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Abstract: In an inertial navigation system, especially in a pedestrian dead-reckoning system, 

gyroscope bias can demonstrably reduce positioning accuracy. A novel gyroscope bias estimation 

algorithm is proposed, which estimates the bias of a gyroscope under any set of angle observations. 

Moreover, a method for obtaining Euler angles using map corridor information is proposed. The 

heading information obtained from a map is used to estimate the bias, and the estimated bias is used 

to correct the trajectories. Experimental results show that it is feasible for the algorithm to estimate 

the bias of the gyroscope. 
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1. Introduction 

Accurate attitude information (pitch, roll, and heading angles) is an essential part of good 

navigation results. In various systems that rely on inertial sensors for navigation and positioning, 

attitude information is obtained mainly using a gyroscope. However, because of factors such as 

materials and manufacturing processes, the values measured by gyroscopes include errors. 

Especially for low-cost gyroscopes, large random errors in measurement occur [1]. Also, in long-term 

navigation, errors seriously impede estimation accuracy and even result in positioning being 

unavailable. Therefore, it is necessary to estimate and eliminate the bias of the gyroscope. 

Some researchers have estimated gyroscope bias based on quaternion. Vik et al. [2] proposed a 

scheme to express nonlinear kinematics using quaternions. It is assumed that the bias model of the 

gyroscope exponentially decays, but that does not correspond to the actual situation. Boskovic et al. 

[3,4], proposed a quaternion-based nonlinear deviation estimator and coupled the estimator with an 

adaptive sliding control strategy. Because the object in these papers is a spacecraft, the motion model 

is more constrained. The estimator assumes that the change of attitude of the spacecraft will not 

exceed 180 degrees and the change cannot be applied to some situations with large changes in 

attitude. The stability between coupled observers, controllers, and spacecraft dynamics is not 

formally established. Yuan [5] proposed a 16-stage rotation scheme for a dual-axis rotary inertial 

navigation system (INS) that can compensate for gyro drift errors without introducing additional 

system error accumulation. Wu et al. [6] proposed a Rotary Inertial Measurement Unit (RIMU) 

method. The accelerometer is used to measure the relationship between the components of the 

gravity acceleration in each axis and the angular velocity of the gyroscope. Using the dial to get 

relationship under different coordinate axes and to obtain the multiple equations which can be used 

to estimate bias. Although these methods can estimate the deviation of the gyroscope, they require a 

turning tool that can turn any angle around any axis. The bias of the gyroscope is obtained from 

experiments, but the gyro bias cannot be tracked in real time, and corrections cannot be made. 
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Applications are limited. For example, it is difficult to apply these methods to the indoor positioning 

of a pedestrian. Thienel et al. [7] tracked the bias of the gyroscope in real time as the bias converged 

exponentially. However, this method is applied in the case of aerospace space. The motion model, 

which is not applicable to robots or walking navigation, has limitations. Benallegue et al. [8], used an 

inertial vector measurement to design an adaptive attitude tracker for a rigid body system. The 

angular velocity and attitude asymptotically converge to their expected values. However, their 

method requires controlled inputs and there is no feedback of the attitude. In addition, to estimate 

the gyro bias, some methods must be combined with magnetometers [9], GPS [10,11], or other 

external aids. However, these methods are prone to errors when unpredictable distortion of the 

Earth’s geomagnetic field occurs [12,13], GPS signals are not available [14], or when external auxiliary 

sensors cannot be installed, e.g., in an urban environment and in a building with many steel 

structures [15]. 

We propose a method that does not rely on specific sensor information. By solving the attitude 

angle matrix differential equation of the rigid body rotation, the recurrence relation between the 

quaternion of the real angle and the sensor is obtained. Therefore, when there is an arbitrary set of 

observations of the Euler angle input, the deviation of the gyroscope is tracked and corrected in real 

time. We use the long corridor information of a map to obtain true heading information. In Section 2, 

the method and formula derivation are introduced, and an angle observation method is provided. In 

Section 3, the Euler angles obtained from this angle observation method are combined with the gyro 

bias estimation algorithm to obtain simulation results. The results show that it is feasible for the 

algorithm to estimate the bias of the gyroscope. 

2. Algorithm Introduction 

2.1. Method 

After the output of the gyroscope is processed, the angle (also called Euler angle) of the attitude 

of the current carrier in the geographic coordinate system is obtained and expressed as follows: 

( )k ku f=   (1) 

where, 
k  represents the output of the gyroscope at the current moment; 

ku  represents the attitude 

angle of the object at the current moment. For Equation (1), a good attitude is obtained with a more 

accurate gyro output. Good positioning results and navigation trajectory are obtained with an 

accurate attitude angle. The output of the gyroscope inevitably contains the deviation of the 

gyroscope, which affects the Euler angle calculations. Over time, the errors accumulate and 

eventually cause the output information from the gyroscope to be completely unreliable. So the 

problem of how to acquire accurate gyroscope output must be solved. Likewise, accurate 

observations of the angle can be obtained through maps, magnetic fields or other methods. By using 

the long corridor information of the map, we can obtain the true heading information and inversely 

calculate the more accurate three-axis rotation speed: 

1( )r

k kf u− =  (2) 

k  is compared with the output of the gyroscope to obtain the gyro bias. By compensating the 

gyroscope output with the obtained gyro bias, accurate gyro output is obtained. 

2.2. Formula Derivation 

The nature of the quaternion is very favorable for expressing rotational information [16]. By 

deducing and analyzing the quaternion differential equation, we can obtain the relationship between 

the quaternion obtained from the gyroscope output and the quaternion obtained from the real data. 

The quaternion differential equation is expressed as follows [17]: 
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Equation (3) is expressed in matrix form as follows: 
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where , ,
n n n

nbx nby nbz
    are the angular velocities of the relative reference frame around each axis that 

are acquired directly by a three-axis gyroscope. The quaternion, q , represents the process of 

rotation. 
0 1 2 3p p p p=  + + +q 1 i j k , and the imaginary unit, , ,i j k , are the unit vectors of the three-

dimensional space. 

Using the Peano-Baker Approximation method in Equation (4) and for gyroscopes, the data 

output by the sensor is a discrete value; therefore, Equation (3) is expressed as follows: 

 1

1
exp( )

2
k k k+ = q θ q  (5) 

where θ  is the three-axis rotation angle obtained by integrating the angular velocities of the three 

axes. The resulting expression is as follows:  
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(6) 

where Ts  is the sampling time of the gyroscope, and b

nbω  is the output of the gyroscope in the 

carrier coordinate system. For the gyroscope output, 
k

  at k, we assume that 
k

  is obtained by 

superimposing a gyro bias, 
bk

 , and a random noise, 
kv , on the true value, 

r

k
 . The bias of the 

gyroscope changes slowly over time; however, over a short time, the deviation of the gyroscope can 

be regarded as a constant. Thus, the output of the gyroscope is expressed as follows: 

= r

k k bk kv  + +  (7) 

The symbol, r , represents real data. Then, Equation (5) is re-written as follows: 

1

[ ] [ ]
=exp( ) exp( ( )

2 2
)

2 2

r
rk b

k k k kkbk

Ts Ts
w vw

 
+ + =  +  +q q q  (8) 

because: 

2

( )
r r r r

k b b k k bk bk k
w w w wTs    −  =  −   (9) 

For a gyroscope with a sampling rate of 100 Hz, the sampling time is 2=10  sTs − . Because the 

gyroscope bias is also a small value, the approximation is as follows: 

[ ] [ ] [ ] [ ] 0
r r

k bk bk k
    −    (10) 
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Therefore, according to Equation (10), and because of the nature of the matrix function, the 

following is introduced: 

[ ] [ ] [ ] [ ]
exp( ) exp( )=exp( ) exp( )

2 2 2 2

r r

k bk bk k
   

   (11) 

Then we obtain: 

1

[ ] [ ]
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Therefore Equation (12) is expressed as follows: 
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Among them, 1k +
q  represents the quaternary value of the current attitude angle; 

1

r

k +
q  

represents the quaternion corresponding to the current real attitude angle; exp( )

1 2

k

biw
Ts

  represents the 

deviation of the attitude angle caused by the gyro error. Equation (13) shows that the attitude angle 

from the gyroscope is obtained by adding an angle change caused by the deviation of the true value 

of the attitude angle. Therefore, the gyro bias, 
bi

w , is estimated by knowing the true value, 
1

r

k +
q , of 

the attitude at any time. 

2.3. Filter Design and Error Analysis 

Because the deviation of the gyroscope changes slowly with time, when converted into the 

attitude angle, it is already included in the trigonometric function and becomes a nonlinear error. 

Using the conclusions derived above, the gyroscope bias can be expressed linearly. So we design a 

Kalman filter to estimate the gyroscope bias. We assume that the gyro bias is constant during a short 

period of time and the gyro bias is the stated quantity of our Kalman filter. The system equation is 

then written as follows: 

1k k k
X FX Q

+
= +  (14) 

where X is the deviation of the three-axis gyroscope. Since the deviation is assumed to remain 

constant during the sampling time, F is set to a three-dimensional unit matrix. Q is the process noise, 

which consists mainly of the random noise of the gyroscope. 

In Equation (13), we chose to use Newton’s iterative method to estimate 
1 12 2

k k

bi i

Ts Ts
w v +    in 

each iteration. Then, from the estimated 
-1 -1

1 12 2

k k

bi i

Ts Ts
w v +   , by subtracting them at the last moment, 

we obtain the estimated gyroscope deviation, 
bk kw v+  at k, and use it as the observation, y, in our 

Kalman filter. In this way, we write our observation equation as follows: 

k ky HX R= +  (15) 

R is the observation noise, consisting mainly of the random noise of the gyroscope, the error of 

the Newton iteration method algorithm, and the error of the method for acquiring the attitude angle 

observation. We use the long corridors in the map information to acquire the observations. Because 

it is much smaller than the errors of the random noise and the observation error of the attitude angle, 
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the error in the Newton iteration method can be ignored. Therefore, we analyze only the influence of 

the error of the attitude angle observation method in the estimation of the gyro bias. Set the roll angle, 

pitch angle, and heading angle deviation caused by observation error to be , ,     , 

respectively. Then for the actual situation: 

ˆexp( ) ( + , + , + )r

k kq x q      =      (16) 

where x̂  is 
1 12 2

k k

bi i

Ts Ts
w v +   , i.e., the part of the gyro bias estimation when there is an angle 

observation noise. For the ideal case of angle observation, i.e., observation without noise: 

exp( ) ( , , )r

k kq x q   =   (17) 

where x is the calculated gyroscope bias estimation section under ideal conditions; 
kq  is the 

quaternion solved by the gyroscope output. This yields the following: 

ˆexp( ) ( , , ) exp( ) ( + , + , + )r r

k kx q x q         =      (18) 

According to the lemma of the previous section we obtain: 

ˆ( , , ) exp( ) ( + , + , + ) exp( ) ( + , + , + )r r r

k k kq x x q x q              = −     =       (19) 

Because ( + , + , + )r

kq          rotates , ,      on the basis of ( , , )r

kq    , the 

recurrence relation of quaternions is obtained: 
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The expression of the Euler angles will be different depending on the sequence in which the 

coordinate axis rotates around the three axes. In this paper, expression as following: 
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 = 
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 (21) 

The certification process for this formula is shown in Appendix A. Then: 
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At the same time, a Taylor expansion on 
xe

 takes its linear term to be the following: 
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According to Equations (22) and (23), we obtain: 

y

1

1

1

x x

y

z z

w
kTs

w
kTs

w
kTs








 = − 


 = − 


 = − 


 
(24) 

2.4. Methods for Obtaining Observations 

We choose a set of Euler angle measurements and then combine the above algorithm to estimate 

the gyro bias. The roll and pitch angles at this time are considered as “0”. So long as the heading angle 

of the foot can be obtained, we can obtain a set of Euler angles. Walking in an indoor environment, 

in some areas such as corridors and stair elevators, pedestrians will enter from a certain direction. 

The direction extracted in these specific areas can be used as a reference for the heading angle. A long 

straight corridor in an indoor map environment can be considered as such an area. In normal 

walking, pedestrians generally proceed along the direction of the corridor. Thus, long straight 

corridors can be used as a reference for direction correction. Assume the orientation of the corridor 

in the geographic coordinate system is  . Since there are two directions when pedestrians walk in 

the corridor, the observations for the heading are   and  + . When pedestrians are walking in 

the corridor, we must first judge the choice of heading observations. Thus, we can use the orientation 

of the corridor as the real heading of a pedestrian in the corridor. The deviation of the gyroscope is 

estimated by solving Equation (13). 

For this method of angle acquisition, we believe that only the heading angle contains errors. The 

roll and pitch angles are considered accurate. In this way, Equation (24) is expressed as follows: 

0
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Let   be subject to the distribution of 2
(0, )N  . The value of 

2
  is determined by the 

range of values of the heading angle given by the map. Then the covariance matrix of the gyro bias 

due to angular observation method error is as follows: 

2

0 0 0

0 0 0

0 0 ( )
kTs



 
 
 
 
 
 
 

 (26) 
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3. Experiment 

During the experiment, the Xsens sensor was attached to the right foot of an experimenter who 

walked four rounds along a corridor 39 m long and 2.4 m wide. The total duration of the experiment 

was 284.98 s. A preset bias was added to all the collected original gyro data of the high precision 

sensor. The added biases for the three axes (x, y, z) are [0.001, 0.001, 0.005] rad/s. In this experiment, 

as the foot moves, the sensor rotates and moves in three-dimensional space. Simultaneously, we 

observe the three-axis gyroscope at each zero-velocity update (ZUPT) point. The observation of the 

heading angle is the direction of the corridor, and at the ZUPT point, both the roll and pitch angles 

are zero. Pedestrian trajectory estimation is shown in Figure 1. 

 

Figure 1. Pedestrian trajectory based on gyro bias estimation. 

As seen from Figure 1, after adding noise, the corrected trajectory is significantly better than the 

track. In this experiment, due to the lack of the position of the true value of the foot, the results of the 

noise-added trajectory at the time of foot landing were compared with the results of the modified 

trajectory and the results of the Xsens high-precision sensor. The resulting parameter comparison is 

shown in Table 1. 

Table 1. Comparison of gyro error estimation trajectory drift based on quaternion. 

 Original Path (m) Noise Path (m) Corrected Path (m) 

Drift Mean 0 7.10 1.75 

Median drift 0 5.30 1.21 

Total drift 0 1746.60 428.09 

Positioning error 2.75 22.70 5.88 

According to the data in Table 1, the total error of the corrected path and the pre-correction 

comparison is reduced by 75% and the average error is reduced by 75%, indicating improvement of 

the trajectory drift caused by the deviation of the gyroscope. The gyro error estimate is shown in 

Figure 2. 

As seen from Figure 2, there is a large fluctuation in the estimation of the gyroscope error in the 

initial period of time, but, with the passage of time (about 50 s in this experiment), the fluctuation 

gradually stabilizes to a certain value. The convergence time is not only caused mainly by the lack of 

the priori information of the gyroscope bias, but also by the orientation of the pedestrian, which is 

inconsistent with the map at the beginning of the experiment. After tracking the deviation of the 

gyroscope, the deviation of the gyroscope is estimated in real time. By the time a pedestrian turns, 

the person’s heading will change from around 0 to near −180°. Since the gyroscope cannot be in the 

state of ZUPT at all times, the heading change will affect the three axes at the same time. Thus, the 
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deviation at the moment of turning (Figure 2) causes a downward jump. The gyro deviation of the 

convergence phase is averaged, and the three-axis deviation of the gyroscope is [0.00098, 0.00027, 

0.0042], which is [98%, 27%, 84%] compared with the noise we added after the experiment. Over time, 

the gyroscope bias of the Y-axis gradually approaches the real angle and becomes more accurate. 

  
(a) (b) 

Figure 2. (a) Gyroscope bias estimation based on map information; (b) Variation of covariance matrix 

of Kalman filter with time. 

We take the value of the bias after the deviation estimate converges to correct the trajectory with 

the deviation. The deviation estimate is used to calculate the trajectory comparison data obtained in 

the Table 2. 

Table 2. Gyro Error Estimation Trajectory Comparison Based on Map Information. 

 Original Path (m) Noise Path (m) Corrected Path (m) 

Drift Mean 0 7.10 1.32 

Median drift 0 5.30 1.00 

Total drift 0 1746.60 325.34 

Positioning error 2.75 22.70 4.34 

The comparison in Table 1 shows that, after removing the inaccuracy of the estimation due to 

the initial angular deviation, the overall trajectory accuracy is slightly improved. Compared with the 

trajectory with noise, the total error is reduced by 81%, and the average error is reduced by 81%. 

For the acquired high-precision data, based on the previously added deviation, a linear bias of 

a slope of 5 × 10−7 is added to the z-axis of the gyroscope. Results for the gyro bias of the z-axis versus 

time are shown in Figure 3. 

 

Figure 3. Gyroscope z-axis bias estimation based on map information. 
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As shown, our estimated deviation also rises linearly after converging for 50 s. It conforms to 

the changing law of the bias we add. After 200 s, the data is averaged; then the estimated bias is  

0.0113 rad/s. Assume the random noise average is zero; then the true bias is 0.0191 rad/s and the error 

is 0.0058 rad/s. 

4. Discussion 

The heading information of the long corridor of the map and ZUPT point information are used 

to estimate the deviation of the gyroscope. In fact, as long as it can accurately observe the angle, the 

algorithm can estimate the deviation of the gyroscope. The influence of angle observation error on 

gyroscope bias is analyzed. Regarding map information, the long corridor is just a means for 

obtaining the heading. Maps like escalators, long straight stairs, and even turns are used to obtain 

angle observations. Instead of maps, GNSS, like geomagnetism, provides angular information to 

estimate bias. The application is not limited to pedestrian navigation. In our experiment, based on 

the high-precision sensor collected by the experimenter, to correct the deviation, a fixed deviation 

was artificially added. In the future, the deviation of the sensor may be modeled, and the deviation 

of the gyroscope may be predicted. 

5. Conclusions 

To improve the accuracy of the navigation trajectory, we estimated the deviation of the 

gyroscope. Using the quaternion expression of the rotation process, we obtained the relationship 

between the rotation process calculated by the gyroscope output and the actual rotation process, 

which is caused by the deviation of the gyroscope. The true angle is obtained through the heading 

information of the long corridor of the map. According to the angle obtained by the gyroscope, the 

deviation of the gyroscope can be calculated. Experimental results show that the algorithm effectively 

estimates the bias of the gyroscope. 
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Appendix A 

The expression of the Euler angles will be different depending on the sequence in which the 

coordinate axis rotates around the three axes. In this paper, we use the Euler angular velocity matrix 

has the following form [17]: 

sin( )sin( ) cos( ) cos( )sin( )
1

= cos( )cos( ) 0 sin( )cos( )
cos

sin( ) 0 cos( )

x

y

z

      

     


   

  −   
     
     

    −    

 (A1) 

where the three-axis rotational angular velocity in the body coordinate frame, ( )
T

x y z
   , is the 

output of the gyroscope. The Euler angular velocity is ( )
T

   . Integrating time on both sides 

of the equation results in the following: 
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From the inverse matrix, we finally obtain the following: 

cos sin

cos sin sin cos cos
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 =  −  − 

 (A3) 
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