, sreq

i , was randomly generated according to a uniform distribution
within [2, 8] Mbits. All comparison results in Figure 6a,b show that our Algorithm 3 can find the
optimal decoding-order which is exactly same as the one obtained by the enumeration method, which
thus validates the effectiveness of our proposed Algorithm 3.
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Figure 6. Performance of our proposed NOMA-transmission scheme under different numbers of STs.

To further verify the computational efficiency of our Algorithm 3, in Table 1, we compare the
computation-time used by our Algorithm 3 with the enumeration method. The results show that
the computation time used by the enumeration method increases explosively when the number
of the STs increases (which is due to the fact that the total number of possible decoding-orders
increases explosively when the number of the STs increases). In contrast, our Algorithm 3 consumes a
significantly less computation time compared with the enumeration method. In particular, when the
number of the STs large (e.g., larger than 7), the computation time used by our Algorithm 3 is almost
negligible compared with the enumeration method.

Table 1. Comparison of the computation time (in seconds). The results are obtained on a PC with
Intel(R) Core(TM) i5-7400 CPU@3.00 GHz.

W = 8 MHz 3-ST 4-ST 5-ST 6-ST 7-ST 8-ST 9-ST

Proposed 1.7 2.3 2.9 3.5 4 4.6 5.3
Enumeration 1.6 3.5 13.7 65.8 416 2830 16,366

W = 10 MHz 3-ST 4-ST 5-ST 6-ST 7-ST 8-ST 9-ST

Proposed 1.7 2.3 2.9 3.5 4 4.5 5.3
Enumeration 1.5 4.6 18.2 101 562 4099 24,215

W = 12 MHz 3-ST 4-ST 5-ST 6-ST 7-ST 8-ST 9-ST

Proposed 1.7 2.3 2.9 3.5 3.7 4.5 5.5
Enumeration 1.8 5.7 22.3 126 737 5201 31,730

Furthermore, Figure 7 shows the performance advantage of our proposed optimal NOMA
transmission scheme in saving the total cost of resource utilization. For the purpose of comparison,
we also use two other orthogonal multiple access (OMA) schemes, namely, the FDMA scheme and the
TDMA scheme (notice that neither the frequency division multiple access (FDMA) scheme nor the time
division multiple access (TDMA) scheme requires to order the STs). We set W = 8 MHz, and varied
each ST’s sreq

i from 3 Mbits to 13 Mbits. We test two cases, namely, the 6-ST case in Figure 7a and the
8-ST case in Figure 7b. It is reasonable to observe that, for all the three schemes, the corresponding
total costs increase when each ST i’s sreq

i increases. Furthermore, the results show that our proposed
NOMA-transmission scheme (i.e., the optimal solution obtained by our Algorithm 3) can significantly
reduce the total cost, compared with the TDMA scheme and FDMA scheme.
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Figure 7. Performance of our proposed NOMA-transmission scheme in comparison with the FDMA
scheme and TDMA scheme.

We finally show the impact of the number of the STs on the performance of our proposed NOMA
transmission scheme in Figure 8. In particular, the NOMA enables all STs to transmit to the AP
simultaneously. As a result, the co-channel interference among the STs might negatively influence their
throughput to the AP especially when the number of the STs is large. The results in Figure 8 verify this
intuition. Specifically, as shown in Figure 8a (where each ST’s sreq

i = 4 Mbits) and Figure 8b (where
each ST’s sreq

i = 8 Mibts), when the number of the STs increase, the optimal total cost used by our
proposed NOMA transmission scheme gradually increases and is always smaller than the cost used by
the TDMA scheme. Nevertheless, as shown in Figure 8a, our proposed NOMA transmission scheme
becomes infeasible (meaning that the given Tmax and {Emax

i }i∈I cannot satisfy all STs’ {sreq
i }i∈I ) when

the number of the STs is larger than 17, while the TDMA scheme is always feasible. Figure 8b shows
similar infeasible results when using our NOMA transmission scheme if the number of the STs is larger
than 11. Such a result essentially stems from the co-channel interference introduced by the NOMA
transmission, while there is no co-channel interference in the TDMA scheme.
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Figure 8. Performance of our proposed NOMA transmission scheme under different numbers of STs.
Each point denotes the average result of 100 sets of the random realizations of the STs’ locations.
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5. Conclusions

In this paper, we investigated the uplink transmission in a sensor network in which a group
of STs use NOMA to send their collected data to an AP. We studied joint optimization of the SIC
decoding-order, time and power allocations for the STs’ NOMA transmissions, with the objective of
minimizing the total cost for resource consumption. Despite the nonconvexity of the formulated joint
optimization problem, we proposed efficient algorithms to find the optimal solution. Numerical results
validated the effectiveness of our proposed algorithms and the performance advantage of our proposed
optimal NOMA transmission for the uplink data collection in sensor networks in comparison with the
conventional OMA schemes. In future work, we will take into account cases in which some ST data
volumes cannot be satisfied and propose a feasibility-checking algorithm (e.g., to find the maximum
number of the STs which are affordable to serve in the uplink NOMA transmission). In addition,
since NOMA has been considered to be one of the enabling technologies for future low-latency and
ultra-reliable communications (URLLC) [28], we will further investigate the exploitation of NOMA for
URLLC and the corresponding optimal resource management.
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