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Abstract: This research put forward an exogenous liquid level measurement method based on
continuous sound wave amplitude. The distribution of round piston transducers in the sound
field of a metal solid was analyzed by building 15 Multi-Gaussian Beam superposition models;
the calculation method for echo sound pressure was worked out according to the reflection and
refraction properties of ultrasonic wave. The continuous wave with three amplitudes was used as
the driving source of ultrasonic sensor, and two single-crystal sensors with the same diameter were
used as the transmitting terminal and receiving terminal of ultrasonic waves to carry out experiments
for four groups of containers of different wall thickness and to compare the characteristics of echo
energy of driving sources with three amplitudes above and below the liquid levels with different
wall thickness. Two groups of sensors of different diameters were used to measure the liquid levels
of experimental models, and the measuring errors of the two groups of sensors were analyzed and
compared. The experimental result shows that the measuring error of the model is less than 5 mm,
so it is applicable to the level measurement of liquids or liquid mixtures in many sectors.

Keywords: ultrasonic; echo energy; liquid level measurement; continuous wave

1. Introduction

Height and volume measurements of material in stocking cans and other containers are usually
taken in storage of chemicals, food, and petroleum in the production process to make sure of material
supply [1,2].

Factors influencing measurement accuracy are to be considered to be the sealing medium of
the container, materials of corrosive substance, toxicity, and explosiveness [3,4]. In order to meet
requirement of various kinds of influencing factors, liquid level sensors are developed. At present,
commercial liquid level measurements include radar, ultrasonic, isotope or radioactive, electronic,
thermal, optical meters, and hydraulic meters. Although they achieve successful application,
they have to be set into the container connecting with liquid directly, or in need of sound waves
and electromagnetic waves [5,6].

Special applicant conditions in petroleum, chemicals, energy, aerospace and other industries
call for specialized measurement and equipment of liquid levels. For the conditions of flammables
and explosives, ultra-low temperature, high pressure, and other application characteristics of the
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liquid, the storage should be settled in large, closed containers and a low temperature, high pressure
environment away from electrical, magnetic, collision, and other dangerous parts, which put forward
higher requirements on level measurement methods and principles.

Given the strengths and weaknesses of these methods, this study presents a detection model for
determining the liquid level from the outside of a sealed container that is based on continuous sound
wave amplitude, and the proposed method needn’t install sensors or equipment in a container in
advance, nor damage the physical structure and integrity of the container [7,8].

This study uses the multivariate Gaussian sound beam model to simulate the circular piston-type
transducer in the radiation sound field in the container wall. According to the shape and propagation
characteristics of beam propagation, the influence of container walls with different curvatures on the
radiation field is analyzed. Based on the difference of ultrasonic impendences between gas and liquid
media in a container, the echo sound pressure calculation model is built up with continuous sound
wave amplitude [9–12].

As shown in Figure 1, Rwg represents the reflection coefficient at the inner surface above the liquid
level; Rwl refers to the reflection coefficient below the liquid level. When the sensor is located above
and below the liquid level respectively, the reflection coefficients Rwg and Rwl at the inner surface are
not equal due to the different impendences, which make the sound pressure relating to received echoes
different. Then at a critical point above the liquid level, the echo wave sound pressure keeps constant,
and there is a point under the liquid level. Therefore, the changing characteristics of sound pressure in
the detection are used to measure the liquid level.
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Figure 1. The measurement principle. Pg and Pl are the sound pressure relating to the echoes reflected
by the inner surface of the container.

2. Theory and Methods

2.1. Sound Field of a Round Piston Transducer in a Solid

In the fifteen multivariate models of Gauss beam superposition [13], magnitude of sound pressure
at any point (x2, y2, z2) in the solid sample can be expressed as (1)
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where Ar and Br are superposition coefficient of the multivariate Gauss beam, Tγ;p
12 is the plane wave

transmission coefficient. The parameter DR = kp1a2/2 is the Rayleigh distance, a is the radius of the
transducer, and kp1 is the wave numbers for P-waves in medium one. Similarly kγ2(α = p, s) are wave
numbers for P-waves or S-waves in medium two. Z1 is the travel length of test sound beam in the
first medium; Z2 is the length in the second medium. P0 is the initial incident sound pressure. ρ1, ρ2
are the medium density, Cp1 is the wave velocity of the longitudinal wave in the liquid, Cγ2 is the
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longitudinal or shear wave velocity in the firmware sample. Mγ
2 is a 2 × 2 matrix related to the angle

of incidence of the ultrasound beam and the curvature of the interface.
For further discussion, the equation is simplified as
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Figure 2 shows a three-dimensional view of the sound field superimposed by 15 Gauss sound
beams. In Figure 2, a and b indicate the sound field distribution of a circular piston probe in metallic
aluminum. The compressional wave speed was 6300 m/s, the shear wave speed was 3100 m/s, and
the ultrasonic impedance was 17 × 105 gm/cm2·s.
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Figure 2. The Sound pressure distribution of a round piston transducer with a radius of a = 5 mm and
10 mm in a solid medium. (a) a = 5 mm; (b) a = 10 mm.

From analysis of the sound field distribution theory and Figure 2 of the 3D view, we know that the
sound field of the circular piston sensor consists of two parts, the near field and the far field; and there
are many maximum and minimum sound pressures in the near field. In the far field, the sound
pressure decreases gradually with the increase in propagation distance. Since the sound field of the
circular transducer is symmetrical along its axis, the sound pressure distribution characteristics of any
cross section of the beam can be obtained along the propagation direction of the beam [14].

Then the beam at near-field keeps cylindrical propagation with little divergence; the beam at
far-field spreads in a diffuse manner with a certain diffusion angle. The length of the near field N and
the diffusion angle α are given by N = a2/λc and α = arcsin(1.22λc/2a), respectively, where λc is the
wavelength of ultrasonic waves in a metal wall, a is the radius of the sensor [15].

From the above analysis, it can be inferred that, along the propagating direction of the sound
beam, any of the cross sections of the ultrasonic beam are in the circular region. Therefore, when the
sound beam arrived at the inner surface of a container after a propagating distance, the projection
is a circle section, in which the beam energy is mainly concentrated. We called the projected circle
an energy circle, of which the diameter is expressed by d, and the value of d can be calculated by
Equation (3):

d = 2[a + (L−N) tanβ] (L > N) (3)

2.2. Calculating Echo Sound Pressure

Since the Gaussian sound beam is perpendicular to the flat interface, its reflection and transmission
characteristics follow the propagation of plane waves [16,17]. Therefore, the reflection coefficient is
calculated as follows:
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Rw =
ρ2c2 cos θi − ρ1c1 cos θr

ρ2c2 cos θi + ρ1c1 cos θr
(4)

where c1, c2 are the speed of sound in the medium, θi is the incidence angle, θr is the reflection angle.
As shown in Figure 3, it is supposed that the wall thickness of the container is L; the radius of

the sensor is a; the coordinate system is established by taking the center O of the circular transducer
as the origin of coordinates. According to the multivariate Gaussian beam model, let z1 = 0, z2 = L,
the ultrasonic pressure PL emitted by the circular sensor at any point p(x2, y2, z2) on the inner wall of
the container with the wall thickness L can be expressed as

PL(x2, y2, L) =
ρ2cγ2

ρ1cp1
·P0·G(x2, y2, L) (5)
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According to the above analysis of the energy circle, the sound pressure in the circular beam
section of diameter d is integrated; assuming that the total area of the energy circle is represented by
and the average sound pressure in the energy circle is obtained as follows:

P =

∫
S PL(x2, y2, L)dA

A
(6)

According to the basic knowledge of acoustics, the ultrasonic wave is refracted and reflected at
the interface with discontinuous impedance, which follows the refraction and reflection principle of
plane sound waves. To assume the average reflection echo sound pressure at the inner wall of the
container as pr, then

pr = P·Rw (7)

In actual detection, when the sensor is moved up along the outer surface of the wall and the top of
the energy circle exceeds the liquid level, the excess height is represented by ∆d (0 ≤ ∆d ≤ d), the area
above the liquid level is expressed Ae, let rs = Ae/A.

As 0 ≤ ∆d ≤ d, the “energy circle” is divided into two parts by the liquid level, the acoustic
impedances are no longer equal at two parts of the energy circle, which will cause the acoustic
boundary conditions of two parts also different. Therefore, it is calculated in two parts, and represents
reflection coefficients at two parts of the energy circle; the echo sound pressure received by the sensor
should be superimposed by two parts of energy circle.

We assumed that the reflected echoes in the wall will be decayed to a very small amount after n
times which can be negligible relative to the total energy received by receiving sensor.

Therefore, when the sound beam returns to the outer surface of the wall after n times, the total
sound pressure of the sensor is derived by following equation:

ΣPs = P·As·
(

rs·
n

∑
i=1

Ri
wgRi−1

ws e−(2i−1)αL + (1− rs)·
n

∑
i=1

Ri
wlR

i−1
ws e−(2i−1)αL

)
(8)
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where, the ultrasonic attenuation factor at the container wall represents the sensor surface
reflection coefficient.

3. Experimental Results

3.1. System Installation and Initial Conditions

Figure 4 shows the composition of the experimental system.
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Figure 4. Circuit, metal container, and sensors used in the experiment.

Four groups of containers of different wall thicknesses at 8 mm, 25 mm, 40 mm, and 50 mm
are used for the measurement in the experiment; the substance of the container is aluminum alloy,
with liquid as the liquid medium in the container and atmosphere as gas medium. Parameters in Table 1
display the impedance of the metal container Zm, the impedance of liquid media in the container Zl,
the impedance of gas media in the container Zg, the reflection coefficient between the inner wall and
gas Rwg, the reflection coefficient between the inner wall and liquid Rwl, and the reflection coefficient
between the outer wall and probe Rws.

Table 1. Experimental parameters and initial values.

Zm(gm/cm2·s) Zl(gm/cm2·s) Zg(gm/cm2·s) Rwg Rwl Rws

17× 105 1.48× 105 0.0004× 105 0.999969231 0.892285298 0.892285298

The driving source is designed as continuous wave amplitude excitation, that is, the amplitude
of continuous wave is sequentially taken in three cycles of 5 V, 10 V, and 15 V to drive the probe to
emit ultrasonic waves at different amplitude. Due to use of continuous wave excitation, the ultrasonic
transducer is used with a dual-crystal probe, one for emission and one for receiving, and both of which
have a diameter of 10 mm and a focal length of 50 mm.

As shown in Figure 5, the difference between the two critical values of the echo energy above and
below the liquid level shows different characteristics in the given test environment for different values
of the amplitude excitation signal. In Table 2, when the three amplitude voltage signals are activated
in all areas of the wall thickness of the container, there is always a group of incentive voltage values
matched with thick wall, and the liquid level below the echo energy of the two critical values of the
difference are of higher resolution, a clear distinction, which provides a basis to judge the liquid level
position determination.
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Figure 5. Average echo pressures at various wall thicknesses of the Excitation voltage 5 V, 10 V, 15 V.

Table 2. Distinguishing characteristics of variable amplitude excitation under different wall thicknesses.

Distinguishing Characteristics 8 mm 25 mm 40 mm 50 mm

5 V Average Obvious Obvious Not obvious
10 V Not obvious Obvious Obvious Average
15 V Not obvious Obvious Not obvious Obvious

3.2. Calculation of Echo Sound Pressure

Figure 6 shows the actual measurements of probes at different sizes for different wall thicknesses,
with the abscissa representing the height measured by the probe along the outer wall of the container
and the ordinate representing the amplitude of the echo pressure received by the receiving probe.
The ultrasonic echo is received by the receiving circuit. The gain of the echo signal is amplified, filtered,
detected for data processing, and converted to the corresponding voltage amplitude display output.
In the figure, excitation voltage is set at 15 V for an example, at the wall thickness of L = 8 mm and
L = 50 mm.
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3.3. Level Measurement Results

Figure 7 shows the true result of liquid level test using the theory model in Section 3. Liquid level
in the container is of water, with the actual liquid level at 200 mm. In the experiment, transducers of
two different sizes 15 mm and 20 mm in diameter were used to measure the liquid level under the
condition of wall thickness L of 8 mm, 25 mm, 40 mm, and 50 mm respectively. Pmax and Pmin in the
table (Table 3) are the echo sound pressure values measured at the upper and lower critical positions
respectively, hl is the actually liquid level value, hmax and hmin are the heights of the upper and lower
critical positions of the liquid level respectively. hm is the actual measurement result, and

∣∣∆E
∣∣ is the

average error of the measurements. All measurements in the table are the average of three experiments.

Table 3. Result of liquid level test.

2a (mm) L (mm) N (mm) d (mm) hl (mm) Pmin (V) Pmax (V) hmin (mm) hmax (mm) hm (mm) |∆E| (mm)

15 8 8.93 15.0 200.0 0.6 1.08 186.4 204.2 195.3 4.7
15 25 8.93 34.2 200.0 0.88 1.42 178.9 214.1 196.5 3.5
15 40 8.93 52.1 200.0 0.81 1.13 168.7 223.1 195.9 4.1
15 50 8.93 64.0 200.0 0.54 1.1 163.9 227.5 195.7 4.3
20 8 15.87 20.0 200.0 0.77 1.18 185.7 205.7 195.7 4.3
20 25 15.87 27.59 200.0 0.93 1.45 183.3 211.9 197.6 2.4
20 40 15.87 40.08 200.0 0.92 1.21 176.4 216.8 196.6 3.4
20 50 15.87 48.41 200.0 0.61 1.13 172.7 220.7 196.7 3.3
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Figure 7a shows the corresponding relationship between the diameter d of the energy circle and
the wall thickness L of the beam generated by probes of two different diameters for different wall
thicknesses. In the figure, the transducer of 15 mm diameter emits ultrasonic beam divergence faster
with the propagation distance increase. At the same wall thickness, the diameter d of the energy circle
increases linearly, which indicates that the beam spreads quickly and the energy of the sound beam
in the unit area of the corresponding energy circle also decreases, that is, the average sound pressure
of the beam decreases which will affect the detection resolution. The beam divergence generated by
a transducer with a diameter of 20 mm is relatively flat.

Figure 7b shows the correspondence between the echo sound pressure received by two different
diameters of the probe at two critical positions and wall thickness L under different wall thicknesses.
Two different diameters of the probe in different wall thicknesses showed the same changes. At 40 mm
wall thickness, the pressure difference becomes the minimum. At wall thickness of 25 mm and 50 mm,
the pressure difference becomes the larger. This is useful for measuring the level and for improving
the resolution of the measurement. At wall thickness of 8 mm, the pressure drops at upper and lower
critical positions are also more pronounced due to use of delay blocks between the probe and the
container wall.

As can also be seen from Figure 7b, the difference between the echo pressures at the two critical
positions is generally higher for the different wall thicknesses than for the larger diameter probe when
a small diameter probe is used. As the diameter of the transducer increases, the ultrasound beam will
become more focused and the divergence angle becomes smaller, while the length of the near field
will become longer, the spacing between the two key positions will also be smaller, and the sensitivity
of the transducer will change higher, but the resolution will be lower. Conversely, as the transducer
diameter decreases, the near-field length decreases and the diffusion angle increases. The ultrasound
beam will become more divergent and the spacing between the two key positions will also increase.
The sensitivity of the transducer will be lower, while the resolution will be higher.

Figure 7c is a comparison of the test results of two probes with the actual level value. It can
be seen from the figure that the two diameters of the probe in the side of the test results are lower
than the actual level. The system error is caused by the system’s measurement model. Follow-up
correction methods are supposed to be proposed after the error analysis to modify the error value.
In addition, because both probes are of a near-field length of more than 8 mm, the delay block is used
as a secondary measurement to improve detection accuracy. However, it can be seen from the test
results that the measured values at wall thickness L = 8 mm still deviate greatly. From the overall
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measurement point of view, the result of using a larger diameter probe to measure than using a smaller
diameter probe measure is relatively closer to the true level.

Figure 7d shows the error of detecting the liquid level under four different wall thicknesses by
using two kinds of probes respectively. As can be seen from the figure, the measurement error of the
two probes reaches about 4 mm~5 mm when the wall thickness L = 8 mm. The measurement error is
reduced when wall thickness L ≥ 25 mm. Two different sizes of the probe’s error values have reached
minimum when wall thickness L = 25 mm. However, it can be seen from the overall situation that the
measurement error of a larger diameter probe is slightly lower than that of a small diameter probe.
The measurement error of the two probes generally remains at about 3~5 mm.

4. Discussion

In the ultrasonic liquid level meter measurement of this design, the upper and lower critical
positions are to be determined first by the measurement of the changing characteristics of the reflection
sound wave in the vicinity of the liquid level. In the measurement model, the impedance of liquid
medium and atmosphere medium is the major factor influencing measurement precision. The liquid
medium of greater impedance, in which reflection sound pressure varies greatly obviously, is easy to
determine the upper and lower critical positions and the liquid level; in the liquid medium of smaller
resistance, in which reflection sound pressure does not vary obviously, it is difficult to fix the upper
and lower critical positions and the liquid level. Therefore, the liquid medium of greater impedance is
easier to be determined with higher precision, or vice versa.

The experimental result shows that, by probes of two different diameter sizes, the regularities
of the reflection sound amplitude are similar. When the small diameter probe is used for varied
wall thicknesses, the differences of reflection sound are larger than the big diameter probe generally;
whereas, the measurement result for liquid shows that the precision of a large diameter probe is
better than the small one due to different physical properties of different diameter probes in special
test environments to balance the test sensitivity and resolution of the probe in a process. Therefore,
in this paper on ultrasonic liquid position measurement, selection of probe diameters depends on wall
thickness and other measurements of physical properties to better balance its resolution and sensitivity.

5. Conclusions

In this study, under the static measurement condition, the measurement accuracy of the model
is less than ±5 mm for many common liquids or mixed liquids in industry; for metal containers,
the test thickness reaches up to 2~50 mm. Therefore, the proposed method is effective for liquid level
measurement outside a sealed container.
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