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Abstract: To solve the problem of unknown state noises and uncertain measurement noises inherent
in underwater cooperative navigation, a new Variational Bayesian (VB)-based Adaptive Extended
Kalman Filter (VBAEKF) for master–slave Autonomous Underwater Vehicles (AUV) is proposed in
this paper. The Inverse Wishart (IW) distribution is used to model the predicted error covariance
and measurement noise covariance matrix. The state, together with the predicted error covariance
and measurement noise covariance matrix, can be adaptively estimated based on VB approximation.
The performance of the proposed algorithm is demonstrated through a lake trial, which shows the
advantage of the proposed algorithm.
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1. Introduction

With the continuous expansion of marine exploitations and the increasing complexity of military
requirements, it will be difficult for a single Autonomous Underwater Vehicle (AUV) to achieve the
desired goals. Therefore, a multi-AUV cooperative system has gradually become more popular [1–3].
Similar to a single AUV, the multi-AUV cooperative operation also requires accurate navigation and
localization abilities [4,5]. In the master–slave cooperative navigation, it is generally considered that
the AUVs with strong positioning ability are the master AUVs, and the master AUVs are the core of the
AUV group that each slave AUV needs to communicate with. This cooperative navigation method has
many advantages, such as low cost, easy realization, group resolution and flexible combination [6,7].
We aim to improve the navigation of slave AUVs by the filtering method, using the accurate location
information of the master AUV and the relative observation between the master and slave AUVs.

The sensor of the multi-AUV cooperative navigation system includes various navigation,
communication, and detection sensors, and they are the main sources of information for cooperative
navigation. According to the object classification described by the sensor information, the navigation
equipment can be divided into internal sensors and external sensors [8–10]. The internal sensors
refer to the sensors used to measure the AUV’s own motion parameters, including Doppler Velocity
Log (DVL), magnetic compass, and depth sensor. The DVL can measure the speed of the vehicle
relative to the seabed, the magnetic compass is used to measure the vehicle heading information,
while the pressure depth gauge can obtain the depth information. The external sensors include sensors
for realizing underwater sound detection and underwater acoustic communication. In practical
cooperative navigation, these sensors are affected by many factors such as temperature, salinity, depth,
current, interface reflection and refraction in the underwater environment [11–14]. The underwater
acoustic channel becomes a high noise channel with strong reverberation, narrow channel bandwidth,
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and multipath effects. The underwater acoustic communication of an AUV consisting of multiple
sensors is constrained by these factors, making the noise statistical characteristics of the sensor
inaccurate and even able to change over time. At this point, if the information fusion filter adopts the
wrong noise covariance matrix such as the method described in [3], its accuracy may degrade or even
diverge. Therefore, if real-time online estimation of the unknown process and measurement noise
statistics can be performed in the filtering process, the filtered noise covariance matrix will act as an
adaptive adjustment to meet the actual noise characteristics of the system, which will further improve
the accuracy of AUV cooperative navigation [15,16].

In recent years, various adaptive filters have been proposed in order to solve the problems
existing in conventional filters when the noise statistics are unknown or time-varying [12,17]. Based on
maximum posterior estimation, the Sage-Husa adaptive Kalman filter can estimate the statistical
characteristics of the system measurement noise in real time to improve the estimation accuracy
of the filtering [18]. However, it requires that the system noise covariance and measurement noise
covariance must be positive or positive definite, otherwise it will easily lead to filter divergence [19,20].
Fading adaptive filtering adjusts the weight of the newly measured data by increasing the one step
predicted covariance matrix, but the calculation process of the scalar fade-in factor is cumbersome
and has the same adjustment ability for each filter channel [21]. Although the maximum likelihood
based adaptive filtering method can estimate and correct the second-order moments of the statistical
characteristics of noise online, it needs to rely on an accurate innovation covariance estimate [22–24].
The existing Variational Baysian (VB) based adaptive Kalman filter can estimate an inaccurate
and slowly varying measurement noise covariance matrix for linear Gaussian state-space models
offline [17,25]. However, it is not suitable for the cooperative navigation model since it is nonlinear.

In this paper, in order to further improve the estimation accuracy of the filter when the noise
statistical information is unknown or time-varying in AUV cooperative navigation, a Gaussian
approximate extended Kalman filter based on VB is proposed. In order to solve the inaccurate
measurement noise generated by underwater acoustic communication, and uncertain process noise
during dead reckoning, this paper models the Inverse Wishart (IW) prior to the prediction error
covariance matrix and measurement noise covariance matrix. This VB method is then used to calculate
the system state together with the unknown noise parameters. The VB method is used to estimate the
predicted error covariance matrix instead of process noise parameters, so that state estimation considers
not only the change of noise, but also the variation of the predicted error covariance. The effectiveness
of the proposed filtering algorithm was evaluated by using postprocessed data collected in lake
trials, which shows that the proposed filter has significantly improved robustness of unknown or
time-varying noises than existing filters.

The main structure is listed as follows. In Section 2, we provide a short review of the cooperative
navigation model using acoustic range measurement. In Section 3, a new Variational Bayesian-based
Adaptive Extended Kalman Filter (VBAEKF) is derived. In Section 4, the proposed algorithm and
existing state-of-the-art algorithms are tested in the actual lake field trial to show the excellent
performance of the proposed algorithm. Finally, Section 5 discusses our conclusions.

2. System Model

To achieve master–slave cooperative navigation, master AUVs are usually equipped with a
high-precision Inertial Navigation System (INS), DVL, and depth sensors to form a high-precision
integrated navigation system for underwater navigation. Another option is having the master
AUVs periodically emerge to receive high-precision GPS location information to achieve its own
high-precision navigation and positioning. The slave AUV only has a low-precision magnetic compass,
DVL, and depth sensors to perform dead reckoning. During the operation of the system, when the
slave AUV uses an underwater acoustic communication device to obtain high-precision AUV position
information and relative range reference information from the master AUV, this reference information
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can be used to realize the self-correction of its own position error and realize the cooperative navigation
between vehicles [3,7].

Since the actual depth information can be directly measured by the pressure sensor in real time
with bounded error, the depth does not need to be considered in the process equations and the
practical working environment of the slave AUV can be simplified to a two-dimensional (2D) space.
When calculating the relative range between the AUVs, the depth information is required. If the initial
position X1 = [x1, x2]

T of the slave AUV is known, the position at time k will be calculated in real time
according to the speed and azimuth information measured by its own sensors as follows:{

xk = xk−1 + ∆t(v̂k cos θ̂k + ŵk sin θ̂k) + ωx,k−1
yk = yk−1 + ∆t(v̂k sin θ̂k − ŵk cos θ̂k) + ωy,k−1

, (1)

where xk and yk respectively denote the eastward and northward position of the AUV at time k, ∆t is
the sampling interval, v̂k and ŵk denote the forward and starboard velocity measurement information
of the DVL along the vehicle coordinate system, and θ̂k is the heading measured by the magnetic
compass. ωk = [ωx,k, ωy,k]

T is system process noise, including speed measurement noise and azimuth
measurement noise.

The slave AUV uses the relative range measurement to correct the navigation error. Therefore,
the measurement equation is the range between the master AUV and slave AUV, which can be written
as follows:

Zk =
√
(xk − xm

k )
2 + (yk − ym

k )
2 + υk, (2)

where Xm
k = [xm

k , ym
k ]

T and Xk = [xk, yk]
T represent the position of the master AUV and the slave AUV

at time step k, respectively. In addition, υk is the measurement noise.
According to the dynamic system model (1) and measurement model (2), the discrete-time state

space equation from the AUV can be written as:

Xk = FXk−1 + µk + ωk−1, (3)

Zk = h(Xk, xm
k , ym

k ) + υk, (4)

where the state transition matrix F = I2 and I2 represent a two-dimensional identity matrix.
The control input is µk =

[
∆t
(
v̂k cos θ̂k + ŵk sin θ̂k

)
, ∆t
(
v̂k sin θ̂k − ŵk cos θ̂k

)]T
and h(Xk, xm

k , ym
k ) =√

(xk − xm
k )

2 + (yk − ym
k )

2. ωk and υk are system process noise and measurement noise, respectively,
and are usually assumed to be independent zero-mean Gaussian white noise sequences that satisfy
the distributions ωk ∼ N(0, Qk) and υk ∼ N(0, Rk). The measurement Equation (4) shows that
h(·) is non-linear, so it is necessary to apply the partial derivative matrix to the proposed algorithm.
The partial derivative matrix of the measurement equation can be written as:

Hk =
∂h(Xk ,xm

k ,ym
k )

∂Xk

∣∣∣
Xk=X̂k|k−1

=

[
x̂k|k−1−xm

k√
(x̂k|k−1−xm

k )2+(ŷk|k−1−ym
k )2

,
ŷk|k−1−ym

k√
(x̂k|k−1−xm

k )2+(ŷk|k−1−ym
k )2

] , (5)

where X̂k|k−1 =
[

x̂k|k−1, ŷk|k−1

]T
represents k moment predicted position of the slave AUV.

3. The Proposed Cooperative Navigation Algorithm Based on Variational Bayesian

The previous section studied the multi-AUV’s cooperative navigation technology under ideal
communication; that is, suppose we know the exact mathematical model of the system, and both
the system noise and the measurement noise satisfy the Gaussian distribution. However, during the
actual navigation of AUVs, the underwater environment is affected by factors such as temperature,
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season, and current layer, while the underwater acoustic distance observation is often interfered with
by abnormal measurement noise. The resulting measurement noises and its covariance matrix are
often unknown or inaccurate. At the same time, the process equation of the system is influenced by
the dead reckoning sensor, and the process noise often cannot be a constant value. The variational
Bayesian method is introduced to solve this problem [17,26].

In the conventional Kalman filtering model, the one-step predicted Probability Density Function
(PDF) p(Xk|Z1:k−1) and likelihood PDF p(Zk|Xk) are normal distributions:

p(Xk|Z1:k−1) = N(Xk; X̂k|k−1, Pk|k−1), (6)

p(Zk|Xk) = N(Zk; h(Xk), Rk), (7)

where N(A; γ, Σ) is the normal distribution with mean γ and variance Σ, and the probability density
function of the normal distribution is:

N(A; γ, Σ) =
1√
|2πΣ|

e−
1
2 (A−γ)TΣ−1(A−γ). (8)

According to Equation (3), the predicted state vector X̂k|k−1 and the corresponding one-step
predicted covariance matrix Pk|k−1 can be written as:

X̂k|k−1 = FX̂k−1|k−1 + µk, (9)

Pk|k−1 = FPk−1|k−1FT + Qk−1, (10)

where X̂k−1|k−1 and Pk−1|k−1 respectively represent the state estimation at time k − 1 and the
corresponding estimation error covariance matrix. Note that the Pk|k−1 in Equation (10) is not
exact, because the true process noise covariance matrix Qk is unknown due to the effects of complex
underwater environments.

In Bayesian statistics, the Inverse Wishart (IW) distribution can be viewed as the conjugate prior
distribution for the covariance matrix of a normal distribution with known mean [27]. If the inverse
matrix B−1 of a positive definite matrix B follows the Wishart distribution W(B−1; λ, Ψ−1), then the
matrix B follows the IW distribution:

IW(B; λ, Ψ) =
|Ψ|λ/2|B|−(λ+d+1)/2e−trace(ΨB−1)/2

2dλ/2Γd(λ/2)
, (11)

where λ > d + 1 is the degree of freedom, Ψ is a d× d positive definite matrix, d is the dimension
of Ψ, Γd(·) is the multivariate gamma distribution, and trace(·) is the trace function. If the matrix
B ∼ IW(B; λ, Ψ) obeys the IW distribution, its expectation is [27]:

E(B) =
Ψ

λ− d− 1
. (12)

Since Pk|k−1 and Rk are the covariance matrices of the normal PDFs, their prior distributions
p(Pk|k−1 |Z1:k−1) and p(Rk |Z1:k−1) can be written as IW distributions:

p(Pk|k−1|Z1:k−1) = IW(Pk|k−1; t̂k|k−1, T̂k|k−1), (13)

p(Rk|Z1:k−1) = IW(Rk|k−1; ûk|k−1, Ûk|k−1), (14)

where t̂k|k−1 and T̂k|k−1 represent the degrees of freedom and scale matrix of p(Pk|k−1 |Z1:k−1), ûk|k−1
and Ûk|k−1 represent the degrees of freedom and scale matrix of p(Rk |Z1:k−1), respectively. Next,
we need to get the value of t̂k|k−1, T̂k|k−1, ûk|k−1, and Ûk|k−1.
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The mean value of Pk|k−1 can be set as the nominal predicted error covariance matrix Pk|k−1.
According to Equation (12), we obtain:

T̂k|k−1

t̂k|k−1 − n− 1
= Pk|k−1 = FPk−1|k−1FT + Qk−1, (15)

where n represents the dimension of T̂k|k−1 the state and Qk−1 represents the nominal process noise
covariance. Let:

t̂k|k−1 = n + τ + 1, (16)

where τ ≥ 0 is a tuning parameter.
Substituting (16) into (15) gives:

T̂k|k−1 = τPk|k−1. (17)

According to Bayes’ theorem, prior distribution p(Rk |Z1:k−1) can be written as [17]:

p(Rk|Z1:k−1) =
∫

p(Rk|Rk−1)p(Rk−1|Z1:k−1)dRk−1, (18)

where p(Rk−1|Z1:k−1) is the posterior probability density function of the measurement noise covariance
matrix Rk−1.

According to Equation (14), the prior distribution p(Rk−1|Z1:k−2) of the measurement noise
covariance matrix Rk−1 is subject to the IW distribution, and its posterior distribution p(Rk−1|Z1:k−1)

should also be an IW distribution as follows:

p(Rk−1|Z1:k−1) = IW(Rk−1; ûk−1|k−1, Ûk−1|k−1). (19)

In practical applications, the dynamic model p(Rk|Rk−1) of the noise variance of Equation (18) is
unknown. So we choose a factor ρ to preserve and propagate the approximate posterior at the previous
moment [28], and the prior parameters can be written as:

ûk|k−1 = ρ(ûk−1|k−1 −m− 1) + m + 1, (20)

Ûk|k−1 = ρÛk−1|k−1, (21)

where ρ ∈ (0, 1] is a forgetting factor, which represents the degree of fluctuation over time. ρ = 1
represents the steady state variance; the smaller the value of ρ, the greater the frequency of fluctuations
over time.

In order to estimate the state Xk, the predicted state error covariance Pk|k−1 and the measurement
noise covariance matrix Rk, we need to calculate their joint posterior probability density function
p(Xk, Pk|k−1, Rk|Z1:k) . We use the variational Bayesian method and find an approximate PDF of a free
form as follows [28,29]:

p(Xk, Pk|k−1, Rk

∣∣∣Z1:k) ≈ q(Xk)q(Pk|k−1)q(Rk), (22)

where q(·) denotes the approximate posterior PDF of p(·). The VB-approximation can now be formed
by minimizing the Kullback-Leibler Divergence (KLD) between the approximation posterior PDF
q(Xk), q(Pk|k−1), q(Rk) and the true joint posterior p(Xk, Pk|k−1, Rk

∣∣∣Z1:k) [29,30]:

{
q(Xk), q(Pk|k−1), q(Rk)

}
= arg min KLD

(
q(Xk), q(Pk|k−1), q(Rk) ‖ p(Xk, Pk|k−1, Rk

∣∣∣Z1:k)
)

, (23)

where KLD represents relative entropy, which is defined as follows:

KLD(q(X) ‖ p(X)) =
∫

q(X) log q(X)
p(X)

dX. (24)
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The optimal solution of Equation (22) satisfies the following equation [29]:

log q(Xk) = EPk|k−1,Rk

[
log p(Xk, Pk|k−1, Rk, Z1:k)

]
+ cXk , (25)

log q(Pk|k−1) = EXk ,Rk

[
log p(Xk, Pk|k−1, Rk, Z1:k)

]
+ cPk|k−1

, (26)

log q(Rk) = EXk ,Pk|k−1

[
log p(Xk, Pk|k−1, Rk, Z1:k)

]
+ cRx , (27)

where cXk , cPk|k−1
, cRx represent the constants with respect to variable Xk, predicted error covariance

Pk|k−1 and measurement noise covariance matrix Rk, respectively. log(·) represents the logarithm
function, and EΘ[·] represents the expectation of the approximate posterior PDF of the variable Θ.
Because q(Xk), q(Pk|k−1), q(Rk) are coupled, Equations (25)–(27) cannot be directly solved. These
parameters can be solved by the fixed-point iterative method.

Therefore, (26) can be further written as (see the Appendix A for a detail derivation):

log q(i+1)(Pk|k−1) = − 1
2 (n + t̂k|k−1 + 2) log

∣∣∣Pk|k−1

∣∣∣− 1
2 trace

((
A(i)

k + T̂k|k−1

)
P−1

k|k−1

)
+ cPk|k−1

, (28)

where q(i+1)(·) represents the approximate PDF of the i + 1th iteration of q(·), and A(i)
k is defined as:

A(i)
k = E(i)

[
(Xk − X̂k|k−1)(Xk − X̂k|k−1)

T
]

= E(i)
[
(Xk − X̂(i)

k|k + X̂(i)
k|k − X̂k|k−1)(Xk − X̂(i)

k|k + X̂(i)
k|k − X̂k|k−1)

T
]

= E(i)
[
(Xk − X̂(i)

k|k)(Xk − X̂(i)
k|k)

T
]
+ (X̂(i)

k|k − X̂k|k−1)(X̂
(i)
k|k − X̂k|k−1)

T

= P(i)
k|k + (X̂(i)

k|k − X̂k|k−1)(X̂
(i)
k|k − X̂k|k−1)

T
,

(29)

where E(i)[ρ] represents the expectation of variable ρ at the i-th iteration.
According to (28), q(i+1)(Pk|k−1) can be viewed as the IW distribution with the degree of freedom

t̂(i+1)
k|k−1 and scale matrix T̂(i+1)

k|k−1:

q(i+1)(Pk|k−1) = IW(Pk|k−1; t̂(i+1)
k , T̂(i+1)

k ), (30)

where the degree of freedom t̂(i+1)
k|k−1 and scale matrix T̂(i+1)

k|k−1 can be expressed as

t̂(i+1)
k = t̂k|k−1 + 1, (31)

T̂(i+1)
k = A(i)

k + T̂k|k−1. (32)

Equation (27) can be further written as:

log q(i+1)(Rk) = − 1
2 (m + ûk|k−1 + 2) log|Rk| − 1

2 trace
((

B(i)
k + Ûk|k−1

)
R−1

k

)
+ cRk , (33)

where B(i)
k is defined as:

B(i)
k = Ei

[
(Zk − h(Xk))(Zk − h(Xk))

T
]

=
∫
(Zk − h(Xk))(Zk − h(Xk))

T N(Xk; X̂(i)
k|k, P(i)

k|k)dXk.
(34)

According to (33), q(i+1)(Rk) can be viewed as the IW distribution with the degree of freedom

û(i+1)
k|k−1 and scale matrix Û(i+1)

k|k−1

q(i+1)(Rk) = IW(Rk; û(i+1)
k , Û(i+1)

k ), (35)
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where the degree of freedom û(i+1)
k|k−1 and scale matrix Û(i+1)

k|k−1 can be expressed as

û(i+1)
k = ûk|k−1 + 1, (36)

Û(i+1)
k = B(i)

k + Ûk|k−1. (37)

Equation (25) can be further written as:

log q(i+1)(Xk) = − 1
2 (Zk − h(Xk))

TE(i+1)
[
R−1

k

]
(Zk − h(Xk))

− 1
2 (Xk − X̂k|k−1)

TE(i+1)
[
P−1

k|k−1

]
(Xk − X̂k|k−1) + cXk ,

(38)

where E(i+1)
[
R−1

k

]
and E(i+1)

[
P−1

k|k−1

]
can be represented as the following equation [29]:

E(i+1)
[
R−1

k

]
=
(

û(i+1)
k −m− 1

)(
Û(i+1)

k

)−1
, (39)

E(i+1)
[
P−1

k|k−1

]
=
(

t̂(i+1)
k − n− 1

)(
T̂(i+1)

k

)−1
. (40)

The one-step predicted PDF p(i+1)(Xk

∣∣∣Z1:k−1) and likelihood PDF p(Zk|Xk) after updating the
i + 1th iteration can be written in the following equations:

p(i+1)(Xk|Z1:k−1) = N
(

Xk; X̂k|k−1, P̂(i+1)
k|k−1

)
, (41)

p(i+1)(Zk|Xk) = N
(

Zk; h(Xk), R̂(i+1)
k

)
. (42)

The corrected predicted error covariance matrix P̂(i+1)
k|k−1 and the measurement noise covariance

matrix R̂(i+1)
k can be written as:

P̂(i+1)
k|k−1 =

{
E(i+1)

[
P−1

k|k−1

]}−1
, (43)

R̂(i+1)
k =

{
E(i+1)

[
R−1

k

]}−1
. (44)

Employing (41)–(44) in (38), we have:

q(i+1)(Xk) =
1

c(i+1)
k

p(i+1)(Zk|Xk)p(i+1)(Xk|Z1:k−1), (45)

where the normalization constant c(i+1)
k is given by:

c(i+1)
k =

∫
p(i+1)(Zk|Xk)p(i+1)(Xk

∣∣∣Z1:k−1)dXk . (46)

Considering (41)–(46), it can be upgraded to a Gaussian distribution with mean X(i+1)
k|k and

variance P(i+1)
k|k :

q(i+1)(Xk) = N
(

Xk; X(i+1)
k|k , P(i+1)

k|k

)
, (47)

where mean X(i+1)
k|k and variance P(i+1)

k|k at i + 1th iteration are calculated as:

K(i+1)
k = P̂(i+1)

k|k−1HT
k

(
HkP̂(i+1)

k|k−1HT
k + R̂(i+1)

k

)−1
, (48)
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X̂(i+1)
k = X̂k|k−1 + K(i+1)

k

(
Zk − h(X̂k|k−1)

)
, (49)

P̂(i+1)
k|k = P̂(i+1)

k|k−1 −K(i+1)
k HkP̂(i+1)

k|k−1. (50)

After fixed-point iteration N, we obtain the variational approximation of the posterior PDFs:

q(Xk) ≈ q(N)(Xk) = (Xk; X̂(N)
k|k , P(N)

k|k ) = (Xk; X̂k|k, Pk|k), (51)

q(Pk|k−1) ≈ q(N)(Pk|k−1) = IW(Pk|k−1; t̂(N)
k , T̂(N)

k ) = IW(Pk|k−1; t̂k|k, T̂k|k), (52)

q(Rk) ≈ q(N)(Rk) = IW(Rk; û(N)
k , Û(N)

k ) = IW(Pk|k−1; ûk|k, Ûk|k). (53)

The variational Bayesian adaptive EKF proposed in this paper consists of Equations (9), (15)–(17),
(20), (21) and the measurement update process in Equations (29)–(32), (34)–(37), (39), (40), (43), (44),
(47)–(53). The implementation pseudocode for the proposed adaptive cooperative navigation algorithm
is shown in Algorithm 1.

Algorithm 1: One-time step of the proposed VBAEKF for cooperative localization

Inputs: X̂k−1|k−1, Pk−1|k−1, ûk−1|k−1, Ûk−1|k−1, F, xm
k , ym

k , h(Xk, xm
k , ym

k ), Zk, Qk−1, m, n, τ, ρ, N
Time update:
1. X̂k|k−1 = FX̂k−1|k−1 + µk
2. Pk|k−1 = FPk−1|k−1FT + Qk−1

Iterated measurement update:
3. Initialization:

X̂(0)
k|k = X̂k|k−1, P(0)

k|k = Pk|k−1, t̂k|k−1 = n + τ + 1, T̂k|k−1 = τPk|k−1,

ûk|k−1 = ρ
(

ûk−1|k−1 −m− 1
)
+ m + 1, Ûk|k−1 = ρÛk−1|k−1

for i = 0 : N − 1

Update q(i+1)(Pk|k−1) = IW(Pk|k−1; t̂(i+1)
k , T̂(i+1)

k ) given q(i)(Xk):

4. Hk =

[
x̂k|k−1−xm

k√
(x̂k|k−1−xm

k )
2+(ŷk|k−1−ym

k )
2
,

ŷk|k−1−ym
k√

(x̂k|k−1−xm
k )

2+(ŷk|k−1−ym
k )

2

]
5. A(i)

k = P(i)
k|k + (X̂(i)

k|k − X̂k|k−1)(X̂
(i)
k|k − X̂k|k−1)

T

6. t̂(i+1)
k|k−1 = t̂k|k−1 + 1, T̂(i+1)

k|k−1 = A(i)
k + T̂k|k−1

Update q(i+1)(Rk) = IW(Rk; û(i+1)
k , Û(i+1)

k ) given q(i)(Xk):

7. B(i)
k =

(
Zk − h(Xk|k, xm

k , ym
k )
)(

Zk − h(Xk|k, xm
k , ym

k )
)T

+ HkP(i)
k|k(Hk)

T

8. û(i+1)
k = ûk|k−1 + 1, Û(i+1)

k = B(i)
k + Ûk|k−1

Update q(i+1)(Xk) = N
(

Xk; X(i+1)
k|k , P(i+1)

k|k

)
given q(i+1)(Pk|k−1) and q(i+1)(Rk):

9. E(i+1)
[
R−1

k

]
= (ûi+1

k −m− 1)(Ûi+1
k )

−1
, E(i+1)

[
P−1

k|k−1

]
= (t̂i+1

k − n− 1)(T̂i+1
k )

−1

10. P̂(i+1)
k|k−1 =

{
E(i+1)

[
P−1

k|k−1

]}−1
, R̂(i+1)

k =
{

E(i+1)
[
R−1

k

]}−1

11. K(i+1)
k = P̂(i+1)

k|k−1(Hk)
T
(

HkP̂(i+1)
k|k−1(Hk)

T + R̂(i+1)
k

)−1

12. X̂(i+1)
k = X̂k|k−1 + K(i+1)

k

(
Zk − h(X̂k|k−1, xm

k , ym
k )
)

13. P̂(i+1)
k|k = P̂(i+1)

k|k−1 −K(i+1)
k HkP̂(i+1)

k|k−1
end for

14. X̂k|k = X̂(N)
k|k , Pk|k = P(N)

k|k , t̂k|k = t̂(N)
k , T̂k|k = T̂(N)

k , ûk|k = û(N)
k , Ûk|k = Û(N)

k

Outputs: X̂k|k, Pk|k, t̂k|k, T̂k|k, ûk|k, Ûk|k

The tuning parameter τ is a key parameter to implement the proposed VBAEKF. In general, τ is
deemed as a harmonic weight to balance the efficacy of the nominal predicted error covariance matrix
Pk|k−1 and A(i)

k , a smaller tuning parameter means that a large quantity of information about the
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process model is lost. On the other hand, when τ becomes larger, the substantial prior uncertainties
induced by the inaccurate nominal predicted error covariance matrix will factor into the measurement
update. In this paper, the tuning parameter is selected as τ = 2.

4. Field Trial Results

The effectiveness and superiority of the adaptive cooperative navigation algorithm proposed
in this paper is validated in practical systems by using the offline experimental data collected in
a lake trial experiment. This experiment was conducted in August 2014 in Taihu Lake, Wuxi.
Subject to experimental conditions, the lake test was carried out using the surface boat and acoustic
communication equipment shown in Figures 1 and 2. The experimental constitution scheme of the
cooperative navigation lake test is shown in Figure 3. Three survey vessels are used in the test.
Two vessels acted as the master AUVs and the other is the slave AUV. Each AUV is equipped with
underwater acoustic communication equipment S2CR 7/17 (Evologics, Berlin, Germany), which is used
to construct the underwater acoustic communication network, obtain the relative range measurements
between the master and slave AUVs and transfer the reference information. The real-time GPS position
information of two master AUVs is used as a reference during the test. The position deduced from the
dead reckoning (DR) of the slave AUV is based on the absolute speed information provided by the
DVL and the heading information provided by the magnetic compass with a 1 Hz frequency. At the
same time, a GPS/Photonics Inertial Navigation System (PHINS) integrated navigation system is also
installed on the slave AUV to provide relatively accurate position, speed and heading references as
benchmarks. The relevant sensor indicators used during the test are shown in Table 1. The slave AUV
can only receive one acoustic measurement from the master AUV at a time. Due to the complicated
underwater environment, the underwater acoustic measurement information may be lost or garbled.
For the convenience of data processing, the received acoustic communication data will be stored only
if the measurement information received from the master AUVs is correct.
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Figure 2. S2CR 7/17 acoustic equipment.
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Table 1. The performance of the sensors used in experiments.

Sensors Index Parameters

S2CR 7/17
(Master/Slave)

Working range Up to 8000 m
Data transfer rate Up to 6.9 kbit/s

Error rate Less than 10−10

GPS (Master/Slave)
Velocity accuracy 0.1 m/s
Position accuracy Less than 2.5 m (Root Mean Square (RMS))
Data update rate 10 Hz

Compass (Slave) Heading accuracy 2◦

DVL (Slave) Velocity accuracy 0.1%

The trajectories of the two master AUVs and one slave AUV together with the dead reckoning
of slave AUV are drawn in Figure 4. It can be seen that the DR trajectory of the slave vehicle (blue
dashed line) gradually diverges from the true trajectory (red dashed line) over time, which will cause a
large navigation error.
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We use the multi-AUVs cooperative navigation scenario through this lake trial experiment to verify
the effectiveness and superiority of the algorithm proposed in this paper. The traditional EKF-based
cooperative navigation algorithm and the variational Bayesian-based cooperative navigation algorithm
proposed in this paper are both used to estimate the location of the slave AUV and compare their
performance. In addition, the Sage-Husa Extended Kalman Filter (SHEKF) and Maximum Likelihood
Extended Kalman Filter (MLEKF) are also introduced to verify the superiority of the proposed
navigation algorithm [31]. They are common methods for estimating unknown noise parameters in
practical applications.

The initial state estimate X̂0|0 is provided by GPS. And the initial state estimation error covariance

is set as P0|0 = diag
[
(1m)2, (1m)2

]
. The parameter values of the proposed algorithm and existing

algorithms are shown in Table 2. They were carried out in MATLAB R2014 on a computer with an
Intel®Core™ i5-3470 CPU 3.20 GHz and 4 GB of RAM. In order to compare the accuracy of the state
estimation of the above nonlinear filtering algorithm, the position error and the average position error
are chosen as performance indicators, which are defined as follows:

Position Error(k) =

√(
xk − x̂k|k

)2
+
(

yk − ŷk|k

)2
, (54)

RMSE =
1
T

T

∑
k=1

√
(xk − x̂k)

2 + (yk − ŷk)
2, (55)

where (xk, yk) is the reference position of the slave AUV provided by GPS, (x̂k|k, ŷk|k) is the estimated
position at time k, and T is the time length.

Table 2. Parameter values of the proposed algorithm and existing algorithms.

Filters Parameter Value

SHEKF Forgetting factor 1− exp(4)
MLEKF Sliding window size 20

The proposed VBAEKF Forgetting factor ρ = 1− exp(4)
Tuning parameter τ = 2

The iteration number N = 5

SHEKF: Sage-Husa Extended Kalman Filter; MLEKF: Maximum Likelihood Extended Kalman Filter; VBAEKF:
Variational Bayesian Adaptive Extended Kalman Filter.
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In order to better demonstrate the effectiveness and superiority of the algorithm, we consider
two cases:

Case 1: In the first case, we assume that the nominal state noise covariance and measurement
noise covariance are constant in EKF, and they are used as the initial values in the proposed VB-based
adaptive filter. Then Q and R are chosen as

Q =

[
(0.5m)2 0

0 (0.5m)2

]
R =

(√
2m
)2

, (56)

The estimated errors from the slave AUV’s position are plotted in Figure 5. The results show
that in the traditional EKF-based cooperative navigation algorithm, the state process noise error and
measurement noise error do not obey the constant values, resulting in obvious deviation and a long
period of time to regain the correct estimate position. In SHEKF, the performance of SHEKF is not
ideal because the online estimation of noises is not accurate. From Figure 6, it can be seen that after
1100 s, the drastic decrease in the measured value leads to a large positioning error. The estimated
noise covariance matrix of MLEKF is not accurate when an abnormal innovation occurs because
the MLEKF relies heavily on the changes of new innovations, which may lead to divergence for
the estimated solution. Compared with the traditional EKF, the Sage–Husa adaptive filter and the
maximum likelihood adaptive filter, the proposed VB-based adaptive filter can quickly adjust and
converge after the position estimation error peak.Sensors 2018, 18, x FOR PEER REVIEW  13 of 17 
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Figure 5. Position estimation errors for Case 1 for the EKF, MLEKF, SHEKF and VBAEKF.
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Table 3 shows the average positioning error and average execution time for the existing algorithm
and the proposed algorithm. It can be seen that the execution time of the traditional EKF and
Sage–Husa adaptive algorithm is almost the same, and the implementation time of the proposed
VB-based adaptive algorithm is slightly longer than the traditional EKF, taking into account the time of
the iteration is reasonable. For many practical applications, this increase in execution time is negligible
considering the increase in accuracy.

Table 3. RMSE and the average execution time during Case 1 for the Extended Kalman filter (EKF),
SHEKF and the VBAEKF.

Filters RMSE (m) Execution Time (s)

EKF 6.92 m 3.78× 10−5

SHEKF 6.64 m 3.97× 10−5

The proposed VBAEKF 3.83 m 1.38× 10−4

Case 2: In the second case, Q and R are chosen as large value noises, which are set as:

Q =

[
(1)2 0

0 (1)2

]
R =

(√
30
)2

, (57)

where T = 3554 s denotes the test time, and k is the time step.
Figure 7 shows the position estimation errors of the existing algorithm and the proposed algorithm.

It can be seen that when SHEKF processes large value noise parameters, the estimation error is
worse than EKF. The performance of MLEKF in the second case diverges faster than in the first
case. From Table 4, it can be seen that the average positioning error of the traditional EKF-based
cooperative navigation algorithm is 6.33 m. The use of the VBAEKF-based cooperative navigation
algorithm reduces the average positioning error to 4.5 m, and the positioning accuracy is improved
by 28.9%. The algorithm presented in this paper has obvious improvement in positioning accuracy
compared with the existing algorithms. This is because the proposed algorithm can better estimate
the prediction covariance matrix and the measurement noise covariance matrix than the existing
algorithms. Therefore, compared with other existing cooperative navigation algorithms, the proposed
algorithm is more robust against large values of the process noise covariance matrix and measurement
noise covariance matrix.Sensors 2018, 18, x FOR PEER REVIEW  14 of 17 
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Figure 7. Position estimation errors for Case 2.
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Table 4. RMSE and the average execution time for Case 2.

Filters RMSE (m) Execution Time (s)

EKF 6.33 m 3.52× 10−5

SHEKF 6.65 m 3.86× 10−5

The proposed VBAEKF 4.50 m 1.34× 10−4

5. Conclusions

This paper presents a variational Bayesian adaptive extended Kalman filter algorithm for
cooperative navigation of master–slave AUVs. The predicted error covariance matrix and measurement
noise covariance matrix are modeled as inverse Wishart priors and are inferred by the VB method
together with the system state. In the proposed method, the predicted error covariance matrix is
estimated instead of process noise parameters, so the state estimation considers not only the change of
noise, but also the variation of the predicted covariance to better model the cooperative navigation of
AUVs. It is compared with the typical cooperative navigation algorithms using real experimental data.
Experimental results show that the proposed adaptive EKF algorithm is superior to the traditional
EKF algorithm and the Sage-Husa adaptive algorithm in terms of positioning error and is suitable for
application in multi-AUVs cooperative navigation.

Author Contributions: For C.S. conceived the idea for this paper, designed the experiments and wrote the
paper; G.W. assisted in model designing and experiments. Y.Z. and W.G. polished the language and in charge of
technical checking.

Funding: This work was supported in part by the National Natural Science Foundation of China under grant
number 61773133 and Ph.D. Student Research and Innovation Foundation of the Fundamental Research Funds
for the Central Universities under grant number HEUGIP201807.

Acknowledgments: The authors would like to thank Yulong Huang, at the college of Automation, Harbin
Engineering University for providing comments and suggestions on the revised version of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Derivation of (28)

According to Bayes’ theorem, the joint PDF can be expressed as:

p(Xk, Pk|k−1, Rk, Z1:k) = p(Zk|Xk, Rk)p(Xk|Z1:k−1, Pk|k−1)p(Pk|k−1|Z1:k−1)p(Rk|Z1:k−1)p(Z1:k−1). (A1)

Substituting (6), (7), (13) and (14) into (A1) yields:

p(Xk, Pk|k−1, Rk, Z1:k) = N(Zk; h(Xk), Rk)N(Xk; X̂k|k−1, Pk|k−1)

×IW(Pk|k−1; t̂k|k−1, T̂k|k−1)IW(Rk; ûk|k−1, Ûk|k−1)p(Z1:k−1).
(A2)

Using Equation (8), log N(A; γ, Σ) is formulated as:

log{N(A; γ, Σ)} = log
{

1√
2π
|Σ|−

1
2 e−

1
2 (A−γ)TΣ−1(A−γ)

}
= log 1√

2π
− 1

2 log|Σ| − 1
2 (A− γ)TΣ−1(A− γ) = − 1

2 log|Σ| − 1
2 (A− γ)TΣ−1(A− γ) + cA,

(A3)

where cA represents the constant with respect to variable A.
Using Equation (11), log IW(B; λ, Ψ) is formulated as:

log{IW(B; λ, Ψ)}

= log
{
|Ψ|λ/2|B|−(λ+d+1)/2e−trace(ΨB−1)/2

2dλ/2Γd(λ/2)

}
= λ

2 log|Ψ| − (λ+d+1)
2 log|B| − 1

2 trace(ΨB−1)− dλ
2 log 2− log Γd(λ/2)

= − (λ+d+1)
2 log|B| − 1

2 trace(ΨB−1) + cB,

(A4)
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where cB represents the constant with respect to variable B.
Using (A2)–(A4), the logarithm of joint PDF can be formulated as:

log p(Xk, Pk|k−1, Rk, Z1:k)

= log
{

N(Zk; h(Xk), Rk)N(Xk; X̂k|k−1, Pk|k−1)

×IW(Pk|k−1; t̂k|k−1, T̂k|k−1)IW(Rk; ûk|k−1, Ûk|k−1)p(Z1:k−1)

= − 1
2 log|Rk| − 1

2 (Zk − h(Xk))
TR−1

k (Zk − h(Xk))− 1
2 log

∣∣∣Pk|k−1

∣∣∣
− 1

2

(
Xk − X̂k|k−1

)T
P−1

k|k−1

(
Xk − X̂k|k−1

)
− t̂k|k−1+n+1

2 log
∣∣∣Pk|k−1

∣∣∣
− 1

2 trace
(

T̂k|k−1P−1
k|k−1

)
− ûk|k−1+m+1

2 log|Rk| − 1
2 trace

(
Ûk|k−1R−1

k

)
+ cΘ

= − 1
2

(
m + ûk|k−1 + 2

)
log|Rk| − 1

2 (Zk − h(Xk))
TR−1

k (Zk − h(Xk))

− 1
2 trace

(
Ûk|k−1R−1

k

)
− 1

2 (n + t̂k|k−1 + 2) log
∣∣∣Pk|k−1

∣∣∣
− 1

2 (Xk − X̂k|k−1)
TP−1

k|k−1(Xk − X̂k|k−1)− 1
2 trace

(
T̂k|k−1P−1

k|k−1

)
+ cΘ,

(A5)

where cΘ represents the constant with respect to variables Xk, Pk|k−1 and Rk.
Using (A5) in (26), the detailed derivation of Equation (28) is presented as follows:

log q(i+1)(Pk|k−1) = E(i)
Xk ,Rk

[
log p(Xk, Pk|k−1, Rk, Z1:k)

]
+ cPk|k−1

= − 1
2

(
m + ûk|k−1 + 2

)
E(i)[log|Rk|]− 1

2 E(i)
[
(Zk − h(Xk))

TR−1
k (Zk − h(Xk))

]
− 1

2 E(i)
[
trace

(
Ûk|k−1R−1

k

)]
− 1

2 (n + t̂k|k−1 + 2) log
∣∣∣Pk|k−1

∣∣∣
− 1

2 trace
(

A(i)
k + T̂k|k−1P−1

k|k−1

)
+ cΘ

= − 1
2 (n + t̂k|k−1 + 2) log

∣∣∣Pk|k−1

∣∣∣− 1
2 trace

((
A(i)

k + T̂k|k−1

)
P−1

k|k−1

)
+ cPk|k−1

,

(A6)

where

cPk|k−1
= − 1

2

(
m + ûk|k−1 + 2

)
E(i)[log|Rk|]− 1

2 E(i)
[
(Zk − h(Xk))

TR−1
k (Zk − h(Xk))

]
− 1

2 E(i)
[
trace

(
Ûk|k−1R−1

k

)]
+ cΘ.

Similarly, Equations (33) and (38) can also be obtained.
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