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Abstract: Global navigation systems provide worldwide positioning, navigation and navigation
services. However, in some challenging environments, especially when the satellite is blocked,
the performance of GNSS is seriously degraded or even unavailable. Ground based positioning
systems, including pseudolites and Locata, have shown their potentials in centimeter-level positioning
accuracy using carrier phase measurements. Ambiguity resolution (AR) is a key issue for such high
precision positioning. Current methods for the ground based systems need code measurements for
initialization and/or approximating linearization. If the code measurements show relatively large
errors, current methods might suffer from convergence difficulties in ground based positioning. In this
paper, the concept of double-differential square observation (DDS) is proposed, and an on-the-fly
ambiguity resolution (OTF-AR) method is developed for ground based navigation systems using
two-way measurements. An important advantage of the proposed method is that only the carrier
phase measurements are used, and code measurements are not necessary. The clock error is canceled
out by two-way measurements between the rover and the base stations. The squared observations
are then differenced between different rover positions and different base stations, and a linear model
is then obtained. The floating integer values are easy to compute via this model, and there is no
need to do approximate linearization. In this procedure, the rover’s approximate coordinates are also
directly obtained from the carrier measurements, therefore code measurements are not necessary.
As an OTF-AR method, the proposed method relies on geometric changes caused by the rover’s
motion. As shown by the simulations, the geometric diversity of observations is the key factor
for the AR success rate. Moreover, the fine floating solutions given by our method also have a
fairly good accuracy, which is valuable when fixed solutions are not reliable. A real experiment is
conducted to validate the proposed method. The results show that the fixed solution could achieve
centimeter-level accuracy.

Keywords: ambiguity resolution; ground based positioning; carrier phase measurement

1. Introduction

Global navigation satellite systems (GNSSs) can provide global navigation and positioning
services and are widely used in various industries. As the demand for navigation and positioning
grows, GNSS is often combined with other navigation technologies [1–3]. In many harsh environments,
the reliability or accuracy of GNSS is not satisfactory, such as in the urban canyons and indoor
environments, and there have been some solutions [4–7].

As an alternative solution, ground based positioning systems, including pseudolites (PL) and
Locata, are able to provide flexible navigation capabilities to improve the performance of GNSS services.
In GNSS denied environments, such systems are able to provide stand-alone services.
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The base station includes a transmitter broadcasting GNSS-like signals, from which the receiver
obtains code and carrier phase measurements. Ambiguity resolution (AR) is a key issue for
high-precision positioning using carrier phase measurements. The AR problem is usually considered
as a nonlinear integer-mixed problem. In GNSS high-precision positioning, the geometric changes
caused by the motion of satellites and/or receivers help to decorrelate and resolve the ambiguities [8].
In the past decades, the ambiguity resolution (AR) problem has been widely studied for GNSS
applications [9–13].

A number of AR methods are proposed for ground based positioning systems. The known-point-
initialization (KPI) method accurately measures the initial coordinates, and then calculates the integer
ambiguities based on the initial measurements [14]. Their improved particle swarm optimization
method requires an initial approximate coordinate with a high precision [15].

However, to do such accurate measurements in advance could be inconvenient for users, and,
in practical kinematic applications, in case of loss of signal lock or cycle slips, the receiver has to go back
to the initial point and to restart AR. Therefore, the on-the-fly AR (OTF-AR) methods, which resolve
integer ambiguities via the geometric diversity, are desirable.

There have been some OTF-AR methods developed for ground based positioning systems.
Based on the nonlinear batch least-square estimation, an OTF-AR method is proposed in [16,17].
For GNSS/PL/Inertial Navigation System (INS) integration applications, OTF-AR methods based on
the extended Kalman filter are used in [18,19].

In general, existing OTF-AR methods for ground based positioning usually use the code
measurements to estimate the approximate coordinates, and then linearize the observation model
around these coordinates. Code measurements also provide initial states for the methods that are based
on Kalman filters. In GNSS applications, since GNSS satellites are far away from both the receiver and
the reference station, the linearization is quite reasonable.

However, in ground based positioning, since the base stations are located nearby the receiver,
such linearization might cause significant nonlinear errors [20]. This might bring some difficulties
for the OTF-AR methods above. Compared with the carrier measurements, the thermal noise of code
measurements is much larger and the multipath effect is also more severe. Moreover, in ground
positioning applications, since the base stations are close to the receiver, the errors caused by
linearization cannot be directly ignored [20]. As a result, the AR success rate greatly depends on the
accuracy of code or other measurements made in advance, and a poor initial estimate might lead to
convergence difficulties [19].

In some cases, such as the indoor environment, the base stations and the receiver are very close.
The code measurements might suffer from errors comparable with the true distance, and thus fail to
provide sufficiently accurate coordinates. In this situation, the AR success rates of current methods
could be quite poor.

In this paper, a new OTF-AR method based on double-differential square (DDS) observations is
proposed. This method is suitable for ground based positioning systems using two-way measurements.
The two-way ranging is able to eliminate the clock errors at the cost that the user equipment includes
a transmitter.

Two-way ranging has been widely used in wireless positioning [21–23], and related high-precision
applications using carrier phase measurements can be found in [24,25]. Such a system usually consists
of several stationary base stations for which coordinates are known, and a kinematic rover that can
receive and transmit ranging signals.

Similar to existing OTF-AR methods, the rover’s motion is necessary to cause geometric changes
since the base stations are stationary. The rover collects carrier phase measurements at different
sampling points during its movements. These measurements are squared and differenced twice to
obtain a linear model. It is shown by the analysis that, with a sufficient number of sampling points,
the model is able to be solved, without other measurements made in advance.
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An important feature of the proposed method is the concept of the DDS observation.
The measurements at different points are squared first. The squared observations are then differenced
between different points and base stations, and, in this way, a linear model is obtained. The proposed
method provides a new way to utilize the geometric changes for resolving ambiguities.

The proposed method is able to directly obtain approximate coordinates and floating integer
values from this model, and this is the reason why other measurements are not necessary. To the best of
the author’s knowledge, there is no previous method that solely relies on carrier phase measurements.
The proposed method is free from the influences of other measurements, which could be an important
advantage. In other words, it applies to cases where other measurements are not accurate enough or
may be unavailable.

The remainder of this paper is organized as follows. In Section 2, we give a brief review of
the two-way measurement model. In Section 3, the concept of DDS observation is introduced to
establish a linear model, and the procedure of resolving ambiguities is specified based on the noise
analysis. In Section 4, several simulations show the validity of the proposed method. The influence of
the number of sampling points, and the number of base stations are discussed. It is shown that the
geometric diversity actually has an important influence on the AR success rate. A real experiment is
conducted to validate the proposed method, and the results are shown and discussed in Section 5.
Finally, conclusions are drawn in Section 6.

2. Problem Formulation

We consider a positioning problem for a ground based positioning system using two-way
ranging [24,25]. Suppose that there are L base stations denoted as BS1, BS2, ..., BSL. The coordinates
of BSi are precisely measured and denoted as si = (xs

i , ys
i , zs

i )
T. The rover’s coordinate and carrier

phase measurement to BSi at k-th position are denoted as uk = (xu
k , yu

k , zu
k )

T and φi
k, respectively.

The measurement φi
k depends on BSi’s coordinates si, the rover’s coordinate uk, BSi’s clock error δti,

and the rover’s clock error δtk as follows:

φi
k =

1
λ
‖si − uk‖+ Ni +

c
λ
(δti − δtk) + wi

k, (1)

where ‖ · ‖ represents the Euclidean distance, λ is the carrier wavelength, Ni is the unknown integer
value, c is the speed of light, and wi

k is the observation noise. Since the multipath error varies at
different positions, in this paper, it is considered as a kind of noise instead of a series of constant biases.
The maximum multipath error is no larger than λ/4, and there are ways to mitigate the multipath
effects for ground based positioning via choke ring antenna, spatial, polarization or frequency design
techniques [26,27].

For GNSS applications, the double-differential observation can eliminate the effects of clock
errors, and a reasonable linearization is used. For ground based positioning using carrier phase
measurements, the self-differential two-way ranging technique has been proposed, where both the
rover and base stations are able to transmit and receive signals [24,25]. The BSi’s measurement to the
rover is written as

φ̃i
k =

1
λ
‖si − uk‖+ Ñi +

c
λ
(δtk − δti) + w̃i

k. (2)

With the two-way measurements, the clock errors in Equation (1) are canceled, and the observation
is written as follows:

θi
k =

2
λ
‖si − uk‖+ Zi + ni

k (3)

where θi
k = φi

k + φ̃i
k, Zi = Ni + Ñi and ni

k = wi
k + w̃i

k. Zi denotes the the new ambiguity for
two-way measurements.

Before the carrier phase measurements can actually be used in position determination,
the ambiguities Zi should be accurately resolved. The geometric changes is necessary to decorrelate
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the ambiguities. Since the ground based base stations are stationary, the geometric changes relies
on the rover’s motion. During the rover’s motion, the observations described in (3) are collected at
different positions. It is assumed that there is no loss of signal lock or cycle slip, so that the carrier
phase integers are constant during this procedure.

With a sufficient number of observations, the OTF-AR problem is solvable in theory. In previous
methods, a typical solution of similar problems is to perform a type of approximate linear expansion,
in which the code measurements are used. As discussed in the introduction, if the code phase
measurements are of a relatively low accuracy, methods using such a linear expansion will encounter
convergence difficulties and this might be a flaw in some cases.

In the next section, we propose the concept of double-differential square observation,
which provides a new way to establish a linear model. It will be seen that only carrier phase
observations are involved in solving this linear model, and, at the same time, floating integer values
and approximate coordinates are obtained.

3. The Proposed Method

3.1. Double-Differential Square Observation

As the naming of DDS shows, the observation in Equation (3) are firstly squared as

(θi
k − Zi)

2 = (
2
λ
‖si − uk‖+ ni

k)
2. (4)

With some manipulations, the square observation (θi
k)

2 is obtained as follows:

(θi
k)

2 =
4‖si − uk‖2

λ2 + 2θi
kZi − Z2

i +
4‖si − uk‖ni

k
λ

+ (ni
k)

2. (5)

Similar to the traditional writing of GNSS differencing symbols, we define the single-differential
square (SDS) observation between position uk and um as ∆2θi

km = (θi
k)

2 − (θi
m)

2. With Equation (5),
∆2θi

km is written as

∆2θi
km =(θi

k)
2 − (θi

m)
2

=
4[−2sT

i (uk − um) + uT
k uk − uT

mum]

λ2 + 2(θi
k − θi

m)Zi

+
4(‖si − uk‖ni

k − ‖si − um‖ni
m)

λ
+ (ni

k)
2 − (ni

m)
2. (6)

Generally, the levels of measurement errors are considered to be much smaller than the true
distances, or it will be impossible to perform carrier phase positioning. In this regard, we have
‖si − uk‖ � λni

k and ‖si − um‖ � λni
m, and the equation above can be simplified as follows:

∆2θi
km =

4[−2sT
i (uk − um) + uT

k uk − uT
mum]

λ2 + 2(θi
k − θi

m)Zi +
4(‖si − uk‖ni

k − ‖si − um‖ni
m)

λ
.

It can be seen that the quadratic term of the ambiguity Z2
i is eliminated by single-differencing in

the SDS observation.
There are still quadratic terms of the unknown coordinates in Equation (6), which are uT

k uk and
uT

mum. These two quadratic terms can be eliminated by differencing between PLi and PLj, and leads to

the double-differential square observation. The definition of DDS observation ∇∆2θ
ij
km is as follows:
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∇∆2θ
ij
km =(θi

k)
2 − (θ

j
k)

2 − (θi
m)

2 + (θ
j
m)

2

=−
8(si − sj)

T(uk − um)

λ2 + 2(θi
k − θi

m)Zi − 2(θ j
k − θ

j
m)Zj

+
4(‖si − uk‖ni

k − ‖si − um‖ni
m)

λ
−

4(‖sj − uk‖n
j
k + ‖sj − uk‖n

j
m)

λ
. (7)

In the above, the definition of DDS observation is clarified, and, with twice differencing,
several quadratic items are eliminated. The unknown items in the last two lines of Equation (7)
are considered as noise items, and, in this way, a linear observation model is established.

The rover moves and collects measurements at different positions to obtain DDS observations.
For example, the carrier phase measurements collected at uk and um are converted to L − 1 DDS
observations as 

∇∆2θ21
km

∇∆2θ31
km

...
∇∆2θL1

km


︸ ︷︷ ︸

ykm

=
8

λ2


(s1 − s2)

T

(s1 − s3)
T

...
(s1 − sL)

T


︸ ︷︷ ︸

S̃

ukm + Φkm


Z1

Z2
...

ZL


︸ ︷︷ ︸

z

+


n21

km
n31

km
...

nL1
km


︸ ︷︷ ︸

nkm

, (8)

where ukm = uk − um,

Φkm = 2


θ1

m − θ1
k θ2

k − θ2
m

θ1
m − θ1

k θ3
k − θ3

m

θ1
m − θ1

k
. . .

θ1
m − θ1

k θL
k − θL

m

 (9)

and

nij
km =

4(‖si − uk‖ni
k − ‖si − um‖ni

m)

λ
−

4(‖sj − uk‖n
j
k + ‖sj − um‖nj

m)

λ
.

Then, rewrite the equations in (8) as

ykm = S̃ukm + Φkmz + nkm, (10)

where y ∈ R(L−1)×1, S̃ ∈ R(L−1)×3, Φkm ∈ R(L−1)×L , z = (Z1, Z2, ..., ZL)
T, nkm ∈ R(L−1)×1.

In Equation (8), the unknown terms are the differential coordinates and integer values. Every time
the rover moves to a new position, new L − 1 DDS observations are obtained along with a new
differential coordinate.

If the rover collects all observations at K different positions, the total number of DDS observations
is (L− 1)(K− 1). Then, a linear observation model is obtained by stacking Equation (10) for m = 1
and k = 2, 3, ..., K in matrix form

y21

y31
...

yK1


︸ ︷︷ ︸

y

=


S̃

S̃
. . .

S̃


︸ ︷︷ ︸

S


u21

u31
...

uK1


︸ ︷︷ ︸

u

+


Φ21

Φ31
...

ΦK1


︸ ︷︷ ︸

Φ

z +


n21

n31
...

nK1


︸ ︷︷ ︸

n

, (11)
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where y ∈ R(L−1)(K−1)×1, u ∈ R(K−1)×3 and z ∈ ZL×1 represent the vectors of DDS observation,
rover’s differential coordinates and integer values, respectively. Matrices S and Φ come from the
known coordinates of base stations and carrier phase measurements, respectively.

As shown above, the DSS observation model in (11) is linear, and its solvability condition is able
to be directly obtained. For a D-dimensional case, the number of the unknown values in (11) is L
integer values and D(K− 1) differential rover’s coordinates (D = 3 in this paper if there is no special
definition). The solvability condition is (L− 1)(K − 1) ≥ L + D(K − 1), and it is not difficult to be
decomposed into two inequalities:

L ≥ D + 2, (12)

K ≥ L
L− D− 1

+ 1. (13)

The first condition in (12) constrains the minimum number of base stations. To satisfy the second
condition (13), enough observations at different positions should be collected to ensure geometric
diversities and resolve ambiguities.

3.2. The Procedure of Resolving Ambiguities

The solution of model (11) is given by a mixed integer least-squares problem

min
z∈ZL ,u∈R3×(K−1)

‖y− Su−Φz‖2
Qyy

, (14)

where ‖ · ‖2
Qyy

= (·)TQ−1
yy (·) and Qyy = E{nnT}. This problem is a mixed-integer problem, and its

form is similar to those in GNSS positioning.
Generally, in order to use typical integer searching algorithms such as least-squares ambiguity

decorrelation adjustment (LAMBDA) method [9,12], it is necessary to know the variance matrix Qyy

as well as an initial solution. Denoting the variance of ni
k as σ2

ik, it can be obtained that

Qyy =


E{n21nT

21} E{n21nT
31} ... E{n21nT

K1}
E{n31nT

21} E{nT
31n31} ... E{n31nT

K1}
...

...
. . .

...
E{nK1nT

21} E{nT
K1n31} ... E{nK1nT

K1}.

 (15)

For k = 2, 3, ..., L, we have

E{nk1nT
k1}

=
16
λ2

||s2 − uk||2σ2
2k

. . .
||sL − uk||2σ2

Lk

+
16
λ2

||s2 − u1||2σ2
21

. . .
||sL − u1||2σ2

L1


+

16
λ2 (||s1 − uk||2σ2

k + ||s1 − u1||2σ2
11)1L−11T

L−1}, (16)

where 1L−1 is a column vector of L− 1 ones. For p = 2, 3, ..., L and p 6= k, we have

E{nT
k1np1}

=
16
λ2

||s2 − u1||2σ2
21

. . .
||sL − u1||2σ2

L1

+
16
λ2 ||s1 − uk||2σ2

111L−11T
L−1. (17)
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As we can see in (16) and (17), the expression of Qyy is related to the rover’s coordinates, which are
unknown. Thus, it is a priority issue to obtain Qyy without the information of the rover’s coordinates.
It should be noted that the solution of Equation (14) directly gives the floating integer values and
differential coordinates. If there is no reliable knowledge of approximate coordinates, a unit matrix
can be used as the weighting matrix in problem (14) instead of Qyy. The integer constraint on z is
relaxed, and, in this way, an initial solution consisting of the floating point integer values is quite easy
to compute.

In this way, the proposed method is able to get approximate coordinates by carrier phase
measurements to estimate Qyy, instead of involving other means. With this initial solution,
fine solutions can be obtained and the LAMBDA algorithm is used to search the integer solution.
The specific steps of the AR procedure are as follows:

1. Obtain a raw floating point solution ẑ by solving the unweighted least-squares problem

ẑ = argmin
z∈RL

‖y− Su−Φz‖2. (18)

2. According to the raw floating point solution ẑ, calculate the rover’s coordinates with two-way
measurements in Formula (3). Then, the estimate of variance matrix Q̂yy is obtained via
(15), (16) and (17).

3. Refine the solution ẑ with the estimate Q̂yy by solving the following weighted least-squares problem

z̃ = argmin
z∈RL

‖y− Su−Φz‖2
Q̂yy

. (19)

4. Compare the raw floating point solution ẑ and fine floating point solution z̃. If ẑ and z̃ are the
same after rounding, proceed to the next step; otherwise, let ẑ := ž and return to the second step.

5. Obtain a new estimate of variance matrix Q̃yy by the fine floating point solution z̃.
6. Input ž as the initial floating point solution, and search the integer solution ž by

LAMBDA algorithm
ž = argmin

z∈ZL
‖y− Su−Φz‖2

Q̃yy
. (20)

It can be seen that, in the first two steps, the rover’s approximate coordinates are obtained
only using the carrier phase measurements. This provides initial information to estimate Qyy in the
following steps. If there are a priori coordinates with sufficient accuracy, the procedure above could be
modified, but that is not the focus of this paper.

4. Simulation Results

As seen from the previous discussion, the proposed method only relies on the carrier phase
measurements, while the performance of other existing methods is influenced by the code phase
measurements. As a result, it may be difficult to make meaningful and fair comparisons. Taking this
into account, simulations in this paper are mainly focused on the impact of key parameters for the
proposed method.

As shown in Figure 1, seven base stations are placed in a 20 m × 20 m × 4 m space, with their
positions marked by the red triangle. The carrier frequency of the signal is 1575.42 MHz, therefore the
carrier wavelength is about 19 cm. The accuracy of the carrier phase measurements should be
carefully set. For GNSS, the accuracy of carrier phase measurements are usually assumed to be about
0.01 cycles [28]. However, in ground based positioning, the multipath effects sometimes are more
severe than those in GNSS applications. There have been several solutions discussed [26,27].

In the following, we set two noise levels for the original measurement in (1): the standard
deviation of error is set to be σ = 0.05 cycle and σ = 0.1 cycle, respectively. The noise is assumed to be
normally distributed.
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The rover moves along a horizontal circle centered at (10, 10, 0), and the radius is denoted as R.
To decouple the influences of sampling rate and geometric changes, it is assumed that the rover has a
fixed speed, and just moves only once along the trajectory. The observations are collected at K positions
uniformly spaced around the circle, and a larger K means denser sampling points in space and a higher
sampling rate.

For a specific K and R, 100 trials are carried out. In the last step of the AR procedure, the LAMBDA
algorithm always outputs the best integer solutions.

(20,20,1)

0
20

(0,20,0)

1

(8,20,2)

2

Z
(m

)

Y(m)

10

3

20

(0,20,0)

15

4

X(m)

10

(0,16,3)

50

(0,0,0)

0

(5,0,4)
R=1m
R=6m

Figure 1. The schematic illustration of the locations of base stations and rover’s movements. The blue
larger circle has a radius of 6 m, while the smaller one has a radius of 1 m.

4.1. Influences of Movement Radius and Sampling Density

First, we study the influence of geometric changes on the AR success rate, which are caused by
the rover’s motion. As can be seen in Figure 2a,b, the AR success rate is significantly improved as the
rover’s motion radius increases. In fact, since the base stations are stationary, only the rover’s motion
contributes to geometric diversity. Such geometric diversity helps to decorrelate the ambiguities
rapidly. This result is just in line with the intuition, as well as GNSS applications.
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(a) The accuracy of original
measurements is σ = 0.05 cycle.
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(b) The accuracy of original
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Figure 2. The comparison of AR success rates. The rover’s movement radius is increased from 1 m to 6 m.

From Figure 2a,b, it can be seen that, for a certain R, as the number of sampling points K increases,
the AR success rate also increases to some extent. Comparing the results of K = 50 and K = 100,
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the benefit from increasing the number of samples is significant. However, increasing K is not always
so effective. Comparing the results of K = 150 and K = 200 in Figure 2a,b, the margin of benefit to AR
success rate declines.

This is because the trajectory is a fixed circle, and a larger K means denser points in space. When K
is relatively small, more sampling points will provide additional geometric diversity, while this effect
is not so significant with a large K.

Although in the simulations increasing the number of samples can bring more or less benefit,
the benefits of overly intensive sampling are questionable in practical applications because the errors
caused by multipath may be relevant for sampling points that are very close together.

In general, to resolve ambiguities, expanding a rover’s motion range is the most direct and
effective way. By comparing the accuracy of the raw floating point solution and the fixed floating point
solution, this issue will be better illustrated in the following.

4.2. Comparison of Raw Solutions, Fine Solutions

Furthermore, we compare the raw floating point solution ẑ and fine floating point solution z̃,
which are given by the AR procedure in the first and fifth step. Their errors are evaluated by

ê2 =
1
L
||ẑ− z||2, ẽ2 =

1
L
||z̃− z||2. (21)

ê and ẽ indicate the estimate accuracy in floating ambiguities.
The simulation results with σ = 0.05 cycle and σ = 0.1 cycle are shown in Figure 3a,b, respectively.

When the range of motion is too small (R < 2 m), that is, when the geometric diversity is insufficient,
the results are too bad to display.
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(a) The accuracy of original measurements
is σ = 0.05 cycle.
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Figure 3. The comparison of mean errors between the raw and fine floating point solutions. The rover’s
movement radius R is increased from 1 m to 6 m, and the results with R < 2 m are rather bad and not
conducive to display.

It is shown that, in most cases, the fine floating point solutions have better accuracy than the raw
ones with either noise level. The raw floating point solution ẑ is of decimeter accuracy when R > 2 m
as shown in Figure 3. Based on ẑ, the proposed method estimates Qyy and then obtains a fine solution
z̃ with a better accuracy. This demonstrates the effectiveness of refining the solution in the third step of
the proposed AR procedure.

On the other hand, it can be clearly seen that the accuracy of both solutions is improved
as the rover’s movement radius R increases. When the accuracy of the floating solution is poor,
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a reliable integer solution is not possible and, as shown in Figure 2a,b, the AR success rate could be
very low. It can be said that the benefits of geometric diversity can be reflected in the first four steps of
the AR procedure, not just the last step. Furthermore, floating point solutions with higher accuracy
will also help to resolve ambiguities successfully.

In practical applications, the motion trajectory is not limited to be a circle and can be more casual,
and, in general, the increase in geometric diversity is quite helpful for improving the accuracy of
floating point solutions and resolving integer ambiguities.

4.3. Comparison of Positioning Accuracy of Float Solutions and Fixed Solutions

Next, we compare positioning accuracy using floating point solutions and fixed solutions. For the
sake of comparison, the integer solution output by the LAMDBA algorithm is always used for
positioning, even if the AR success rate could be very low under current conditions.

The results of horizontal and height error are shown in Figure 4. The height error is nearly 10 times
larger than the horizontal positioning error, and this is because the vertical dilution of precision (VDOP)
is larger than horizontal dilution of precision (HDOP).
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Figure 4. The rover’s movement radius R is increased from 1 m to 6 m, and the results with R < 2 m
are rather bad and not conducive to display.
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It can be seen from Figure 4 that the fixed solutions do not always achieve better positioning
accuracy than floating solutions, such as when R = 2 m and σ = 0.01 cycles.

This is caused by the poor AR success rate. As shown in Figure 2a,b, when the movement radius
R is too small, the fixed solutions are not reliable.

As the movement radius increases, the AR success rate gradually increases, and the positioning
accuracy using fixed solutions can reach centimeter level.

It should be pointed that, when the movement radius is large, such as R ≥ 5 m, the positioning
accuracy of floating point solutions is not bad. As shown in Figure 4, the positioning accuracy of fine
floating solutions could also achieve centimeter level. For R ≥ 5 m, the positioning accuracy of fine
float solutions and fixed solutions is quite close.

As shown by Figure 3, when the movement radius is large, the fine floating solutions are of
centimeter level accuracy, resulting in a fairly good positioning accuracy shown in Figure 4.

This shows that the fine floating solutions may have great value in practical applications.
For example, if there are some unknown model deviations in actual applications, the ambiguities
might be treated as floating-point solutions rather than integer solutions.

For another example, if the AR success rate is too low, it might still be possible to reliably fix a
subset of ambiguities, just like the partial ambiguity resolution in GNSS applications. This might be
the future work.

5. Experiment Results

In order to verify the performance of the algorithm in the actual environment, an experiment
was carried out. The experiment involved six prototype pseudolites and one user terminal, which
are designed in a similar way as described in [29]. Taking into account regulatory issues of radio
frequencies, the carrier frequency is set to be 2465.43 MHz.

The equipment composition of a pseudolite except for the antenna is shown in Figure 5a,
including RF channel, baseband unit and management computer. Six pseudolites P1~P6 are stationary,
and the coordinates of their antenna are measured by the total station and given in Table 1.

(a) The picture of the pseudolite equipment.
The antenna is not included in this photo.

(b) The picture of the turntable and
experiment environment.

Figure 5. The picture of the prototype pseudolite system and the experiment environment.

The antenna of the user terminal T1 is fixed on a turntable as shown in Figure 5b, and its position is
to be determined. The center of the turntable is (−3.58, 0.27, 1.30), and its radius is 1.03 m. The configure
diagram of the experiment is shown in Figure 6. During the whole movement, the HDOP ranges from
1.70 to 1.82 and the VDOP ranges form 5.78 to 7.02.
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Table 1. The coordinates of six fixed pseudolites (unit: m).

P1 P2 P3 P4 P5 P6

X 12.80 −15.87 −16.25 9.09 2.48 −5.47
Y −4.17 −5.22 2.60 6.30 7.48 7.37
Z 3.24 3.27 3.20 3.28 4.58 4.83
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pseudolites

Figure 6. The horizontal diagram of the experiment configuration.

During the experiment, the rotational speed of the turntable is set as 0.314 rad/s, and the sampling
rate is 10 Hz. The turntable rotates three turns in a counterclockwise direction and then three turns in
a clockwise direction. The true ambiguity values are obtained by measurements in advance.

The mean error of the two floating solutions is shown in Figure 7. As can be seen, the error of
floating solutions decreases rapidly with the rotation of antenna in the initial stage. When the rotation
reaches one lap (that is, 20 s in Figure 7), the error of floating solutions does not rapidly decrease with
the rotation as before. This can be because, while the antenna is still rotating, no significant geometric
changes are introduced. In this case, the new observations fail to make a significant contribution to
the precision of floating point solutions. During the second lap (20 s to 40 s in Figure 7), the errors of
the raw solutions range from 36.7 cm to 55.1 cm, while those of the fine solutions range from 16.5 cm
to 26.5 cm.
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Figure 7. The horizontal diagram of the experiment configuration.
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Another interesting phenomenon is that, during the initial three quarters of a turn (0∼15 s in
Figure 7), the fine solutions seem to have a slightly larger error than the raw solutions. This is because
the weighting information relies on the the rough position solutions obtained from the raw solutions.
As a result, such information is not reliable enough when the motion range of the antenna is not
large enough.

The proposed method correctly resolved ambiguities, and its practical value is proved by the
positioning results. The positioning performance of the prototype pseudolite system is analyzed.
Figure 8a shows the comparison between the horizontal positioning results and the true value of
the trajectory. It can be seen that the positioning trajectory almost coincides with the true value.
We compare the distance from the horizontal positioning results to the center with the known radius.
In this sense, the root mean square error (RMSE) of horizontal results is about 0.83 cm.
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(a) The horizontal positioning results.
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(b) The vertical positioning results.

Figure 8. The comparison of the positioning results and the truth.

Furthermore, a partially enlarged view of the horizontal trajectory is shown in Figure 9, and the
corresponding part is indicated by the dashed box in Figure 8a. It can be seen that the positioning
results of each turn have a high coincidence, and the positioning deviation is obviously related to
the position.
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Figure 9. A partial enlargement of the horizontal positioning results.
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This can be more clearly observed from the vertical positioning results in Figure 8b. It can be seen
that the height errors approximately change in six cycles, which is directly related to the rotational
position. The RMSE of the height results is about 2.92 cm compared to the true value.

The deviation of the positioning results is related to the rotational position, which is probably
caused by multipath errors. In addition, the vertical errors are larger than the horizontal errors, and one
of the reasons is that the VDOP is worse than HDOP. Another reason might be that the turntable is not
strictly horizontal in the system coordinate, which will contribute to periodic deviations.

In summary, the experimental results show that the proposed algorithm can successfully solve the
ambiguity, and the designed positioning system can achieve a centimeter-level positioning accuracy.

6. Conclusions and Future Work

A new OTF-AR method for ground based positioning systems using two-way ranging is proposed
in this paper. The proposed method solely relies on carrier phase measurements, and applies
to cases where no sufficiently accurate measurements are provided in advance, which is an
important advantage.

One of the most important contributions is the concept of DDS observation discussed in this
paper. Based on DDS observations, a linear model is established without an approximate linearization,
which might cause significant nonlinear errors. It could provide a new way to utilize the geometric
diversity for resolving ambiguities.

The proposed method is validated by numerical simulations and a real experiment. The results
show that geometric changes have the most significant impact on AR performance. In the real
experiment, the proposed algorithm has been successfully applied to our prototype pseudolite system,
showing its application value.

Our future work will be directed towards extending the proposed method to general ground
positioning systems without two-way measurements, where the rover no longer requires a transmitter.
On the other hand, in practical application, gross error must be given careful consideration, although it
is not the main focus of this paper and the current experiment is conducted under relatively good
conditions. Multipath effect could be very serious in ground-based positioning. Interferences and
occlusion should also be considered. The related study in GNSS can provide rich references,
mainly including various statistical methods. In addition to efforts on the algorithm, the flexible
design of pseudolites could provide various ideas for solving these problems.

Another meaningful topic is to analyze the performance bounds for the proposed method. Its main
difficulty is that the variance matrix, which plays a key role in the LAMBDA algorithm, is estimated
based on the floating point solutions.
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