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Abstract: In an inertial navigation system, especially in a pedestrian dead-reckoning system,
gyroscope bias can demonstrably reduce positioning accuracy. A novel gyroscope bias estimation
algorithm is proposed, which estimates the bias of a gyroscope under any set of angle observations.
Moreover, a method for obtaining Euler angles using map corridor information is proposed.
The heading information obtained from a map is used to estimate the bias, and the estimated
bias is used to correct the trajectories. Experimental results show that it is feasible for the algorithm
to estimate the bias of the gyroscope.
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1. Introduction

Accurate attitude information (pitch, roll, and heading angles) is an essential part of good
navigation results. In various systems that rely on inertial sensors for navigation and positioning,
attitude information is obtained mainly using a gyroscope. However, because of factors such as
materials and manufacturing processes, the values measured by gyroscopes include errors. Especially
for low-cost gyroscopes, large random errors in measurement occur [1]. Also, in long-term navigation,
errors seriously impede estimation accuracy and even result in positioning being unavailable.
Therefore, it is necessary to estimate and eliminate the bias of the gyroscope.

Some researchers have estimated gyroscope bias based on quaternion. Vik et al. [2] proposed
a scheme to express nonlinear kinematics using quaternions. It is assumed that the bias model of
the gyroscope exponentially decays, but that does not correspond to the actual situation. Boskovic et
al. [3,4], proposed a quaternion-based nonlinear deviation estimator and coupled the estimator with
an adaptive sliding control strategy. Because the object in these papers is a spacecraft, the motion
model is more constrained. The estimator assumes that the change of attitude of the spacecraft will
not exceed 180 degrees and the change cannot be applied to some situations with large changes
in attitude. The stability between coupled observers, controllers, and spacecraft dynamics is not
formally established. Yuan [5] proposed a 16-stage rotation scheme for a dual-axis rotary inertial
navigation system (INS) that can compensate for gyro drift errors without introducing additional
system error accumulation. Wu et al. [6] proposed a Rotary Inertial Measurement Unit (RIMU)
method. The accelerometer is used to measure the relationship between the components of the gravity
acceleration in each axis and the angular velocity of the gyroscope. Using the dial to get relationship
under different coordinate axes and to obtain the multiple equations which can be used to estimate
bias. Although these methods can estimate the deviation of the gyroscope, they require a turning tool
that can turn any angle around any axis. The bias of the gyroscope is obtained from experiments, but
the gyro bias cannot be tracked in real time, and corrections cannot be made. Applications are limited.
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For example, it is difficult to apply these methods to the indoor positioning of a pedestrian. Thienel et
al. [7] tracked the bias of the gyroscope in real time as the bias converged exponentially. However, this
method is applied in the case of aerospace space. The motion model, which is not applicable to robots
or walking navigation, has limitations. Benallegue et al. [8], used an inertial vector measurement
to design an adaptive attitude tracker for a rigid body system. The angular velocity and attitude
asymptotically converge to their expected values. However, their method requires controlled inputs
and there is no feedback of the attitude. In addition, to estimate the gyro bias, some methods must
be combined with magnetometers [9], GPS [10,11], or other external aids. However, these methods
are prone to errors when unpredictable distortion of the Earth’s geomagnetic field occurs [12,13], GPS
signals are not available [14], or when external auxiliary sensors cannot be installed, e.g., in an urban
environment and in a building with many steel structures [15].

We propose a method that does not rely on specific sensor information. By solving the attitude
angle matrix differential equation of the rigid body rotation, the recurrence relation between the
quaternion of the real angle and the sensor is obtained. Therefore, when there is an arbitrary set of
observations of the Euler angle input, the deviation of the gyroscope is tracked and corrected in real
time. We use the long corridor information of a map to obtain true heading information. In Section 2,
the method and formula derivation are introduced, and an angle observation method is provided.
In Section 3, the Euler angles obtained from this angle observation method are combined with the
gyro bias estimation algorithm to obtain simulation results. The results show that it is feasible for the
algorithm to estimate the bias of the gyroscope.

2. Algorithm Introduction

2.1. Method

After the output of the gyroscope is processed, the angle (also called Euler angle) of the attitude
of the current carrier in the geographic coordinate system is obtained and expressed as follows:

uk = f (Ωk) (1)

where, Ωk represents the output of the gyroscope at the current moment; uk represents the attitude
angle of the object at the current moment. For Equation (1), a good attitude is obtained with a
more accurate gyro output. Good positioning results and navigation trajectory are obtained with an
accurate attitude angle. The output of the gyroscope inevitably contains the deviation of the gyroscope,
which affects the Euler angle calculations. Over time, the errors accumulate and eventually cause
the output information from the gyroscope to be completely unreliable. So the problem of how to
acquire accurate gyroscope output must be solved. Likewise, accurate observations of the angle can
be obtained through maps, magnetic fields or other methods. By using the long corridor information
of the map, we can obtain the true heading information and inversely calculate the more accurate
three-axis rotation speed:

Ωk = f−1(uk
r) (2)

Ωk is compared with the output of the gyroscope to obtain the gyro bias. By compensating the
gyroscope output with the obtained gyro bias, accurate gyro output is obtained.

2.2. Formula Derivation

The nature of the quaternion is very favorable for expressing rotational information [16].
By deducing and analyzing the quaternion differential equation, we can obtain the relationship
between the quaternion obtained from the gyroscope output and the quaternion obtained from the
real data.
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The quaternion differential equation is expressed as follows [17]:

.
q(t) =

1
2
ωb

nb · q(t) (3)

Equation (3) is expressed in matrix form as follows:


.
p0.
p1.
p2.
p3

 =
1
2


0 −ωn

nbx −ωn
nby −ωn

nbz
ωn

nbx 0 ωn
nbz −ωn

nby
ωn

nby −ωn
nbz 0 ωn

nbx
ωn

nbz ωn
nby −ωn

nbx 0




p0

p1

p2

p3

 (4)

where ωn
nbx, ωn

nby, ωn
nbz are the angular velocities of the relative reference frame around each axis

that are acquired directly by a three-axis gyroscope. The quaternion, q, represents the process of
rotation. q = p01 + p1i + p2j + p3k, and the imaginary unit, i, j, k, are the unit vectors of the
three-dimensional space.

Using the Peano-Baker Approximation method in Equation (4) and for gyroscopes, the data
output by the sensor is a discrete value; therefore, Equation (3) is expressed as follows:

qk+1 = exp (
1
2
[∆θk])qk (5)

where ∆θ is the three-axis rotation angle obtained by integrating the angular velocities of the three
axes. The resulting expression is as follows:

[∆θk] = ωb
nb · Ts =


0 −ωn

nbx −ωn
nby −ωn

nbz
ωn

nbx 0 ωn
nbz −ωn

nby
ωn

nby −ωn
nbz 0 ωn

nbx
ωn

nbz ωn
nby −ωn

nbx 0

 · Ts (6)

where Ts is the sampling time of the gyroscope, andωb
nb is the output of the gyroscope in the carrier

coordinate system. For the gyroscope output, Ωk at k, we assume that Ωk is obtained by superimposing
a gyro bias, Ωbk, and a random noise, vk, on the true value, Ωr

k. The bias of the gyroscope changes
slowly over time; however, over a short time, the deviation of the gyroscope can be regarded as a
constant. Thus, the output of the gyroscope is expressed as follows:

Ωk = Ωr
k + Ωbk + vk (7)

The symbol, r, represents real data. Then, Equation (5) is re-written as follows:

qk+1 = exp(
[θr

k]

2
+

[θb]

2
)qk = exp(

Ts
2

· wr
k +

Ts
2

· (wbk + vk))qk (8)

because:
θr

k · θb − θb · θr
k = Ts2(wr

k · wbk − wbk · wr
k

)
(9)

For a gyroscope with a sampling rate of 100 Hz, the sampling time is Ts = 10−2s. Because the
gyroscope bias is also a small value, the approximation is as follows:

[θr
k] · [θbk]− [θbk] · [θr

k] ≈ 0 (10)
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Therefore, according to Equation (10), and because of the nature of the matrix function,
the following is introduced:

exp(
[θr

k]

2
) · exp(

[θbk]

2
) = exp(

[θbk]

2
) · exp(

[θr
k]

2
) (11)

Then we obtain:

qk+1 = exp(
[θr

k]

2
) · exp(

[θbk]

2
)qk = exp(

Ts
2

· wr
k) · exp[

Ts
2

· (wbk + vk)]qk (12)

Therefore Equation (12) is expressed as follows:

qk+1 = exp( Ts
2 · wr

k) · exp[ Ts
2 · (wbk + vk)]qk

=
k

∏
1
[exp( Ts

2 · wr
i ) · exp( Ts

2 · vi) · exp( Ts
2 · wbi)] · q1

= exp(
k
∑
1

Ts
2 · wbi +

k
∑
1

Ts
2 · vi) · qr

k+1

(13)

Among them, qk+1 represents the quaternary value of the current attitude angle; qr
k+1 represents

the quaternion corresponding to the current real attitude angle; exp(
k
∑
1

Ts
2 wbi) represents the deviation

of the attitude angle caused by the gyro error. Equation (13) shows that the attitude angle from the
gyroscope is obtained by adding an angle change caused by the deviation of the true value of the
attitude angle. Therefore, the gyro bias, wbi, is estimated by knowing the true value, qr

k+1, of the
attitude at any time.

2.3. Filter Design and Error Analysis

Because the deviation of the gyroscope changes slowly with time, when converted into the attitude
angle, it is already included in the trigonometric function and becomes a nonlinear error. Using the
conclusions derived above, the gyroscope bias can be expressed linearly. So we design a Kalman filter
to estimate the gyroscope bias. We assume that the gyro bias is constant during a short period of time
and the gyro bias is the stated quantity of our Kalman filter. The system equation is then written as
follows:

Xk+1 = FXk + Qk (14)

where X is the deviation of the three-axis gyroscope. Since the deviation is assumed to remain
constant during the sampling time, F is set to a three-dimensional unit matrix. Q is the process noise,
which consists mainly of the random noise of the gyroscope.

In Equation (13), we chose to use Newton’s iterative method to estimate
k
∑
1

Ts
2 · wbi +

k
∑
1

Ts
2 · vi

in each iteration. Then, from the estimated
k−1
∑
1

Ts
2 · wbi +

k−1
∑
1

Ts
2 · vi, by subtracting them at the last

moment, we obtain the estimated gyroscope deviation, wbk + vk at k, and use it as the observation, y,
in our Kalman filter. In this way, we write our observation equation as follows:

y = HXk + Rk (15)

R is the observation noise, consisting mainly of the random noise of the gyroscope, the error of
the Newton iteration method algorithm, and the error of the method for acquiring the attitude angle
observation. We use the long corridors in the map information to acquire the observations. Because it
is much smaller than the errors of the random noise and the observation error of the attitude angle,
the error in the Newton iteration method can be ignored. Therefore, we analyze only the influence of
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the error of the attitude angle observation method in the estimation of the gyro bias. Set the roll angle,
pitch angle, and heading angle deviation caused by observation error to be ∆φ, ∆θ, ∆ψ, respectively.
Then for the actual situation:

qk = exp(x̂) · qr
k(φ + ∆φ, θ + ∆θ, ψ + ∆ψ) (16)

where x̂ is
k
∑
1

Ts
2 · wbi +

k
∑
1

Ts
2 · vi, i.e., the part of the gyro bias estimation when there is an angle

observation noise. For the ideal case of angle observation, i.e., observation without noise:

qk = exp(x) · qr
k(φ, θ, ψ) (17)

where x is the calculated gyroscope bias estimation section under ideal conditions; qk is the quaternion
solved by the gyroscope output. This yields the following:

exp(x) · qr
k(φ, θ, ψ) = exp(x̂) · qr

k(φ + ∆φ, θ + ∆θ, ψ + ∆ψ) (18)

According to the lemma of the previous section we obtain:

qr
k(φ, θ, ψ) = exp(x̂ − x) · qr

k(φ + ∆φ, θ + ∆θ, ψ + ∆ψ) = exp(∆x) · qr
k(φ + ∆φ, θ + ∆θ, ψ + ∆ψ) (19)

Because qr
k(φ + ∆φ, θ + ∆θ, ψ + ∆ψ) rotates ∆φ, ∆θ, ∆ψ on the basis of qr

k(φ, θ, ψ), the recurrence
relation of quaternions is obtained:

qr
k+1 =


1 − 1

2 ∆θx − 1
2 ∆θy − 1

2 ∆θz

1
2 ∆θx 1 1

2 ∆θz − 1
2 ∆θy

1
2 ∆θy − 1

2 ∆θz 1 1
2 ∆θx

1
2 ∆θz

1
2 ∆θy − 1

2 ∆θx 1

 · qr
k (20)

The expression of the Euler angles will be different depending on the sequence in which the
coordinate axis rotates around the three axes. In this paper, expression as following:

∆θx = ∆θ

∆θy = cos φ∆φ + sin φ∆ψ

∆θz = cos θ sin φ∆φ − sin φ∆θ − cos φ cos θ∆ψ

(21)

The certification process for this formula is shown in Appendix A. Then:

(e∆x ·


1 − 1

2 ∆θx − 1
2 ∆θy − 1

2 ∆θz

1
2 ∆θx 1 1

2 ∆θz − 1
2 ∆θy

1
2 ∆θy − 1

2 ∆θz 1 1
2 ∆θx

1
2 ∆θz

1
2 ∆θy − 1

2 ∆θx 1

− I) · qr
k(θ) = 0 (22)



Sensors 2018, 18, 2534 6 of 10

At the same time, a Taylor expansion on e∆x takes its linear term to be the following:

e∆x ≈


1 − kTs

2 ∆wx − kTs
2 ∆wy − kTs

2 ∆wz

kTs
2 ∆wx 1 kTs

2 ∆wz − kTs
2 ∆wy

kTs
2 ∆wy − kTs

2 ∆wz 1 kTs
2 ∆wx

kTs
2 ∆wz

kTs
2 ∆wy − kTs

2 ∆wx 1

 (23)

According to Equations (22) and (23), we obtain:
∆wx = − 1

kTs ∆θx

∆wy = − 1
kTs ∆θy

∆wz = − 1
kTs ∆θz

(24)

2.4. Methods for Obtaining Observations

We choose a set of Euler angle measurements and then combine the above algorithm to estimate
the gyro bias. The roll and pitch angles at this time are considered as “0”. So long as the heading angle
of the foot can be obtained, we can obtain a set of Euler angles. Walking in an indoor environment,
in some areas such as corridors and stair elevators, pedestrians will enter from a certain direction.
The direction extracted in these specific areas can be used as a reference for the heading angle. A long
straight corridor in an indoor map environment can be considered as such an area. In normal walking,
pedestrians generally proceed along the direction of the corridor. Thus, long straight corridors
can be used as a reference for direction correction. Assume the orientation of the corridor in the
geographic coordinate system is ψ. Since there are two directions when pedestrians walk in the
corridor, the observations for the heading are ψ and ψ + π. When pedestrians are walking in the
corridor, we must first judge the choice of heading observations. Thus, we can use the orientation
of the corridor as the real heading of a pedestrian in the corridor. The deviation of the gyroscope is
estimated by solving Equation (13).

For this method of angle acquisition, we believe that only the heading angle contains errors.
The roll and pitch angles are considered accurate. In this way, Equation (24) is expressed as follows:

∆wx = 0

∆wy = 0

∆wz = 1
kTs ∆ψ

(25)

Let ∆ψ be subject to the distribution of N(0, σ2). The value of σ2 is determined by the range of
values of the heading angle given by the map. Then the covariance matrix of the gyro bias due to
angular observation method error is as follows: 0 0 0

0 0 0
0 0 ( σ

kTs )
2

 (26)

3. Experiment

During the experiment, the Xsens sensor was attached to the right foot of an experimenter who
walked four rounds along a corridor 39 m long and 2.4 m wide. The total duration of the experiment
was 284.98 s. A preset bias was added to all the collected original gyro data of the high precision sensor.
The added biases for the three axes (x, y, z) are [0.001, 0.001, 0.005] rad/s. In this experiment, as the
foot moves, the sensor rotates and moves in three-dimensional space. Simultaneously, we observe
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the three-axis gyroscope at each zero-velocity update (ZUPT) point. The observation of the heading
angle is the direction of the corridor, and at the ZUPT point, both the roll and pitch angles are zero.
Pedestrian trajectory estimation is shown in Figure 1.
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As seen from Figure 1, after adding noise, the corrected trajectory is significantly better than the
track. In this experiment, due to the lack of the position of the true value of the foot, the results of
the noise-added trajectory at the time of foot landing were compared with the results of the modified
trajectory and the results of the Xsens high-precision sensor. The resulting parameter comparison is
shown in Table 1.

Table 1. Comparison of gyro error estimation trajectory drift based on quaternion.

Original Path (m) Noise Path (m) Corrected Path (m)

Drift Mean 0 7.10 1.75
Median drift 0 5.30 1.21

Total drift 0 1746.60 428.09
Positioning error 2.75 22.70 5.88

According to the data in Table 1, the total error of the corrected path and the pre-correction
comparison is reduced by 75% and the average error is reduced by 75%, indicating improvement of the
trajectory drift caused by the deviation of the gyroscope. The gyro error estimate is shown in Figure 2.

As seen from Figure 2, there is a large fluctuation in the estimation of the gyroscope error in the
initial period of time, but, with the passage of time (about 50 s in this experiment), the fluctuation
gradually stabilizes to a certain value. The convergence time is not only caused mainly by the
lack of the priori information of the gyroscope bias, but also by the orientation of the pedestrian,
which is inconsistent with the map at the beginning of the experiment. After tracking the deviation
of the gyroscope, the deviation of the gyroscope is estimated in real time. By the time a pedestrian
turns, the person’s heading will change from around 0 to near −180◦. Since the gyroscope cannot
be in the state of ZUPT at all times, the heading change will affect the three axes at the same time.
Thus, the deviation at the moment of turning (Figure 2) causes a downward jump. The gyro deviation
of the convergence phase is averaged, and the three-axis deviation of the gyroscope is [0.00098, 0.00027,
0.0042], which is [98%, 27%, 84%] compared with the noise we added after the experiment. Over time,
the gyroscope bias of the Y-axis gradually approaches the real angle and becomes more accurate.



Sensors 2018, 18, 2534 8 of 10

Sensors 2018, 18, x FOR PEER REVIEW  8 of 10 

 

deviation at the moment of turning (Figure 2) causes a downward jump. The gyro deviation of the 

convergence phase is averaged, and the three-axis deviation of the gyroscope is [0.00098, 0.00027, 

0.0042], which is [98%, 27%, 84%] compared with the noise we added after the experiment. Over time, 

the gyroscope bias of the Y-axis gradually approaches the real angle and becomes more accurate. 

  
(a) (b) 

Figure 2. (a) Gyroscope bias estimation based on map information; (b) Variation of covariance matrix 

of Kalman filter with time. 

We take the value of the bias after the deviation estimate converges to correct the trajectory with 

the deviation. The deviation estimate is used to calculate the trajectory comparison data obtained in 

the Table 2. 

Table 2. Gyro Error Estimation Trajectory Comparison Based on Map Information. 

 Original Path (m) Noise Path (m) Corrected Path (m) 

Drift Mean 0 7.10 1.32 

Median drift 0 5.30 1.00 

Total drift 0 1746.60 325.34 

Positioning error 2.75 22.70 4.34 

The comparison in Table 1 shows that, after removing the inaccuracy of the estimation due to 

the initial angular deviation, the overall trajectory accuracy is slightly improved. Compared with the 

trajectory with noise, the total error is reduced by 81%, and the average error is reduced by 81%. 

For the acquired high-precision data, based on the previously added deviation, a linear bias of 

a slope of 5 × 10−7 is added to the z-axis of the gyroscope. Results for the gyro bias of the z-axis versus 

time are shown in Figure 3. 

 

Figure 3. Gyroscope z-axis bias estimation based on map information. 

0 100 200 300 400 500 600 700 800 900

time(10ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
corrvariance matrix in Kalman

x

y

z

Figure 2. (a) Gyroscope bias estimation based on map information; (b) Variation of covariance matrix
of Kalman filter with time.

We take the value of the bias after the deviation estimate converges to correct the trajectory with
the deviation. The deviation estimate is used to calculate the trajectory comparison data obtained in
the Table 2.

Table 2. Gyro Error Estimation Trajectory Comparison Based on Map Information.

Original Path (m) Noise Path (m) Corrected Path (m)

Drift Mean 0 7.10 1.32
Median drift 0 5.30 1.00

Total drift 0 1746.60 325.34
Positioning error 2.75 22.70 4.34

The comparison in Table 1 shows that, after removing the inaccuracy of the estimation due to
the initial angular deviation, the overall trajectory accuracy is slightly improved. Compared with the
trajectory with noise, the total error is reduced by 81%, and the average error is reduced by 81%.

For the acquired high-precision data, based on the previously added deviation, a linear bias of a
slope of 5 × 10−7 is added to the z-axis of the gyroscope. Results for the gyro bias of the z-axis versus
time are shown in Figure 3.
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the initial angular deviation, the overall trajectory accuracy is slightly improved. Compared with the 

trajectory with noise, the total error is reduced by 81%, and the average error is reduced by 81%. 

For the acquired high-precision data, based on the previously added deviation, a linear bias of 

a slope of 5 × 10−7 is added to the z-axis of the gyroscope. Results for the gyro bias of the z-axis versus 

time are shown in Figure 3. 
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Figure 3. Gyroscope z-axis bias estimation based on map information.

As shown, our estimated deviation also rises linearly after converging for 50 s. It conforms to
the changing law of the bias we add. After 200 s, the data is averaged; then the estimated bias is
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0.0113 rad/s. Assume the random noise average is zero; then the true bias is 0.0191 rad/s and the error
is 0.0058 rad/s.

4. Discussion

The heading information of the long corridor of the map and ZUPT point information are used
to estimate the deviation of the gyroscope. In fact, as long as it can accurately observe the angle,
the algorithm can estimate the deviation of the gyroscope. The influence of angle observation error
on gyroscope bias is analyzed. Regarding map information, the long corridor is just a means for
obtaining the heading. Maps like escalators, long straight stairs, and even turns are used to obtain
angle observations. Instead of maps, GNSS, like geomagnetism, provides angular information to
estimate bias. The application is not limited to pedestrian navigation. In our experiment, based on the
high-precision sensor collected by the experimenter, to correct the deviation, a fixed deviation was
artificially added. In the future, the deviation of the sensor may be modeled, and the deviation of the
gyroscope may be predicted.

5. Conclusions

To improve the accuracy of the navigation trajectory, we estimated the deviation of the gyroscope.
Using the quaternion expression of the rotation process, we obtained the relationship between the
rotation process calculated by the gyroscope output and the actual rotation process, which is caused
by the deviation of the gyroscope. The true angle is obtained through the heading information of
the long corridor of the map. According to the angle obtained by the gyroscope, the deviation of the
gyroscope can be calculated. Experimental results show that the algorithm effectively estimates the
bias of the gyroscope.

Author Contributions: Conceptualization, A.P.; Methodology, A.P. and T.T.; Software, T.T.; Validation, L.Z.;
Investigation, T.T.; Data Curation, J.H.; Writing-Original Draft Preparation, T.T.; Writing-Review & Editing, T.T.,
A.P.; Project Administration, G.O.; Funding Acquisition, A.P.

Funding: This research was funded by National Key Research and Development Program, grant
number 2018YFB0505202.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix

The expression of the Euler angles will be different depending on the sequence in which the
coordinate axis rotates around the three axes. In this paper, we use the Euler angular velocity matrix
has the following form [17]:


.
φ
.
θ
.
ψ

 =
1

cos θ


sin(φ) sin(θ) cos(θ) − cos(φ) sin(θ)

cos(φ) cos(θ) 0 sin(φ) cos(θ)

sin(φ) 0 − cos(φ)


 ωx

ωy

ωz

 (A1)

where the three-axis rotational angular velocity in the body coordinate frame, ( ωx ωy ωz )T , is the
output of the gyroscope. The Euler angular velocity is (

.
φ

.
θ

.
ψ )T . Integrating time on both sides of

the equation results in the following:

 φ

θ

ψ

 =
1

cos θ


sin(φ) sin(θ) cos(θ) − cos(φ) sin(θ)

cos(φ) cos(θ) 0 sin(φ) cos(θ)

sin(φ) 0 − cos(φ)


 θx

θy

θz

 (A2)
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From the inverse matrix, we finally obtain the following:
∆θx = ∆θ

∆θy = cos φ∆φ + sin φ∆ψ

∆θz = cos θ sin φ∆φ − sin φ∆θ − cos φ cos θ∆ψ

(A3)
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