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Abstract: This paper aims to study a triple flat-type air coil inductive sensor that can identify two
maturity stages of oil palm fruits, ripe and unripe, based on the resonance frequency and fruitlet
capacitance changes. There are two types of triple structure that have been tested, namely Triple I
and II. Triple I is a triple series coil with a fixed number of turns (n = 200) with different length,
and Triple II is a coil with fixed length (l = 5 mm) and a different number of turns. The peak
comparison between Triple I and II is using the coefficient of variation cv, which is defined as the
ratio of the standard deviation to the mean to express the precision and repeatability of data. As the
fruit ripens, the resonance frequency peaks from an inductance–frequency curve and shifts closer to
the peak curve of the air, and the fruitlet capacitance decreases. The coefficient of the variation of
the inductive oil palm fruit sensor shows that Triple I is smaller and more consistent in comparison
with Triple II, for both resonance frequency and fruitlet capacitance. The development of this sensor
proves the capability of an inductive element such as a coil, to be used as a sensor so as to determine
the ripeness of the oil palm fresh fruit bunch sample.

Keywords: inductive concept; air coil; resonance frequency; oil palm; maturity classification;
moisture content

1. Introduction

The year 2017 marked the 100 year anniversary of Malaysia’s oil palm industry, after Henri
Fauconnier began to commercialize the oil palm plantation at the Tennamaram Plantation, Selangor, in
1917. Malaysia currently accounts for 39% of the world’s palm oil production and 44% of the world’s
exports. Therefore, Malaysia has an important role, as one of the biggest palm oil products’ producers
and exporters, in fulfilling the growing sustainable global need for oils and fats [1]. The oil palm tree is
well-known as one of the most efficient oilseed crops in the world. One hectare of an oil palm plantation
is able to harvest up to ten times more than the other oilseed crops [2]. The Elaeis guineensis is the most
common species of oil palm in the oil palm plantation because of its thick mesocarp and thin endocarp,
making it suitable for commercialization [3]. The oil palm fresh fruit bunch (FFB) will undergo a
crude palm milling process to extract the palm oil as well as the palm oil by-products. The standard
procedure to grade the oil palm procedure is commonly done through visual inspection by human
graders, based on the oil palm grading manual that was published by the Malaysian Palm Oil Board
(MPOB). The ripeness of the oil palm FFB is identified primarily from the colour of the oil palm fruit
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exocarp, as well as from the number of loose fruit or empty sockets in the bunch [4]. Furthermore,
it is important to pluck the oil palm FFB at the optimal maturity stages in order to maximize the
rate of extraction. Various methods for oil palm fruit maturity grading and detection methods have
been introduced. The most popular method is the spectroscopy method with Red-Green-Blue (RGB)
visual imaging techniques and software analysis [5–10]. The laser-based imaging ripeness detection
method [11] has also been introduced, as well as using the fluorescent technique [12]. M. Saufi et al. [13]
introduced an oil palm fruit grading using Near Infrared (NIR) imaging and D. Silalahi et al. [14]
presented the Genetic Algorithm Neural Network (GANN) software to analyse the NIR spectral data.
In addition, S. Zolfagharnassab et al. [15] initiated a comparison using a thermal sensor to detect
changes in the mean temperature as the oil palm FFB ripens. Moreover, S. Shaarani et al. [16] proposed
an oil palm fruit ripeness monitoring development with the use of magnetic resonance imaging (MRI),
together with bulk nuclear magnetic resonance (NMR). Besides that, the microwave moisture sensor
was introduced for an in-situ measurement of the complex permittivity of moisture content, using a
six- and five-port reflectometer [17–19]. This study is a continuation on the work of N. Hasmiza et al.,
who introduced a new inductive concept using a circular coil [20], single flat-type air coil with various
dimensions [21], dual resonance frequency effect [22], and relative water content of oil palm FFB using
single flat-type air coil was also estimated against week [23]. This paper aims to develop a triple series
flat-type air coil structure with a triple resonance peak to test the effectiveness of detecting the ripeness
of the selected oil palm FFB, based on the increase in the effectiveness of a dual resonance frequency,
when compared to the single coil [22], but with a weekly field data analysis that was similar to the
relative water content method [23].

2. Basic Concept of Detection and Methodology

The inductor is generally a passive element that stores energy in the form of a magnetic field.
The basic detection concept in this study relies on the behaviour of a non-ideal inductor at a high
frequency. Other than the resistive component in a non-ideal inductor, there is also capacitive effect
that affects the inductance property of an inductor, as shown in Figure 1a. The self-capacitance is
significant at a high frequency, which vastly depends on the coil’s turn-to-turn effect. The presence
of a tiny capacitance between the winding is because of the coil’s wire insulated coating and each of
the winding sections that considerably have a different potential, as a result of their own inductance
and resistance. The graph that was obtained through the measurement is shown in Figure 1b, with an
inductance–frequency (Ls–f ) curve for air, ripe, and unripe fruit for the single flat-type air coil similar
to [23]. It is shown that the unripe, ripe, and air follow the same sequence, where the unripe fruit has
the lowest resonance frequency, while the air has the highest peak resonance frequency. As the fruit
ripens, the resonance curve increases and shifts toward the air peak resonance frequency.
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Figure 1. (a) Self-capacitance between coil turn and (b) oil palm fruit ripeness for Ls–f curve for single-
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Figure 1. (a) Self-capacitance between coil turn and (b) oil palm fruit ripeness for Ls–f curve for
single-flat type air coil for air, ripe, and unripe.
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The H-shaped air coil core as shown in Figure 2 makes it easy to wind the coil manually. The design
is also made to have a flat surface on one side for the coil’s maximum contact with the fruitlet flesh.
The width w and height h is kept constant at 6mm and 1mm, respectively, whereas the length is varied
according to the design specification, as shown in Table 1. Triple I has a constant number of turns,
n = 200, and Triple II has constant length, l = 5 mm. The first, second, and third coil series configuration
for both Triple I and II were arranged with increasing inductance, where the first coil had the largest
inductance and the third coil had the smallest inductance.
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Figure 2. Air coil sensor structure with its design specification.

Table 1. Type of coil configuration for triple series flat-type air coil sensor.

Type Constant
Parameter

First Coil
Configuration

Second Coil
Configuration

Third Coil
Configuration

Triple I n = 200 l = 10 mm l = 5 mm l = 3 mm
Triple II l = 5 mm n = 400 n = 200 n = 140

The experiment setup for triple flat-type air coil is shown in Figure 3a. The triple coil sensor was
directly connected to the impedance analyser with the setup parameter, as presented in Table 2, which
remained constant throughout the experiment. The basic circuit representation for Figure 3a is as
shown in Figure 3b, where the inductance (L1, L2, and L3), internal resistance (R1, R2, and R3), and the
total self-capacitance, which was composed of air (Ca1 , Ca2 , and Ca3 ) and fruitlet capacitance (C f1 , C f2 ,
and C f3 ) in parallel. The dotted line indicates the assumed to be fruitlet capacitance that came from the
oil palm fruitlet sample.
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Table 2. Experiment setup parameters.

Parameter Type/Value

Measurement setup Series (Ls–Rs)
Voltage 500 mV

Frequency range 20–10 MHz
Points 200

Coil wire diameter 0.12 mm

Figure 4a,b shows the actual experiment setup without and with the sample. Weekly fruitlet
samples were collected and measured using an impedance analyser. Every week before the experiment
was conducted, the coil sensor needed to be measured without any sample to be used as a reference,
as shown in Figure 4a, in order to eliminate any measurement error because of the changing value
of the resonance frequency over time. Figure 4b shows an important data collection step, where
the fruitlet was sliced into three flat surfaces for the flesh to touch the coil, in order to obtain the
maximum detection.
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3. Experiment Analysis

3.1. Self-Capacitance and Fruitlet Capacitance

The value of self-capacitance can be estimated using the general resonance frequency formula
as follows:

fR =
1

2π
√

LC
, (1)

where fR (Hz) is the resonance frequency, L (H) is the inductance, and C (F) is the capacitance. There are
two different resonances principles that are present in this research, the self-resonance frequency (SRF)
and resonance frequency, which was obtained through the maximum peak in the inductance–frequency
(Ls–f ) curve from the impedance analyser. Both of the resonances used the same formula as shown in
Equation (1), but had a different value of the inductance, L, and resonance frequency, fR. Figure 5a,b
illustrate the differences between them. The SRF is the resonance frequency that occurs at Ls = 0
H and the standard value of the inductance that is used is measured at 100 Hz [24]. On the other
hand, the resonance frequency that is used for the analysis in this study is referred to as the maximum
inductance peak of the Ls–f curve, as shown in Figure 4b. From this information, the self-capacitance
can be estimated from both methods, but the approach that has been used throughout this research is
based on the information that was gained from Figure 5b.
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The self-capacitance and fruitlet capacitance calculation are rather straightforward from
Equation (1), and the parameter taken is, as shown in Figure 4b, and rearranged as follows:

CR =
1

Lmax
· 1

(2π fR)
2 , (2)

where the CR (F) is the calculated by the capacitance at the resonance, by substituting the maximum
peak inductance, Lmax (H) and the resonance frequency fR (Hz) at Lmax. The fruitlet capacitance C f is
determined from equation below, as follows:

C f = CR − Ca, (3)

where C f (F) is the fruitlet capacitance, CR (F) is the total self-capacitance that is obtained through
Equation (2), and Ca (F) is the capacitance that is calculated using the measured resonance frequency of
air, with no sample, it was considered measuring the air literally. The capacitance at the peak resonance
frequency CR is introduced especially so as to avoid confusion with the total self-capacitance that can
be obtained at any given frequency using Equation (1).

3.2. Comparison Analysis Method

The comparison analyses are divided into three, ripe-unripe direct comparison, comparison
against a week, and moisture content, as shown in Figure 6. The differences are further summarized
into a horizontal bar graph. There were two types of data sets that were used for the analysis in this
paper, resonance frequency and fruitlet capacitance.

The first evaluation used is direct ripe-unripe comparison analysis as illustrated in Figure 6a
where the mean difference for peak resonance frequency ∆ fR (Hz) and fruitlet capacitance ∆C f (F) are
calculated using formula:

∆ fR = fRr − fRu, (4)

∆C f = ∆C f r − ∆C f u, (5)

where ∆ fRr (Hz) is mean ripe resonance frequency, ∆ fRu (Hz) is the mean unripe resonance frequency,
C fr (F) is the mean ripe fruitlet capacitance, and C fu (F) is the mean unripe fruitlet capacitance.

The approximation regression line is fit for a week, and the moisture content evaluation for both
the coil resonance frequency and the fruitlet capacitance are shown in Figure 6b,c, respectively, which
follows the general line equation below, as follows:

y = α + βx where β =
∆y
∆x

(6)
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where y is the y-axis component, such as the resonance frequency or fruitlet capacitance; and x is the
x-axis component, either the weeks or the moisture content according to the graph. The β value is the
sensitivity of the coil sensor.

Sensors 2018, 18, x FOR PEER REVIEW 5 of 18 

The self-capacitance and fruitlet capacitance calculation are rather straightforward from 
Equation (1), and the parameter taken is, as shown in Figure 4b, and rearranged as follows: ܥோ 	= 	 ௠௔௫ܮ1 ⋅ 1ሺ2ߨ ோ݂ሻଶ, (2)

where the ܥோ	(F) is the calculated by the capacitance at the resonance, by substituting the maximum 
peak inductance, ܮ௠௔௫	(H) and the resonance frequency ோ݂ (Hz) at ܮ௠௔௫. The fruitlet capacitance ܥ௙ 
is determined from equation below, as follows: ܥ௙ 	= ோܥ	 − ௔, (3)ܥ

where ܥ௙ (F) is the fruitlet capacitance, ܥோ (F) is the total self-capacitance that is obtained through 
Equation (2), and ܥ௔ (F) is the capacitance that is calculated using the measured resonance frequency 
of air, with no sample, it was considered measuring the air literally. The capacitance at the peak 
resonance frequency ܥோ  is introduced especially so as to avoid confusion with the total self-
capacitance that can be obtained at any given frequency using Equation (1). 

3.2. Comparison Analysis Method 

The comparison analyses are divided into three, ripe-unripe direct comparison, comparison 
against a week, and moisture content, as shown in Figure 6. The differences are further summarized 
into a horizontal bar graph. There were two types of data sets that were used for the analysis in this 
paper, resonance frequency and fruitlet capacitance. 

 
Figure 6. Resonance frequency for (a) direct ripe-unripe comparison, (b) resonance frequency against 
the weeks and (c) resonance frequency against moisture comparison for selected flat-type air coil 
peak. 

The first evaluation used is direct ripe-unripe comparison analysis as illustrated in Figure 6a 
where the mean difference for peak resonance frequency ∆ ோ݂ഥ  (Hz) and fruitlet capacitance Δܥ௙തതത (F) 
are calculated using formula: 

RfΔ

RfΔ
RfΔ

0 100 200 300

Resonance Frequency, f
R

(kHz)

Rrf

Ruf
0 2 4 6 8 10

2.600

2.650

2.700

2.750

2.800

Sample

RfΔ

weekΔ

0 4 8 12 16 20
2.4

2.5

2.6

2.7

2.8

2.9

Week, w

100 80 60 40 20 0
2.4

2.5

2.6

2.7

2.8

2.9

Moisture content, mc (%)

RfΔ

%moistureΔ

(a)

(b)

(c)

w

m

w

m

RfΔ

c

= 22

= 100%

Air

Ripe

Unripe

Data

Line Fit 

Figure 6. Resonance frequency for (a) direct ripe-unripe comparison, (b) resonance frequency against
the weeks and (c) resonance frequency against moisture comparison for selected flat-type air coil peak.

For the second evaluation analysis against a week, the common notation for both the resonance
frequency fR (Hz) and the fruitlet capacitance C f (F) data setsis as follows: w is the number of weeks
and ∆w is fixed at 22 weeks. Equation (6) has been further defined for the resonance frequency and
fruitlet capacitance against the week, as follows:

fR = αw fR +
(

βw fR · w
)

(7)

βw fR =
∆ fRw

∆w
=

∆ fRw

22
(8)

∆ fRw = βw fR · 22 (9)

where αw fR (Hz) is the frequency at w = 0 on the resonance frequency against the weeks graph, βw fR

(Hz/week) is the sensitivity of the coil sensor resonance frequency with respect to the week, and ∆ fRw

(Hz) is the resonance frequency of the weeks difference.

C f = αwC f +
(

βwC f · w
)

(10)

βwC f =
∆C fw

∆w
=

∆C fw

22
(11)

∆C fw = βwC f · 22 (12)
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where αwC f (F) is the fruitlet capacitance at w = 0 on the fruitlet capacitance against the weeks graph,
βwC f (F/week) is the sensitivity of the coil sensor of the fruitlet capacitance with respect to the week,
and ∆C fw (F) is the fruitlet capacitance of the weeks difference.

Furthermore, for the third evaluation analysis against the moisture content, the common notations
that were used for both sets of data are as follows: mc (%) is the moisture content in percentage and
∆mc is fixed at 100%. Hence, the equation for the resonance frequency fR (Hz) and fruitlet capacitance
C f (F) against the moisture content are as follows:

fR = αm fR +
(

βm fR ·mc

)
(13)

βm fR =
∆ fRm

∆mc
=

∆ fRm

100%
(14)

∆ fRm = βm fR · 100% (15)

where αm fR (Hz) is the resonance frequency at mc = 0% on the resonance frequency against the moisture
graph, βm fR (Hz/%) is the sensitivity of the coil sensor with respect to moisture content, ∆ fRm (Hz) is
the resonance frequency moisture content difference.

C f = αmC f +
(

βmC f ·mc

)
(16)

βmC f =
∆C fm

∆mc
=

∆C fm

100
(17)

∆C fm = βmC f · 100% (18)

where αmC f (F) is the fruitlet capacitance at mc = 0% on the fruitlet capacitance against the moisture
graph, βmC f (F/%) is the sensitivity of the coil sensor with respect to moisture content, and ∆C fm (Hz)
is the fruitlet capacitance moisture content difference. Note that the resonance frequency against the
moisture content begins with 100%, in Figure 6c, with the purpose of following the time vector (week)
pattern so as to observe its trend and therefore, its gradient value is actually negative when compared
to the weeks graph in Figure 6b.

Further analysis was conducted on the data in order to compare the ripe–unripe, week, and
moisture differences. A simple statistical method was introduced to observe the variability and
stability of the data. In order for the coil configuration to be selected, the coil needs to have a small
variability as well as a high output sensitivity for the best performance.

Differences in the mean ∆ and standard deviation σ were introduced as well as the coefficient
of variation cv, to compare both of the triple flat-type air coil performances. The coefficient of the
variation cv is a standardized measure of dispersion, which is defined as the ratio of the standard
deviation to the mean. cv is widely used to express the precision and repeatability of the data [25].

cv =
σ

∆
(19)

where σ is the standard deviation and ∆ is the average of the differences for the resonance frequency
and fruitlet capacitance, as shown in Equations (20) and (21), respectively.

∆ fR =
∆ fR + ∆ fRw + ∆ fRm

3
(20)

∆C f =
∆C f + ∆C fw + ∆C fm

3
(21)

where ∆ fR (Hz) is the resonance frequency differences mean, which consist of ∆ fR, ∆ fRw and ∆ fRm

from Equations (4), (9), and (15), respectively. Whereas ∆C f (F) is the fruitlet capacitance differences
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mean that consist of ∆C f , ∆C fw , and ∆C fm from Equations (5), (12), and (18), respectively. For a
comparison between the data sets with different means, the coefficient of the variation is preferred
instead of the standard deviation. Since the value of cv is a dimensionless number independent
of the unit in which the measurement is calculated, the sensor needed to be designed so that the
coefficient of the variation cv was close to zero, where the data yields a constant absolute error over the
operational range.

4. Results and Discussions

4.1. Sample Selection and Bunch Moisture Content

The oil palm tree (Elaeis guineensis) with the variety named Tenera, which came from hybridization
of Dura and Pisifera, was selected for this study. Five selected bunches were tested every week until the
oil palm FFB ripened. The oil palm trees that were involved in this experiment were approximately
6 years old and 3 m in height. A total of 5 fruitlet samples were taken weekly from the selected
bunches and a total of 66 fruitlet samples throughout the experiment period, until each bunch ripened.
The samples were then measured with an impedance analyser. After the measurement, the fruitlet
moisture content was determined using an oven-drying method. The sample was sliced and dried
in the oven at 103 ◦C ± 2 ◦C until the weight of the sample became constant. Based on the moisture
content of the fruitlet, the fruitlet age was approximated, as shown in Figure 7, where samples A, B,
C, D, and E were assumed to be at weeks 10, 1, 8, 2, and 4, respectively, hence, the moisture content
estimation equation from Figure 7 is as follows:

mc = 3.348w2 + 3.075w + 77.67, For 0 < w < 20 (22)

where mc (%) is the moisture content and w is the number of weeks. The parabolic fit has coefficient
of determination, R2 = 0.89367, where the estimation is valid for the range, begins at week 1, which
was deduced to be at 80.4%, and week 19, which was deduced to be at 10.47%. The over-ripe fruit
after week 19 was predicted to be at a constant ripe percentage, around 10% to 40% and did not go
below 10%.
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4.2. Inductance-Frequency Graph Characteristics

Figure 8a,b below shows the behaviour of the triple resonance of the air, ripe, and unripe for
Triple I and II, which followed the sequence that was similar to its single flat-type air coil result in
Figure 1b. Triple II was observed to have had a higher first maximum inductance peak when compared
with Triple I. However, the Triple II second and third peak were shorter compared with the Triple I
second and third peak. The second and third peak trend affected the peak detection and caused the
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data to be unstable. Therefore, the first peak performance was the important parameter in order
to select the best performance indicator. This observation was supported by the previous study by
N. Hasmiza et al. [22], who mentioned that the first peak of the dual coil that was constructed was
dominating the test results. It was observed that the behaviour of the dual and triple coil configuration
was similar in nature, with its maximum peak inductance decreasing when the inductance of the
coil decreased.
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4.3. Peak Resonance Frequency, fR

This section examines the peak resonance frequency differences between the ripe–unripe sample
comparison, as well as the weeks and moisture content evaluation of the oil palm fruitlet sample for
the triple flat-type air coil.

Firstly, the ripe-unripe sample comparison is summarized in Table 3, and the mean value was
obtained from Figure 9a–f, using Equation (4), for Triple I and II when calculating the resonance
frequency mean difference ∆ fR. The ripe-unripe comparison result showed that the difference between
fRr and fRu decreased as the inductance of the coil increased, except for the Triple II second peak with
a small mean difference ∆ fR = 5.03 kHz. When comparing Triple I and II, it seemed that Triple I had a
bigger ∆ fR value for all of the peaks when compared with Triple II. Furthermore, even though the coil
configuration for the second peak was the same, the performance differed greatly, as the Triple I and
Triple II ∆ fR values were 256.28 kHz and 5.03 kHz, respectively.

Table 3. Triple series coil mean resonance frequency for the ripe and unripe, with difference
between them.

Type Peak Ripe Mean, fRr (MHz) Unripe Mean, fRu (MHz) Mean Difference, ∆fR (kHz)

Triple I
First 2.980 2.849 130.66

Second 4.437 4.181 256.28
Third 6.915 6.643 271.35

Triple II
First 2.799 2.719 79.56

Second 4.889 4.889 5.03
Third 7.347 7.186 160.80
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Figure 9. Ripe-unripe first, second, and third peak resonance frequency comparison for Triple I (a–c)
and Triple II (d–f).

Figures 10 and 11 shows the resonance frequency fR against the weeks and moisture content
graph, with a line fit that followed the general approximate regression from Equation (5). The Triple I
and II line fits that were obtained from Figure 9 for the Triple I peaks, and Figure 10 for the Triple II
peaks, are summarized in Table 4. The linear regression equation for fR against the weeks was based
on Equation (6), and the linear regression equation fR against the moisture was based on Equation (9).
The resonance frequency against the weeks showed all of the positive gradients βw fR , but the moisture
content of the fruitlet was inversely proportional to the resonance frequency, therefore producing a
negative gradient βm fR . From Table 4, it was observed that the Triple I sensitivity increased with the
decreasing inductance against both the weeks and moisture content. Triple II fR against the weeks
sensitivity βw fR was rather inconsistent, but for fR against the moisture sensitivity βm fR , magnitude
increased slightly with the increasing coil inductance.

Table 4. Triple series coil αβ value for resonance frequency against the weeks and moisture graph.

Type Peak
Week Moisture Content

αwfR
(Hz) βwfR

(Hz/Week) αmfR
(Hz) βmfR

(Hz/%)

Triple I
First 2.81 × 106 7.38 × 103 3.03 × 106 −2.14 × 103

Second 4.43 × 106 11.90 × 103 4.75 × 106 −3.00 × 103

Third 6.55 × 106 15.52 × 103 7.05 × 106 −5.26 × 103

Triple II
First 2.51 × 106 19.31 × 103 2.83 × 106 −1.75 × 103

Second 4.91 × 106 6.20 × 103 5.09 × 106 −1.80 × 103

Third 7.12 × 106 10.60 × 103 7.37 × 106 −2.16 × 103
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Figure 10. Triple I first, second, and third peak resonance frequency against the weeks (a–c) and
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Figure 11. Triple II first, second, and third peak resonance frequency against the weeks (a–c) and
moisture (d–f).
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The resonance frequency evaluation comparison between the peaks of Triple I and II are
summarized in Figure 12, below. There were three parameters that were compared,∆ fR, ∆ fRw , and
∆ fRm . Equation (4) was used to calculate the resonance frequency mean difference ∆ fR and Table 3
summarizes the data from Figure 9. The value of ∆ fRw was obtained through βw fR , using Equation (8),
with ∆w being fixed at 22 from the linear regression equation for fR against the week. The linear
regression equation for fR, against the moisture were based on Equation (13), with the value of
the moisture ∆ fR being obtained through the gradient βm fR , using Equations (14) and (15) with
∆mc = 100%.
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Figure 12. Triple I and II resonance frequency evaluation comparison for ∆ fR, ∆ fRw , and ∆ fRm .

Table 5 summarizes all of the differences from Figure 12 with the differences mean, standard
deviation, and coefficient of the variation cv. When comparing the first peak of Triple I and II, the
Triple I had a smaller difference mean ∆ fR = 169.12 kHz in comparison with Triple II ∆ fR = 226.54 kHz.
For the second peak, even though the coil configuration for both of the triple series were the same,
it seemed that Triple I had a higher ∆ fR, as compared with Triple II by 165.74 kHz. The third peak
comparison showed that the Triple I was slightly lower than the Triple II third peak by 20.02 kHz.

Table 5. Resonance frequency difference evaluation for triple series air coil.

Type Peak Differences Mean, ∆fR
(kHz)

Standard Deviation, σf
(kHz)

Coefficient of Variation,
cv

Triple I
First 169.12 42.28 0.2500

Second 272.86 24.08 0.0882
Third 379.74 131.78 0.3470

Triple II
First 226.54 178.26 0.7869

Second 107.12 91.07 0.8501
Third 399.76 353.13 0.8834

The dual coil structure of with a different number of turns (200–140), which was researched by
N. Hasmiza et al. [22], pointed out a noticeable 371% improvement in terms of the difference between
the sample’s ripe and unripe mean for both of the samples when comparing them with the single
flat-type air coil with the same coil structure and number of turns, n = 200 [21]. Even though it was a
comparison of normalized difference, the idea of the mean ripe minus the mean unripe, which was
similar to the differences mean ∆ fR, was used for this comparison. Using ∆ fR to compare the first peak
of Triple I and II, the differences mean for first peak of Triple I was smaller by 75%, compared with
Triple II, which meant that the Triple II sensitivity was better than that of Triple I. It was noted that the
∆ fR was the average of ∆ fR, ∆ fRw , and ∆ fRm . However, in terms of the precision of its variation across
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the three types of evaluations that were tested, it was observed that Triple I had a more consistent
value in comparison with Triple II.

4.4. Fruitlet Capacitance, C f

This section studied the fruitlet capacitance differences between the ripe–unripe sample
comparison, in addition to the weeks and moisture content evaluation of the oil palm fruitlet sample
for the triple flat-type air coil.

The fruitlet capacitance C f was acquired when the self-capacitance of the air coil Ca was deducted
from the self-capacitance of the coil with the fruitlet sample CR, as expressed in Equation (3). In contrast
to the ripe resonance frequency mean fRr and the unripe resonance frequency mean fRu, the mean
unripe fruitlet capacitance C f u was bigger than the mean ripe C f r, as demonstrated in Figure 13.
The fruitlet capacitance mean difference ∆ C f was obtained through Equation (5) and is tabulated in
Table 6. The overall fruitlet capacitance mean for the ripe and unripe for Triple I was also relatively
higher than Triple II, when compared peak-to-peak. The difference ∆ C f for Triple I was also higher
than Triple II. However, the Triple I second peak had shown incredibly big differences, as compared to
the rest of the peaks, for both Triple I and II with ∆ C f = 10.872 pF. Even though Triple II had the same
second coil configuration as Triple I, the value of C f r, C f u, and the difference ∆ C f was not as high as
in the Triple I configuration.Sensors 2018, 18, x FOR PEER REVIEW 13 of 18 
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Figure 13. Ripe-unripe first, second, and third fruitlet capacitance comparison for Triple I: (a–c) and
Triple II: (d–f).
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Table 6. Triple coil mean fruitlet capacitance for ripe and unripe, with the difference between them.

Type Peak Ripe Mean, Cfr (pF) Unripe Mean, Cfu (pF) Difference, ∆ Cf (pF)

Triple I
First 1.113 2.186 1.073

Second 4.974 15.846 10.872
Third 2.092 3.488 1.397

Triple II
First 0.147 0.395 0.247

Second 1.471 2.032 0.561
Third 0.356 0.452 0.095

The individual fruitlet capacitance against the weeks and moisture content graph is presented
in Figure 14 for Triple I, and in Figure 15 for Triple II. The line fit equation parameter value from
Figures 14 and 15 are summarized in Table 7, below. Both of the figures are separated by the peaks,
namely, the first, second, and third with the fruitlet capacitance against the weeks and moisture.
The linear regression equation was defined from Equations (13) and (16) for both the weeks and
moisture graph. From Table 7, the αwC f value for the C f against the weeks, showed an estimation
for the unripe fruitlet capacitance, whereas the αmC f value of the C f against the moisture content
showed the fruitlet capacitance of the air, for which the that was value observed was close to zero.
The C f against the weeks’ gradient showed all of the negative βmC f , but the C f against the moisture
content showed a positive gradient βmC f . It was because, as the moisture content decreased, the
fruitlet capacitance decreased as well. This result trend was similar to the result that was shown by
K. Y. Lee et al. [18], where the dielectric constant increased with increasing moisture content.Sensors 2018, 18, x FOR PEER REVIEW 14 of 18 
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Figure 14. Triple I first, second, and third fruitlet capacitance against the weeks (a–c) and moisture
content (d–f).
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Figure 15. Triple II 1st, 2nd and 3rd fruitlet capacitance against the weeks (a–c) and moisture (d–f).

Table 7. Triple coil αβ line fit value for fruitlet capacitance against the weeks and moisture graph.

Type Peak
Week Moisture Content

αwCf (F) αwCf (F/Week) αmCf (F) βmCf (F/%)

Triple I
First 4.272 × 10−12 −193.301 × 10−15 0.141 × 10−12 32.314 × 10−15

Second 8.454 × 10−12 −173.189 × 10−15 2.647 × 10−12 62.961 × 10−15

Third 4.606 × 10−12 −139.312 × 10−15 1.475 × 10−12 25.313 × 10−15

Triple II
First 0.814 × 10−12 −25.878 × 10−15 0.374 × 10−12 2.666 × 10−15

Second 2.562 × 10−12 −71.895 × 10−15 0.622 × 10−12 18.526 × 10−15

Third 1.878 × 10−12 −13.404 × 10−15 1.006 × 10−12 11.739 × 10−15

Figure 16 summarizes the fruitlet capacitance comparison between the peaks of Triple I and II.
There were three parameters that were compared, namely, ∆ C f and ∆C f for the weeks and moisture,
respectively. The fruitlet capacitance mean difference ∆ C f was obtained through Equation (5) and
is tabulated in Table 6. Furthermore, for the triple series comparison between the peaks in Figure 16,
Equation (12) with ∆w = 22 was used to evaluate ∆C fw , whereas Equation (18) with ∆mc = 100% was
used to evaluate ∆C fm .
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Figure 16. Triple I and II fruitlet capacitance evaluation comparison for ∆C f , ∆C fw , and ∆C fm .

Table 8 summarizes all of the differences from Figure 16, with the differences mean, standard
deviation, and coefficient of variation cv. Relatively, Triple I had a higher fruitlet capacitance differences
mean ∆C f , as compared to Triple II. When comparing the second peak of both of the triple series, both
had performed with the highest ∆C f , but the Triple I second peak was 5.25 times bigger compared
with the Triple II second peak, even though both had the same n = 200 and l = 5 mm coil configuration.
Moreover, the value of the coefficient of the variation cv peak-to-peak comparison between the Triple
I and II peaks showed that all cv of Triple I were smaller than Triple II. The big value of all of the cv

means that were shown by the Triple II third peak indicated that it had an inconsistent result for all
three of the evaluations that were tested (∆C f , ∆C fw and ∆C fm ). From the results that were obtained,
it was observed that Triple I showed the biggest average fruitlet capacitance differences mean ∆C f and
had a smaller average coefficient of the variation cv, when compared with Triple II.

Table 8. Fruitlet capacitance difference evaluation for triple series air coil.

Type Peak Differences Mean, ∆Cf (pF) Standard Deviation, σc (pF) Coefficient of Variation, cv

Triple I
First 2.852 1.623 0.5692

Second 6.993 3.582 0.5123
Third 2.331 0.852 0.3654

Triple II
First 0.361 0.180 0.4998

Second 1.332 0.681 0.5115
Third 0.521 0.574 1.1010

Previous research studied the relative estimation of the water content for single flat-type air
coil [23] that involved fruitlet capacitance, similar to this article. The coil structure that was used was
the same as the one that was used in this research, only with a different number of turns n = 170.
The difference between the estimated ripe and unripe capacitance value for the single flat-type air coil
was 1.6483 pF. Even though it had a different number of turns, the estimated value could lie between
n = 140 and n = 200. Regardless when comparing with triple series ∆C f , the single coil’s capacitance
difference was smaller than all of the three peaks of Triple I, however its capacitance was bigger than
all of the Triple II peaks.

5. Conclusions

This paper covers a study about the triple flat-type coil series configuration for the oil palm fruit
maturity sensor with two types of triple series, namely Triple I and II, with a constant number of turns
(n = 200) and length (l = 5 mm), respectively. The performance of the first peak was highlighted in
this study. From this study, it is observed that the resonance frequency increases with progressing
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ripening weeks, but that it is inversely proportional to the moisture content. However, the fruitlet
capacitance decreases with the progressing ripening weeks and is directly proportional to the moisture
content percentage.

For the triple series flat-type air coil peak resonance frequency evaluation, Triple I and II were
compared peak-to-peak for the resonance frequency and fruitlet capacitance differences. When
comparing the first peak of the Triple I and II resonance frequency mean difference ∆ fR, the Triple I has
a smaller difference mean ∆ fR = 169.12 kHz, in comparison with Triple II ∆ fR = 226.54 kHz. For the
second peak, even though the coil configuration for both of the triple series is the same, it seems that
Triple I has a higher ∆ fR, as compared with Triple II, by 165.74 kHz. For the coefficient of the variation
performance evaluation, the Triple II peaks have a rather high cv and therefore the level of dispersion
around the difference mean is high, with an average of cv = 0.8401, as compared with the average cv

for the Triple I peak of 0.2284. This shows that the Triple II is less precise compared to the Triple I for
the resonance frequency difference comparison.

On the other hand, Triple I has a higher fruitlet capacitance differences mean ∆C f , as compared
with Triple II. When comparing the second peak of both of the triple series, the Triple I second peak is
5.25 times bigger, compared to the Triple II second peak, even though both have same n = 200 and
l = 5 mm coil configuration. When comparing the Triple I and II average coefficient of variation cv,
Triple I has a smaller cv value when compared with Triple II, and is shown to be more precise as the
lower value of the coefficient of variation produces a more precise estimated range of data.

In conclusion, the Triple I series coil with a fix number of turns (n = 200) with a different length
shows better results compared to the Triple II coil with a fix length (l = 5 mm) and different number of
turns. Triple I is more sensitive and precise compared with Triple II. The total length in the Triple I series
allows more of the fruit surface area to touch the coil sensor and furthermore, it has less interwinding
capacitance parameter intervention, as it has the same number of turns for all of the coil configurations
in the series. Besides that, the Triple I and II sensor performance comparison using the resonance
frequency and fruitlet capacitance showed an interesting trend, with both having their own unique
points. The fruitlet capacitance is related to the permittivity changes as the fruit ripens, and the
resonance frequency that is measured is used to calculate the fruitlet capacitance as well as to observe
the shifting of resonance. The data from this study will help to decide on the best structure for the
further improvement of the oil palm fruit ripeness stage detection, using an inductive-based method.
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