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Abstract: Water vapor is an important driving factor in the related weather processes in the
troposphere, and its temporal-spatial distribution and change are crucial to the formation of cloud and
rainfall. Global Navigation Satellite System (GNSS) water vapor tomography, which can reconstruct
the water vapor distribution using GNSS observation data, plays an increasingly important role in
GNSS meteorology. In this paper, a method to improve the distribution of observations in GNSS water
vapor tomography is proposed to overcome the problem of the relatively concentrated distribution
of observations, enable satellite signal rays to penetrate more tomographic voxels, and improve the
issue of overabundance of zero elements in a tomographic matrix. Numerical results indicate that
the accuracy of the water vapor tomography is improved by the proposed method when the slant
water vapor calculated by GAMIT is used as a reference. Comparative results of precipitable water
vapor (PWV) and water vapor density (WVD) profiles from radiosonde station data indicate that the
proposed method is superior to the conventional method in terms of the mean absolute error (MAE),
standard deviations (STD), and root-mean-square error (RMS). Further discussion shows that the
ill-condition of tomographic equation and the richness of data in the tomographic model need to be
discussed separately.

Keywords: GNSS remote sensing; atmospheric sounding; water vapor tomography; meteorology

1. Introduction

Water vapor accounts for a small percentage of the troposphere, but it is the most active
meteorological element, and significantly impacts the atmosphere and plays a key role in various
climates and a series of weather phenomena. Measuring and monitoring the water vapor contents
and movements, and understanding the temporal-spatial change in water vapor, are important for
meteorological research and applications such as precipitation forecasts and extreme weather warnings.

The development of Global Navigation Satellite System (GNSS) reference station networks
provides rich data sources of high spatiotemporal resolution to monitor water vapor. Bevis et al. [1]
initially proposed the remote sensing of atmospheric water vapor using GNSS. To achieve
spatiotemporal resolution of water vapor information in the research region, a tomographic technique
has been widely applied in GNSS meteorology. This method is developed from the medical field [2]
in which the density distribution of an object is obtained by X-ray projections. It has been applied to
the research of geology [3], earthquakes [4], gas tracing [5], and ionosphere modeling [6]. Since the
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application of troposphere tomography in 4-D wet refractive index first realized by Flores et al. [7],
the development of GNSS water vapor tomography has advanced significantly. Hirahara et al. [8]
used a damped least squares method to reveal the spatial and temporal change of refractivity.
Nilsson et al. [9] investigated the impact of tomographic factors such as the number of GNSS
stations, elevation cutoff angle, and type of GNSS through simulations. Song et al. [10] introduced
the posterior variance component estimation method to determine the weights of the tomographic
equation. Rohm and Bosy [11] used the Moore-Penrose pseudo-inverse of a variance-covariance
matrix in a local tomography troposphere model over a mountainous area. Bender [12] proposed
an algebraic reconstruction technique for GNSS tomographic modeling. Adavi et al. [13] used
a hybrid regularization technique to reconstruct profiles of water vapor without constraint equations.
Ding et al. [14] proposed an innovative node parameterization approach in water vapor tomography
using a combination of three meshing techniques.

The distribution of observations in the above mentioned tomographic approaches is relatively
concentrated due to the special structures of GNSS satellite constellations and the unfavorable
geometry of GNSS stations in the tomographic region, as well as the specific selection of tomography
period (usually 30 min). Unfortunately, some voxels cannot be penetrated by sufficient signal
rays [15–17]. To overcome the ill-posed issue, Xia et al. [18] exploited Constellation Observing System
for Meteorology, Ionosphere, and Climate (COSMIC) occultation data for water vapor tomography.
Benevides et al. [19] introduced the water vapor information of Interferometric Synthetic Aperture
Radar (InSAR) into GNSS troposphere tomography. Jiang et al. [20] improved the distribution
of observations by assimilating the measurements of surface water vapor into GNSS tomography.
Chen and Liu [21] assessed the performance of troposphere tomography using multi-source water
vapor information, such as radiosonde, GPS, water vapor radiometer (WVR), and numerical weather
predictions. Although the combination of various water vapor observation technologies can provide
additional observation information, they are still hard to carry out in practice when the cost,
spatiotemporal resolution, and other restrictions are considered. COSMIC occultation events occur
only at specific times, and the return period of SAR satellites reaches several days, resulting in low
temporal resolution of these techniques. The measurements of surface water vapor are unavailable
in most tomographic experiments, given that many GNSS receiver stations are not equipped with
meteorological equipment. The numerical weather prediction system, such as weather research
and forecasting (WRF) models, provide meteorological products with only a spatial resolution of
3 km × 3 km and a time resolution of 1 h. The time resolution and accuracy of the atmospheric water
vapor information obtained by WVR are extremely high, but they are difficult to maintain due to high
equipment costs. Therefore, a method to improve the distribution of observations by introducing
virtual observations is proposed. The virtual observations are acquired using a specific elevation and
azimuth angle, based on the wet mapping function and the wet delay gradient in the east–west and
north–south directions. GNSS water vapor tomography is estimated with a different method, which is
validated by slant water vapor and radiosonde data.

This paper is organized as follows. Tomography theory and methods for improving the
distribution of observations are described in Section 2. Section 3 presents the tomography experiments
and results analysis. The discussion and conclusion are presented in Sections 4 and 5, respectively.

2. Tomography Theory and Method

2.1. Water Vapor Tomography Modeling

Zenith total delay (ZTD) is an average parameter in spatial aspects and can be obtained from
GNSS observations. The zenith wet delay (ZWD) is the wet component of ZTD affected by water
vapor content along the signal travel path and can be retrieved by extracting the zenith hydrostatic
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delay (ZHD) from ZTD using the formula ZWD = ZTD − ZHD. The empirical model used to calculate
the corresponding ZHD is as follows [22]:

ZHD =
0.002277× Ps

1− 0.00266× cos(2ϕ)− 0.00028× H
(1)

where Ps (unit: hPa) is the surface pressure, which can be obtained from measured meteorological data
or calculated by the Global Pressure and Temperature Model (GPT). ϕ and H (unit: km) denote the
latitude and the geodetic height of the station, respectively.

ZWD can be translated into PWV on the basis of a linear relationship by using the following
formula [23]:

PWV = Π× ZWD =
106

ρw × R
mw

(
k3
Tm

+ k2 − mw
md
× k1

) × ZWD (2)

where Π is the conversion factor. ρw represents the liquid water density (unit:g ·m−3); R indicates the
universal gas constant (R = 8314 Pa ·m3 ·K−1 · kmol−1); mw and md are the molar mass of water and
the dry atmosphere (mw = 18.02 kg · kmol−1, md = 28.96 kg · kmol−1), respectively. k1, k2, and k3 are
empirical physical constants (k1 = 77.604 K · hPa−1, k2 = 70.4 K · hPa−1, k3 = 3.775× 105 K2 · hPa−1);
and Tm (unit: K) denotes the weighted mean temperature, which is a function of vapor pressure and
temperature at different altitude. In practice, it can be approximated using a measurement of the
surface temperature Ts in K (Tm = 85.63 + 0.668Ts) [24,25].

The slant water vapor is the integrated water vapor along the slant path between the ground
receiver and GNSS satellite; it is expressed as follows:

SWV =
∫
s

ρvds = PWV× f (ele) + Π× f (ele)× cot(ele)×
(
Gw

NS × cos(azi) + Gw
WE × sin(azi)

)
+ R (3)

where s is the path of a satellite signal ray, ρv represents the water vapor density (unit: g ·m−3), f is
the wet mapping coefficient. ele and azi are the satellite elevation and azimuth, respectively. Gw

NS and
Gw

WE are the wet delay gradient parameters in the north-east and east-west directions, respectively.
R refers to the non-homogeneous variation of water vapor, it is calculated by multiplying the post-fit
residual by the conversion factor [26,27].

The observation equation, which is based on the unknown water vapor density within each
tomographic voxel and the distances of GNSS signal rays crossing the divided voxel (red paths shown
in Figure 1), is established as follows:

SWV =
n

∑
i=1

di × xi (4)

where SWV denotes the slant water vapor that can be acquired by the tropospheric estimation.
di denotes the distance of signal rays inside voxel i, which can be achieved by the station and satellite
coordinates, and xi is the unknown parameter, which denotes water vapor density of voxel i.
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Figure 1. 3-D distribution of slant water vapor and virtual slant water vapor. (a–d) represent the
GNSS receiver located in four different tomographic regions, namely northwest, northeast, southwest,
and southeast.

A spatial relation exits between water vapor in a specific voxel and its surrounding ones. In the
horizontal direction, Rius et al. [28] pointed out that the distribution of water vapor density is relatively
stable within a small region. Thus, water vapor density within a voxel is related to the weighted average
of its adjacent voxels in the same grid layer. The horizontal constraint equation, which stabilizes the
tomographic result, is constructed by the Gaussian inverse distance weighted function [29]:

w1x1 + w2x2 + · · ·+ wi−1xi−1 − xi + wi+1xi+1 + · · ·wmxm = 0 (5)

where wi−1 = di−1,i/
m
∑

j=1
di−1,j is the horizontal weighted coefficient, di−1,i represents the distance

between voxel i− 1 and i, and m denotes the total number of voxels in the same layer.
To reasonably describe the vertical profile information of the water vapor, vertical constraints

must be added. Otherwise, the tomographic results cannot be distinguished before and after the
exchange of two arbitration layers of the tomography grid. The analysis of meteorological data for
many years reveals that the vertical constraint equation is established by the form of exponential
function [30,31]:

xj − e(hj+m−hj)/H × xj+m = 0 (6)

where xj and hj denote the water vapor density and corresponding height within voxel j, respectively.
xj+m and hj+m represent that of voxel j + m. H is the water vapor scale height, which ranges from 1 to
2 km.

2.2. Method for Improving Distribution of Observations

Only the GNSS signal rays passing through from the top boundary of the tomographic region
can be used to construct observation equations. Thus, most of the rays in the low elevation
angle, which contains abound water vapor information in low layer voxels and boundary voxels,
are eliminated. In addition, most of the signal rays used to construct the observation equation only
penetrate the vertical voxels above the GNSS stations. Therefore, the distribution of observations in the
tomography equations is relatively centralized, resulting in many voxels without signal rays passing
through and in overabundance of zero elements in the tomographic matrix. In this paper, virtual
observations in specific elevation and azimuth angle (yellow paths shown in Figure 1) are introduced
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to improve the distribution of observations. Boundary points are selected, coordinates are transformed,
and the wet mapping function and the wet delay gradient in the north–south and east–west directions
are used in this method. The corresponding procedure is as follows:

1. The direction of the GNSS station in the tomographic area (northwest, southwest, southeast,
and northeast) is determined.

2. The GNSS stations are selected as the starting points by considering the boundary points at the
top of the tomographic region as the terminal points of the virtual observations.

3. The geodetic coordinate is converted to a site-centric coordinate.

BLH → NEU (7)

4. The elevation ele′ and azimuth azi′ of the virtual observations are calculated as follows:

ele′ = arctan

(
Ut√

Nt
2 + Et

2

)
(8)

azi′ = arctan
(

Et

Nt

)
(9)

where Nt, Et, Ut represent the coordinate of the terminal point in the north, east, and zenith
directions, respectively, of the site-centric coordinate, which can be obtained from the information
of tomography boundary.

5. The virtual slant water vapor SWV′ is calculated, as follows:

SWV′ = f
(
ele′
)
× PWV + Π× f

(
ele′
)
× cot

(
ele′
)
×
(
Gw

NS × cos
(
azi′
)
+ Gw

WE × sin
(
azi′
))

(10)

6. The virtual observation equation is constructed to improve the distribution of observations,
as follows:

SWV′ =
n

∑
i=1

d′i × xi (11)

where d′i is the distance of the virtual slant water vapor inside voxel i, which can be calculated
using these coordinates.

7. The new functional model of water vapor tomography is constructed and the water vapor density
in each voxel is solved using the least square method:

yswv

yh
yv

yswv′

 =


Aswv

Ah
Av

Aswv′

× X +


∆swv

∆h
∆v

∆swv′

 (12)

where yswv, yswv′ are the column vectors with a set of SWV and virtual SWV, respectively; yh,
yv are the column vectors with the value of 0 for horizontal and vertical constraint equations,
respectively; ASWV, Ah, Av, ASWV’ represent the coefficient matrices of observation equation,
horizontal constraint equation, vertical constraint equation, and virtual observation equation,
respectively;X = [x1, x2 · · · xn]

T is a vector of water vapor to be estimated; and ∆swv, ∆h, ∆v, ∆swv′

denote the noises of observation equation, horizontal constraint equation, vertical constraint
equation, and virtual observation equation, respectively.
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3. Experiment and Analysis

3.1. Experiment Description and GNSS Data Processing Strategy

As shown in Figure 2, Hong Kong was selected as the tomography area, the scope of which
was 113.87◦–114.35◦ for longitude, 22.19◦–22.54◦ for latitude and 0–8.0 km for altitude. The vertical
resolution was 800 m and the horizontal resolution was 0.06◦ in longitude, and 0.05◦ in latitude.
A tomography grid containing 8 × 7 × 10 voxels was obtained. To determine which boundary point
to use when improving the distribution of observations, the tomography area was divided into four
regions (northwest, southwest, southeast, and northeast). Twelve GNSS stations of the Hong Kong
Satellite Positioning Reference Station Network (SatRet), which were evenly distributed in the four
regions, were selected in the tomography modeling. Another GNSS station and radiosonde station
(45004) were used to check the result of the water vapor tomography. The information of each site was
shown in Table 1. A, B, C, and D in the table represent boundary points and their geodetic coordinates
were (22.54◦, 113.87◦, 8.0 km), (22.19◦, 113.87◦, 8.0 km), (22.19◦, 114.35◦, 8.0 km), and (22.54◦, 114.35◦,
8.0 km). To validate the proposed method, GNSS observation data of DOY 182 to 188, 2017 were
selected with a sampling rate of 30 s. The data from a radiosonde station at 00:00 and 12:00 UTC was
collected when the sounding balloon was launched daily. In this paper, two schemes, including the
conventional method, which was considered as Scheme #1, and the proposed method which was
regarded as Scheme #2, are determined.
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Table 1. Information of stations and boundary points.

Station Name Latitude Longitude Height Location Boundary Points of
Virtual SWV

Station for
tomographic

modeling

HKKT 22.4449 114.0666 34.5764
Northwest B, C, DHKLT 22.4181 113.9966 125.922

HKSL 22.3720 113.9279 95.2972

HKPC 22.2849 114.0378 18.1303
Southwest A, C, DHKMW 22.2558 114.0032 194.9461

HKNP 22.2491 113.8939 350.6723

HKSC 22.3222 114.1412 20.2386
Southeast A, B, DHKOH 22.2477 114.2286 166.4011

HKLM 22.2190 114.1201 8.5536

HKWS 22.4343 114.3354 63.7909
Northeast A, B, CT430 22.4947 114.1382 41.3228

HKST 22.3953 114.1842 258.7045

Station for test
HKSS 22.4311 114.2693 38.7135 Northeast -
45004 22.31 114.17 66.0 Southeast
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The GAMIT 10.61 software was adopted for the GNSS troposphere estimation based on the
double-differenced model. Tropospheric parameters among the network were strongly correlated
because of the presence of a short baseline between GNSS receivers in the tomographic area.
Few International GNSS Service (IGS) stations (BJFS, LHAZ, and SHAO) were incorporated
into the solution model to reduce this correlation [32–34]. The GAMIT processing strategy for
tropospheric estimation is summarized in Table 2. LC_AUTCLN indicates that the observable was the
ionosphere-free linear combination, and BASELINE shows that orbital or EOP parameters were not
estimated. The unknown parameters, including ZTD at 2-h intervals and troposphere delay gradients at
4-h intervals, are estimated using the least square method. By interpolation, ZTD and troposphere delay
gradients with 30 s sampling rate are obtained. To achieve the wet delay gradients, Bar-Sever et al. [35]
regarded the average of troposphere gradients within 12 h as the dry delay gradients and subtracted it
from troposphere delay gradients. ZTD was converted to PWV using Equations (1) and (2), and SWV
and virtual SWV were obtained using Equations (3) and (10), respectively.

Table 2. GAMIT processing strategy for tropospheric estimation.

Parameter Strategy

Choice of Observable LC_AUTCLN
Choice of Experiment BASELINE

Sampling rate 30 s
Elevation Cutoff 10◦

Zenith Model PWL (piecewise linear)
Tropospheric correction model Saastamoinen

Mapping Function GMF
IGS stations 3

3.2. Analysis of the Proposed Method

For each tomographic solution, the period covered was 0.5 h, and the sampling rate was 30 s.
A total of 3 × 60 × 12 virtual SWVs could be constructed within the 12 GNSS stations. To analyze
the influence of the proposed method in Scheme #2 on the number of voxels, where signal rays
passed through, relevant experiments were conducted. The corresponding results for Scheme #1 and
Scheme #2 are shown in Figure 3. It can be seen that Scheme #2 allowed for more voxels that were
passed through by rays. Specifically, the average number of crossed voxels was raised from 382 to 438,
and the percentage of total voxels was increased from 68% to 78% in this period. Figure 4 shows the
results per 30 min at DOY of 182, 2017. Obviously, the number of voxels that were passed through by
signal rays was improved by exploiting the virtual SWV of Scheme #2. The largest increase occurred in
the 28th solution, reaching 94 voxels (Solution #a, highlight by green circle), whereas the 37th solution
had the least increase, reaching only 32 voxels (Solution #b, highlight by green squares). The average
increase was 56 voxels at DOY of 182, 2017.

To further illustrate the effects of the proposed method, Figure 5 shows the grayscale graph of
the number of signal rays passing through each voxel. In this graph, the deepening of the grayscale
represents an increase in the number of rays passing through the voxel (white represents no ray
through). Thus, it can also be used to display the specific location of the increased voxel crossed by
virtual SWV of Scheme #2. (a) and (b) stand for Solutions #a and #b, respectively. The upper one
adopted Scheme #1 and the lower one utilized the Scheme #2 in each graph. It can be seen that the
addition of virtual SWV can effectively supplement the situation of no signal rays passing through the
voxels around the GNSS stations. In the high level tomographic layer, more voxels in the tomographic
boundary region were penetrated by signal rays because of the virtual SWV of Scheme #2, which was
a good complement to Scheme #1. However, the change of gray in the images reveals that the number
of rays passing through voxels was significantly increased with the addition of virtual SWV. Table 3
lists the detailed values corresponding to Figure 5, and these values were counted from the perspective
of the layer.
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Table 3. Number and increment of voxels crossed by signal rays in different layers of Solutions #a and
#b by two schemes.

Solution #a Solution #b

Scheme #1 Scheme #2 Increment Scheme #1 Scheme #2 Increment

1st layer 12 25 10 18 22 4
2nd layer 21 35 14 28 37 9
3rd layer 26 39 13 38 43 5
4th layer 31 40 9 43 46 3
5th layer 34 44 10 42 46 4
6th layer 35 47 12 47 49 2
7th layer 37 46 9 50 52 2
8th layer 41 49 8 52 53 1
9th layer 43 49 6 54 55 1
10th layer 46 49 3 50 56 1

3.3. Comparison with SWV of Station HKSS

To assess the performance of the proposed method, SWV achieved by GNSS observation data
and meteorological data was compared with SWV calculated from tomographic results of different
schemes. Table 4 shows the average MAE, STD, and RMS derived from the two schemes and the
statistical results for 7 days. The results reveal that MAE, STD, and RMS values of Scheme #2 were
lower than those of Scheme #1 for every day. The average MAE was decreased by 1.79 mm from
10.53 mm to 8.74 mm, whereas STD and RMS were reduced by 1.65 and 2.45 mm from 11.35/14.09 mm
to 9.70/11.64 mm, respectively. This indicates that Scheme #2 had a higher average accuracy than
Scheme #1.

To specifically reveal the superiority of the proposed method (Scheme #2), the MAE, STD,
and RMS of every tomographic solution in DOY 182, 2017 are shown in Figure 6. The evolution
is developed from the perspective of each tomographic result of 30 mins. The advantage of the
proposed method (Scheme #2) was evident in terms of smaller MAE, STD, and RMS for every
tomographic solution of DOY 182, 2017. The maximum and minimum MAE/STD/RMS of Scheme #1
were 20.838/27.271/24.894 and 4.310/1.643/5.353 mm, respectively, and those of Scheme #2 were
19.518/22.599/20.955 and 3.499/0.683/4.119 mm, respectively.
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Table 4. Accuracies in terms of MAE, STD, and RMS using two schemes for 7 days (Unit: mm).

DOY
MAE STD RMS

Scheme #1 Scheme #2 Scheme #1 Scheme #2 Scheme #1 Scheme #2

182 11.53 9.66 11.70 9.79 15.75 12.87
183 12.75 9.70 8.47 6.69 14.49 11.17
184 12.37 11.33 15.33 14.87 16.94 15.85
185 10.33 9.57 12.24 11.06 14.05 12.81
186 10.47 9.19 14.68 12.80 15.98 13.32
187 9.73 6.75 9.92 6.82 12.94 9.15
188 6.55 4.95 7.13 5.84 8.46 6.35

Average 10.53 8.74 11.35 9.70 14.09 11.64
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3.4. Comparison with Radiosonde Data

The PWV calculated from radiosonde was suitable as a standard for evaluating the accuracy of
the tomographic results. Thus, the PWV over the radiosonde station was also computed by the water
vapor density of voxels from different tomographic schemes. In this experiment, eight tomographic
solutions were selected daily to calculate PWV. Figure 7 presents the PWV time series of Scheme #1
and Scheme #2 and their comparison with radiosonde data. It can be seen that the trend of the
PWV time series was basically consistent. Compared with radiosonde data, the two schemes match,
and Scheme #2 was more consistent than Scheme #1. The statistical results of PWV differences between
radiosonde data and tomography are listed in Table 5. Scheme #2 had an advantage compared with
Scheme #1 in terms of MAE, STD, and RMS.

Table 5. Statistical result of PWV differences between various schemes and radiosonde for 7 days
(Unit: mm).

MAE STD RMS

Scheme #1 3.839 4.290 4.143
Scheme #2 2.632 2.839 2.937
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data for the period of DOY 182 to 188, 2017.

Although the PWV time series derived from Scheme #2 was in better agreement with the
radiosonde data, while low MAE, STD and RSM were shown, we may not conclude that the vertical
water vapor distribution of Scheme #2 was better than that of Scheme #1 because the PWV value was
unchanged if two vertical layers were exchanged arbitrarily. Thus, the water vapor density profile
should be compared between the two schemes and radiosonde data during the tomographic period.
The data of UTC 00:00 and 12:00 of DOY 182 to 188, 2017 were selected to further test the accuracy of
the tomographic results from different schemes. Figure 8 represents the WVD profiles for different
altitudes at individual dates. It can be seen that the WVD obtained by Schemes #1 and #2 were in
conformity with that derived from radiosonde. Evidently, the red line was more consistent with the
green line than the blue one, thereby suggesting that the WVD of the proposed method better matches
the radiosonde. This consistency was particularly evident at the bottom altitudes and implies that the
proposed method achieves better water vapor density than the conventional method. Figure 8 shows
the differences between the results of Schemes #1 and #2 and the radiosonde data in the low-altitude
atmosphere from the red and blue dashed lines. It could be more clearly found that the differences
between the result of Scheme #2 and radiosonde data were smaller than that of Scheme #1. Table 6
lists the statistical results of the water vapor density profile comparison between radiosonde and
different schemes at UTC 12:00 from DOY 182 to 188, 2017, showing consistency with Figure 8. Thus,
tomographic results of Scheme #2 were better than those of Scheme #1.
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schemes at UTC 00:00 from DOY 182 to 188, 2017.
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Table 6. Statistical results of the water vapor density profile comparison between radiosonde and
different schemes at UTC 12:00 from DOY 182 to 188, 2017.

DOY
Scheme #1 Scheme #2 Improvement

MAE RMS MAE RMS MAE RMS

182 1.22 1.34 0.86 1.07 0.36 0.27
183 1.37 1.76 0.89 1.21 0.48 0.55
184 1.81 2.59 0.93 1.79 0.88 0.80
185 1.72 2.46 1.17 1.82 0.45 0.64
186 1.55 2.19 1.04 1.26 0.51 0.93
187 1.54 2.49 1.12 2.21 0.42 0.28
188 1.40 2.01 0.83 1.48 0.57 0.53

Average 1.51 2.09 0.98 1.51 0.53 0.57

To explore the overall accuracy of WVD obtained by different schemes, all values from radiosonde
data in the experimental period were selected for linear regression analysis. Figure 9 represents the
linear regression results of the two schemes, in which the scatter points of the right graph were closer
to the corresponding straight lines. The linear regression coefficient and RMS of each scheme were
achieved, and the regression equations were established. Compared with the result of Scheme #1,
the starting point of the regression equation was closer to 0, and the slope was improved in Scheme #2.
The numerical results show that the RMS and slope were 2.003 g·m−3/0.8823 and 1.462 g·m−3/0.9367
in the two schemes, respectively. The regression analysis further indicates that the tomographic
accuracy of Scheme #2 was superior to that of Scheme #1.

Sensors 2018, 18, x FOR PEER REVIEW  12 of 15 

 

Table 6. Statistical results of the water vapor density profile comparison between radiosonde and 
different schemes at UTC 12:00 from DOY 182 to 188, 2017. 

DOY 
Scheme #1 Scheme #2 Improvement 

MAE RMS MAE RMS MAE RMS 
182 1.22 1.34 0.86 1.07 0.36 0.27 
183 1.37 1.76 0.89 1.21 0.48 0.55 
184 1.81 2.59 0.93 1.79 0.88 0.80 
185 1.72 2.46 1.17 1.82 0.45 0.64 
186 1.55 2.19 1.04 1.26 0.51 0.93 
187 1.54 2.49 1.12 2.21 0.42 0.28 
188 1.40 2.01 0.83 1.48 0.57 0.53 

Average 1.51 2.09 0.98 1.51 0.53 0.57 

To explore the overall accuracy of WVD obtained by different schemes, all values from 
radiosonde data in the experimental period were selected for linear regression analysis. Figure 9 
represents the linear regression results of the two schemes, in which the scatter points of the right 
graph were closer to the corresponding straight lines. The linear regression coefficient and RMS of 
each scheme were achieved, and the regression equations were established. Compared with the result 
of Scheme #1, the starting point of the regression equation was closer to 0, and the slope was 
improved in Scheme #2. The numerical results show that the RMS and slope were 2.003 g·m−3/0.8823 
and 1.462 g·m−3/0.9367 in the two schemes, respectively. The regression analysis further indicates that 
the tomographic accuracy of Scheme #2 was superior to that of Scheme #1. 

 
Figure 9. Linear regression of water vapor density from radiosonde and two schemes. (a) and (b) 
represent the regression results of Scheme #1 and #2, respectively. 

4. Discussion 

The proposed method allowed the signal rays to pass through more voxels, thereby enriching 
the voxels’ information in the tomographic region and improving the distribution of observations. 
The different tomography results were compared with the radiosonde data and SWV, and it was 
found that the proposed method could effectively improve the accuracy of results. In order to analyze 
whether the ill-conditioned nature of the tomography model is weakened when the distribution of 
the observation is improved, the concept of matrix condition number is introduced. The condition 
number measures the degree of dispersion of the eigenvalues of the coefficient matrix, which can be 
used to diagnose the ill-posed problem of matrix. When the condition number of a matrix is high, 
then the ill-condition becomes serious [36]. It is defined as follows: 

( ) 1N N Nκ −= ×  (13) 

0 5 10 15 20 25 30
WVD derived from Scheme #1 (g/m3)

0

5

10

15

20

25

30

y=0.8823×x-0.8762
RMS=2.003

(a)Scheme #1 vs. Radiosonde
Regression of Scheme #1

0 5 10 15 20 25 30
WVD derived from Scheme #2 (g/m3)

0

5

10

15

20

25

30

y=0.9367×x-0.1551
RMS=1.462

(b)Scheme #2 vs. Radiosonde
Regression of Scheme #2

Figure 9. Linear regression of water vapor density from radiosonde and two schemes. (a) and (b)
represent the regression results of Scheme #1 and #2, respectively.

4. Discussion

The proposed method allowed the signal rays to pass through more voxels, thereby enriching
the voxels’ information in the tomographic region and improving the distribution of observations.
The different tomography results were compared with the radiosonde data and SWV, and it was
found that the proposed method could effectively improve the accuracy of results. In order to analyze
whether the ill-conditioned nature of the tomography model is weakened when the distribution of the
observation is improved, the concept of matrix condition number is introduced. The condition number
measures the degree of dispersion of the eigenvalues of the coefficient matrix, which can be used to
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diagnose the ill-posed problem of matrix. When the condition number of a matrix is high, then the
ill-condition becomes serious [36]. It is defined as follows:

κ(N) = ‖N−1‖ × ‖N‖ (13)

where N = AT A, κ(N) denotes the condition number of matrix N, and ‖N‖ is the norm of matrix N.
With the addition of various types of equations, the change in the condition number of the

coefficient matrix in each tomography solution was considered. Table 7 lists the situation of tomography
solution at 12:00 UTC of DOY 182, 2017. We can see that the condition number of coefficient matrix
was INF only when the observation equation existed in the tomography model, implying that the
matrix has a serious ill-condition. With the addition of horizontal and vertical constraint equations,
the condition numbers decreased gradually, indicating that the constraint equations could alleviate the
ill-posed issue of the tomography matrix. The condition number increased slightly when the virtual
observations of the proposed method were added. The same trend was shown in other tomography
solutions due to the existence of multicollinearity between the virtual observation equation and the
observation equation. However, the singular value decomposition (SVD) method used in tomography
calculation can overcome the problem of unstable results, and the accuracy of the tomography results
of the proposed method was still higher than that of the conventional method. Therefore, the method
of improving the observation distribution could not optimize the ill-conditioned tomographic matrix,
but it caused abundant water vapor information of voxels, which could greatly affect the accuracy
of the tomography result. In follow-up research, the ill-condition issue of the coefficient matrix in
the tomography equation and the problem of insufficient observations should be considered and
distinguished from each other.

Table 7. Condition number of each coefficient matrix in the tomography solution at 12:00 UTC a.m.
DOY 182, 2017.

Aswv Aswv + Ah Aswv + Ah + Av Aswv + Ah + Av + Aswv′

Condition Number INF 2.113 × 105 2.127 × 103 7.055 × 103

5. Conclusions

In this paper, an improved GNSS water vapor tomographic method was proposed to improve
the distribution of observations. It was validated by tomographic experiments using GNSS data
from 12 stations of Hong Kong SatRet for 7 days from DOY 182 to 188, 2017. The influence of the
virtual observations on the number of voxels, where signal rays were passing through, aws analyzed.
Results showed that the proposed method allowed for more voxels crossed by rays, and the average
increase in quantity and proportion was 56 voxels and 10%, respectively. Most of the increased voxels
were located in the region of tomographic upper boundary and near the stations.

The comparison between SWV derived from tomographic results and that of GAMIT calculated
was conducted using the conventional and proposed method. The MAE, STD, and RMS values
decreased from 10.532/11.353/14.087 mm to 8.735/9.696/11.643 mm, respectively. In a comparison of
the PWV time series, the MAE, STD, and RMS of the proposed method were smaller than those
of the conventional method, whose values were 2.632/2.839/2.937 and 3.839/4.290/4.143 mm,
respectively. The water vapor density of the proposed method agreed with that of radiosonde,
particularly at the bottom altitudes of the tomographic area, compared with the conventional method.
In addition, the results of regression analysis further demonstrated the superiority of the proposed
method in obtaining the water vapor density. From the perspective of the ill-conditioned equation,
the improvement in observations could not decrease the condition number.

With the effective addition of other observations, including InSAR, water vapor radiometer,
and COSMIC radio occultation data, the distribution of observations was further improved. However,
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whether the condition number of the tomographic matrix was reduced should still be analyzed.
Furthermore, the experiments were only carried out in Hong Kong at a specific time period. The feasibility
and superiority remain to be further verified for various periods, regions, and weather conditions.
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