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Abstract: For real time monitoring of the wing state, in this paper, the inverse Finite Element Method
(iFEM) is applied, which describes the displacement field of beam according to the Timoshenko
theory, to sense the wing frame deformation. In order to maintain the accuracy and stability of frame
deformation sensing with iFEM, an optimal placement model of strain sensors based on eigenvalue
analysis is constructed. Through the model solution with the Particle Swarm Optimization (PSO)
algorithm, two different optimal placement schemes of sensors are obtained. Finally, a simulation is
performed on a simple cantilever beam and a static load experiment is conducted on an aluminum
alloy wing frame. The results demonstrate that the iFEM is able to accurately sense the deformation
of the wing frame, when the two optimal placement schemes of sensors are used.

Keywords: deformation sensing; inverse Finite Element Method; Timoshenko beam theory; optimal
placement of sensors; eigenvalue analysis

1. Introduction

Deformation sensing in real-time is an essential technology for providing feedback to the actuation
and control systems of smart structures, especially of next-generation aircrafts. Moreover, when the
detailed state of structural deformation is known, other necessary response quantities, such as stress
and failure criteria, can also be assessed [1–3]. A research of deformation sensing focuses on the
utilization of in situ strain measurements, captured from a network of strain sensors, to estimate the
structural deformation, which is commonly referred to as shape sensing. Specifically, fiber Bragg
grating (FBG) sensors have been extensively studied for shape sensing due to the corresponding
lightness, accuracy and ease of embedding [4–7].

Nevertheless, the structural deformation sensing from in situ strain data always represents an
inverse problem. The inverse problem is frequently ill-posed, since it does not satisfy conditions
of existence, uniqueness and stability [8,9]. Although many types of inverse problems and their
applications have been proposed, few researchers have dealt with the deformation sensing of the wing
shape. The current methods used to sense the wing shape can be divided into two categories [10]:
one category focuses on the deformation sensing of the skin comprised of plate/shell structures to
reflect the deformation of the wing shape and the other category emphasizes on the deformation
sensing of a wing frame made of beam structures.

The effectiveness of the modal transformation scheme was analyzed and verified by
Bogert et al. [11], in which the in-situ surface strain is used to sense the bending plate deformation.
Despite the advantage of this method, accurate mode shapes and extensive eigenvalue analysis are
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required; for eigenvalue analysis, the elastic and inertial material properties need to be described
in detail for application in high-fidelity finite element methods. On the basis of the least-squares
and first-order plate theory, which includes the membrane and the bending and transverse shear
deformations, a mathematical framework was developed by Tessler and Spangler to conduct the
deformation sensing of plate and shell—called the inverse Finite Element Method (iFEM) [8,12].
The advantage of iFEM is that the structural deformations are sensed only from strain measurements,
without the finite element model and a priori knowledge, such as damping, loading and material
properties [13,14]. Through the iFEM framework and the Refined Zigzag Theory (RZT), Cerracchio
and Gherlone et al. explored an effective way to sense the shape and stress of multilayered composites
and sandwich structures [15–17]. Nevertheless, the kinematic variables in the above iFEM framework
are derived from the three-node inverse-shell (i3-RZT) element or three-node inverse-plate (iMIN3)
element, without including the hierarchical drilling rotation degrees-of-freedom (DOF). In order
to extend the practical application of iFEM for the shape-sensing analysis of large-scale structures
(such as the ship), a four-node quadrilateral inverse-shell element named iQS4 was formulated by
Kefal et al. that utilized the kinematic assumptions of the first-order and transverse-shear deformation
theory, to add the hierarchical drilling rotation DOF into the kinematic variables [18,19]. In a series of
works [14–23], the capability of iFEM framework is verified through simulation or experimentation
for 3D deformation sensing of plate/shell structures of aerospace vehicles and ships. However,
for the aforementioned iFEM schemes, the strain sensors need to be attached on the top and bottom
of the plate/shell structures. When the sensors are placed on the exterior surface of the structure,
the protection mechanism are performed on the FBG or resistance strain sensors, which affects the
aerodynamic performance of the wing. To avoid this problem, the strain sensors can be placed on the
wing frame covered by the wing skin. If so, the wing frame deformation can be calculated to reflect the
wing shape change.

In order to conduct the deformation sensing of beam structures, Ko et al. developed a
load-independent scheme to approximate the beam curvature, named Ko’s Displacement Theory [24].
The proposed scheme employs Euler-Bernoulli beam theory to account for the beam deformation,
in which the discrete surface strain measurements are integrated by using piece-wise continuous
polynomials to sense the beam deformation. The experimental tests show that Ko’s Displacement
Theory is sufficiently accurate for the deflection sensing of aircraft wings [25,26]. Regardless of its
advantage, the scheme is only suitable for one-dimensional deformation of a beam structure, requiring
a high number of strain sensors. According to Timoshenko beam theory, Gherlone et al. analyzed the
displacement field of a constant cross-section beam, consequently constructing the relationship between
the displacement and the surface strain data through iFEM [27,28]. Furthermore, Gherlone et al.
conducted a comparative research on the aforementioned three shape sensing approaches: the iFEM,
the modal transformation method and the Ko’s Displacement Theory [10]. It is found that the iFEM
method is slightly more accurate and attractive than the other two methods for shape sensing.
The experimental verifications demonstrate that the accuracy of iFEM for the beam deformation
sensing is severely affected by the locations where the strain sensors are placed but the optimal
placement criterion of the sensors is not mentioned [29]. Meanwhile, the stability and existence of
iFEM are also severely affected by the locations where the strain sensors are placed. For instance,
all sensors are placed parallel to the centroidal axes of the beam element.

The existing optimal placements of the strain sensors are based on the mode shape analysis of the
structure, such as the modal kinetic energy (MKE) method, the effective independence (EI), the modal
assurance criteria (MinMAC) and the drive point residue (DPR) [30–33]. Based on a mode approach,
Geng et al. proposed an optimization scheme and improved genetic algorithms (GA) for optimal FBG
sensor placement; consequently, the best reconstruction effects are obtained for the reconstruction of
flexible plate structures [34]. Yang et al. developed a robust optimal sensor placement for uncertain
structures [35]. In their schemes, the fitness function based on the Fisher information matrix (FIM) is
derived and extended to the interval parameters. Genetic algorithm is employed to obtain the optimal
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solution. Being different to the traditional sensors, FBG sensors possess different detecting probe length
at different angles. In view of the above difference, Yi et al. developed a detective model for FBG sensor
which fit its feature based on probability model and the optimal result of the FBG sensor placement is
solved by Particle Swarm Optimization (PSO) algorithm [36]. In Reference [37], Soman et al. proposed
an optimal placement model based on Modal Identification (MI) and Accurate Mode Shape Expansion
(AMSE) to place the strain sensors and accelerometers simultaneously. The results indicate that the use
of a multi-type sensor system can improve the quality of Structure Health Monitoring (SHM). Given
the fact that the iFEM reconstructs the structure deformation without the mode shape, all previous
optimal placement schemes of the strain sensors are not suitable for iFEM.

When the strain sensors are placed on the ill-suited locations, the coefficient matrix of the equations
may be ill-posed since the essence of deformation sensing with iFEM focuses on the solution of a
linear system of equations. In [38–40], the optimal placement of sensors is regarded as the parameter
identification of linear system of equations, using the condition number as the optimal object to
construct the optimal model of sensors. When the condition number in a matrix is higher than 1016,
the solution algorithm can return results with no accuracy at all; thus, such a matrix is numerically
singular and linear systems with this matrix are not solved [39]. It is considered that a matrix is morbid
when the condition number of the matrix is higher than 103. Nevertheless, in our research, it is found
that the condition number of the coefficient matrix in iFEM tends to fall into [103, 1016] when the
coefficient matrix is nonsingular; consequently, the bigger condition number in this range does not
mean that the coefficient matrix is morbid. Therefore, the condition number is not suitable for the
optimal sensor placement for iFEM.

This paper focuses on the construction of an optimal sensor placement model, based on eigenvalue
analysis of the relationship between the sensor placement and the stability of sensing of the beam
deformation with iFEM. This is conducted with an aim to maintain the sensing stability of iFEM.
The contents of this paper are: firstly, the beam deformation sensing process through iFEM based on
Timoshenko beam theory was reviewed. Following, the instability of sensing is discussed; consequently,
the optimal placement model of strain sensors based on eigenvalue analysis is constructed. The two
optimal results are obtained through the model solution with PSO algorithm. Moreover, a high-fidelity
finite element model of the beam is constructed with ANSYS, which generate the discrete strain data
to replace the experimental strain measurements captured from strain sensors and which produce the
deformation data to replace the experimental deformation. This is executed to verify the robustness of
iFEM under the optimal placement schemes. Finally, to examine the iFEM sensing capability for the
two optimal placement schemes, deformation sensing test is conducted on an aluminum alloy wing
frame model.

2. Inverse Finite Element Method Algorithm for Beam Deformation

In the iFEM algorithm, the displacement fields of an isotropic, straight and circular cross section
beam element can be described from Timoshenko beam theory [27–29]:

ux(x, y, z) = u(x) + zθy(x)− yθz(x)
vy(x, y, z) = v(x)− zθx(x)
uz(x, y, z) = w(x) + yθx(x)

, (1)

where, ux, vy, wz are the displacements along the x, y and z axes; u(x), v(x) and w(x) denote the
displacements along the center axis (x ∈ [0, l], y = z = 0); θx(x), θy(x) and θz(x) are the rotations
around the three coordinate axes (see Figure 1). The six kinematic variables are grouped in vector form
as u ≡

{
u(x), v(x), w(x), θx, θy, θz

}T .
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According to the small-strain hypothesis, the linear strains are given by Equation (1):
εx(x, y, z) = e1(x) + ze2(x) + ye3(x)

γxz(x, y) = e4(x) + ye6(x)
γxy(x, z) = e5(x)− ze6(x)

, (2)

where, the section strains e(u) = [e1, e2, . . . , e6]
T are theoretically defined as:

e1(x) = ux,x(x) e3(x) = −θz,x(x) e5(x) = vy,x(x)− θz(x)
e2(x) = θy,x(x) e4(x) = wz,x(x) + θy(x) e6(x) = θx,x(x).

(3)

The iFEM senses the beam deformation shape by minimizing a weighted least-squares function ϕ,
containing the section strains vector eε computed from in situ surface strain data and the theoretical
section strains vector e(u) defined through Equation (3):

ϕ(u) = ‖e(u)− eε‖2. (4)

In the finite element framework, the kinematic variables vector u(x) is obtained through
interpolation from certain shape functions N(x) and the nodal degrees of freedom ue as following:

u(x) = N(x)ue. (5)

With regard to different loading cases, the orders of shape functions N(x) differ. For the end-node
loads, the order of N(x) is c0; whereas for the uniformly distributed loads, the order is c1 [28]. Thus,
the total least-square function is a sum of N individual element contributions ϕj(u(x), eε):

ϕ =
N

∑
j=1

ϕj(u(x), eε). (6)

Taking into account the effects of axial stretching, bending, twisting and transverse shearing,
the element contributions ϕj(u(x), eε) are given by the dot product as:

ϕj(u(x), eε) =
6

∑
k=1

we
kϕe

k, (7)

with
{

we
k
}
=
{

w0
1, w0

2

( Ie
y

Ae

)
, w0

3

(
Ie
z

Ae

)
, w0

4, w0
5, w0

6

( Ie
p

Ae

)}
ϕe

k =
l
n

n

∑
i=1

[ek(xi)− eε
k(xi)]

2(k = 1, 2, . . . , 6), (8)

where, w0
k(k = 1, 2, . . . , 6) are identically set as 1; Ae, Ie

y, Ie
z and Ie

p are the cross-section area, the second
moments of the area according to the y- and z-axis and the polar moment of the area of the beam
element, respectively. l is the length of the beam element; xi(0 ≤ xi ≤ l) and n are the axial coordinate
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of the locations where the section strains are evaluated and the number of locations, respectively.
For the end-node loads, nmin = 2 and for the uniformly distributed loads, nmin = 3 [27–29,41].

The invoking of Equations (3) and (5) results in the theoretical section strains as following:

e(x) = B(x)ue, (9)

where, the matrix B(x) contains the derivatives of the shape functions N(x).
Substituting Equation (9) into Equation (8), Equation (4) yields the following quadratic form:

ϕ(u) =
1
2
(ue)Tkeue − (ue)Tfe + Ce, (10)

where, Ce is a constant vector; ke and fe are defined as follows:

ke
k =

L
n

n

∑
i=1

[
BT

k (xi)Bk(xi)
]

f e
k =

L
n

n

∑
i=1

[
BT

k (xi)eε
k(xi)

]
. (11)

Finally, the minimization of function ϕ(u) in Equation (10) in terms of ue yields the sensing
equation for the beam element deformation:

keue = fe. (12)

The two key steps in iFEM are: (1) the selection of suitable shape functions for the beam
deformation sensing with iFEM; (2) the calculation of section strains from the measured surface
strain data. For step (1), literatures [27–29,41,42] provide the detailed derivation process and results.
For step (2), the section strains are computed through the following equation [27,28]:

ε(xi, θi, βi) = eε
1(xi)

(
c2

β − vs2
β

)
+ eε

2(xi)
(

c2
β − vs2

β

)
sθ R + eε

3(xi)
(

c2
β − vs2

β

)
cθ R

+eε
4(xi)cβsβcθ − eε

5(xi)cβsβsθ + eε
6(xi)cβsβR

=
[
c2

β − vs2
β,
(

c2
β − vs2

β

)
sθ R,

(
c2

β − vs2
β

)
cθ R, cβsβcθ , cβsβsθ , cβsβR

]
× eε(xi)

= T(xi, θi, βi)× eε(xi)

with cβ ≡ cos βi, sβ ≡ sinβi, cθ ≡ cosθi, sθ ≡ sinθi, (13)

where, eε(xi) =
{

eε
1(xi), eε

2(xi), . . . , eε
6(xi)

∣∣(i = 1, 2, . . . , m)
}

is the in-situ section strains vector at
location xi, along the x-axis. R is the external radius of the beam element. ε(xi, θi, βi) denotes the
measured surface strain at the location (xi, θi, βi), which is signed by the cylindrical coordinate
system (see Figure 2). T(xi, θi, βi) indicates the transformation relationship between the surface strain
measurements and the section strains.
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3. Construction of Optimal Placement of Sensors

When the section strains vector eε is calculated from the surface strain measurements only with
Equation (13), the strain measurements ε(xi, θi, βi) (i = 1, 2 . . . 6) and the section strains vector eε

must be distributed in one cross-section. Consequently, 6× n strain measurements are required to
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calculate the n section strain vectors. In the case of end-node loads, 12 strain measurements are
required for the calculation of Section 2 strain vectors; in the case of uniformly distributed loads,
18 strain measurements are required for the calculation of Section 3 strain vectors. As aforementioned
in the literatures [27–29,41], the number of strain measurements is reduced through the constitutive
equations of Equation (14) (refer to Figure 3) and the equilibrium equations of Equation (15).

N = Axe1 Qy = Gye5 Qz = Gze4

Mx = Jxe6 My = Dye2 Mz = Dze3
, (14)

where, the section forces (N, Qy and Qz) and moments (Mx, My and Mz) are related to the section
strains ei(x). Ax = EA is the axial rigidity, where A is the area of the cross-section of the beam element.
Gy = k2

yGA, Gz = k2
zGA are the shear rigidities with k2

y and k2
z denoting the shear correction factors,

where G is the shear modulus. For the thin-walled section, k2
y = k2

z = 0.531; for the thick-walled section,
k2

y = k2
z = 0.62; and for the solid section, k2

y = k2
z = 0.887 [28]. Jx = GIp is the torsional rigidity. Dy = EIy

and Dz = EIz denote the bending rigidities.

∂N
∂x + qx = 0 ∂Qy

∂x + qy = 0 ∂Qz
∂x + qz = 0

∂Mx
∂x = 0 ∂My

∂x −Qz = 0 ∂Mz
∂x −Qy = 0

. (15)

When the forms of distribution loads qx, qy and qz are known, the forms of the section strains
eε can be estimated. For the end-node loads, the section stains eε

1(xi), eε
4(xi), eε

5(xi) and eε
6(xi) are

constant and eε
2(xi) and eε

3(xi) are linear. For the uniformly distributed transverse loads, the section
strains eε

1(xi) and eε
6(xi) are constant, eε

4(xi) and eε
5(xi) are linear and eε

2(xi) and eε
3(xi) are parabolic.

eε
4(xi) = EIz

Gk2
y A

eε
2, x(xi) = m1eε

2,x(xi), eε
5(xi) =

EIy

Gk2
z A

eε
3,x(xi) = m2eε

3,x(xi) [28,41]. Through the

aforementioned results, the section strains are calculated as:
For the end-node loads, the section strains are expressed as:

eε
1(xi) = a1 eε

2(xi) = a2xi + a4 eε
4(xi) = m1a2

eε
6(xi) = a6 eε

3(xi) = a3xi + a5 eε
5(xi) = m2a3

, (16)

or in a matrix equation:

eε(xi) = {eε
1(xi), eε

2(xi), . . . , eε
6(xi)}T

=



1
0
0

0
xi
0

0
0
xi

0
0
0

m1

0
0

0
m2

0

0
1
0

0
0
1

0
0
0

0
0
0

0
0
0

0
0
1


× [a1, a2, a3, a4, a5, a6]

T = T1(xi)× p1, (17)

where, p1 = [a1, a2, a3, a4, a5, a6]
T is a constant parameters vector; T1xi indicates the transfer matrix

between p1 and the section strains vector eε(xi).
For the uniformly distributed transverse loads, the section strains are expressed as:

eε
1(xi) = b1 eε

2(xi) = b2x2
i + b3xi + b4 eε

4(xi) = 2m1b2xi + m1b3

eε
6(xi) = b8 eε

3(xi) = b5x2
i + b6xi + b7 eε

5(xi) = 2m2b5xi + m2b6
, (18)

or in a matrix equation:
eε(xi) = {eε

1(xi), eε
2(xi), . . . , eε

6(xi)}T
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=



1 0 0 0 0 0 0 0
0 x2

i xi 1 0 0 0 0
0 0 0 0 x2

i xi 1 0
0 2m1xi m1 0 0 0 0 0
0 0 0 0 2m2xi m2 0 0
0 0 0 0 0 0 0 1


× [b1, b2, b3, b4, b5, b6, b7, b8]

T (19)

= T2(xi)× p2,

where, p2 = [b1, b2, b3, b4, b5, b6, b7, b8]
T is a constant parameters vector; T2xi indicates the transfer

matrix between p2 and the section strains vector eε(xi). Following, the relationship between the
undetermined parameters vector p1 or p2 and any measured strain data ε(xi, θi, βi) is expressed as:

ε(xi, θi, βi) = T(xi, θi, βi)T1(xi)×ε(xi, θi, βi) = T(xi, θi, βi)T2(xi)× p2. (20)

When the parameters vector p1 or p2 is solved, the arbitrary section strains vector is calculated
through Equations (16) and (18).

eε
(
xj
)
= T1

(
xj
)
× (T(xi, θi, βi)T1(xi))

−1 × ε(xi, θi, βi)

or eε
(
xj
)
= T2

(
xj
)
× (T(xi, θi, βi)T2(xi))

−1 × ε(xi, θi, βi),
(21)

where, i = 1, 2, . . . n is the location where the section strains vector is calculated; n is the number of
sections stated in Equation (8); j = 1, 2, . . . , m and m is the minimum number of the strain sensors
used to capture the surface strains. The value of m is different under different loading cases analyzed
through Equations (16) and (18). For the end-node loads, m = 6, whereas for the uniformly distributed
loads, m = 8 [28]. When the section strains vector eε is obtained, the kinematic variables ue can be
directly calculated from Equation (12).Sensors 2018, 18, x FOR PEER REVIEW  7 of 21 
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However, through in-depth research, it is found that the transformation matrices
T(xi, θi, βi)T1(xi) and T(xi, θi, βi)T2(xi) are ill-conditioned or even singular, when the strain sensors
are placed at the inappropriate locations along the beam surface, such as βi in Equation (13) set to the
same value 0o. Thus, the deformation reconstructed from Equation (12) does not necessarily satisfy the
conditions of existence, uniqueness and stability [8].

The constant parameter vectors p1 and p2 determination is regarded as the solution of a linear
system of equations. The stability of Equation (20) solution depends on whether the product
matrices T(xi, θi, βi)T1(xi) and T(xi, θi, βi)T2(xi) are well-conditioned or ill-conditioned. In actual
measurements, the sensor placement is different from the pre-set placement. This means that one sensor
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is set at the node (xi, θi, βi) ideally but the actual sensor location might be at the node
(
x′i , θ′i , β′i

)
and

the strain measurement contains the noise. Therefore, the strain input errors are added to Equation (20):

ε(xi, θi, βi) + ∆ε(xi, θi, βi) = T(xi, θi, βi)×H(xi)× (p + ∆p)

∆ε(xi, θi, βi) = ε
(

x′i , θ′i , β′i
)
− ε(xi, θi, βi) (i = 1, 2, . . . , m),

(22)

where, ∆ε(xi, θi, βi) indicate the strain input errors, which couple the errors of sensor placement with
the noise of the strain measurement system. ε(xi, θi, βi) and ε

(
x′i , θ′i , β′i

)
are the ideal strain input at the

node (xi, θi, βi) and the actual strain input, respectively. H = T1 or T2, ∆p is the errors vector, resulting
from the above errors. Following, the relative error between ∆p and p is estimated as:

‖∆p‖
‖p‖ ≤ ‖A‖ × ‖A−1‖‖∆ε‖

‖ε‖ = cond(A)
‖∆ε‖
‖ε‖

with A = T(xi, θi, βi)H(xi), cond(A) = ‖A‖ × ‖A−1‖,
(23)

where, ‖·‖ indicates the matrix norm and cond(A) signifies the condition number of matrix A. To a
certain extent, the condition number can reflect the morbidity degree of a matrix. From Equation (23),
it is observed that the relative error is high and the matrix is ill-posed, when the condition number
is high. Kunsoo Huh and J.L. Stein proposed that the reason for the morbidity of a matrix is that a
good distribution of eigenvalues for the matrix does not exist. For well distributed eigenvalues, large
differences among the matrix eigenvalues exist [43], such as the high value in min

∣∣λj − λk
∣∣(j 6= k,

λj and λk are the eigenvalues of the matrix). Therefore, the optimal placement model of sensors is
constructed as:

f ind f
(

A(x,θ,β)

)
= max

(
min

∣∣λj − λk
∣∣)(j 6= k, j, k = 1, 2, . . . , m),

((x, θ, β) = [xi, θi, βi, . . . , xm, θm, βm])

s.t. xi ∈ [L/5, 4L/5], θiε
[
−180

◦
, 180

◦
]

βi = 0
◦

or 45
◦
, i = 1, 2 . . . , m

(24)

where, λi(i = 1, 2, . . . ,m) are the eigenvalues of the matrix A. (x, θ, β) represents the locations where
the sensors are placed and m is the number of the sensors used to capture the strain data of the structure.
For the end-node loads, m = 6, whereas for the uniformly distributed loads, m = 8 [28]. In view of
application environment in engineering, it is difficult to set FBG strain sensors on the clamped node
and on the free end node of the beam element. Moreover, the curve of the beam surface affects the
strain measurement accuracy when a non-zero angle exists between the sensor and the generatrix of
the beam surface [29]. Thus, it is difficult to set two or more FBG sensors at one node along the surface
of the beam element, as the fiber sensors are not stacked (see Figure 4). Consequently, xi ∈ [L/5, 4L/5]
is set, where only one sensor is placed at βi = 45

◦
and the other sensors are placed at βi = 0

◦
.
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The optimal placement model of Equation (24) is a multi-parameter optimization problem, which
is solved by using the PSO algorithm with good convergence speed. The optimal result is efficiently
obtained in hyperspace.

In a population that includes N particles, the status of the i-th particle is described by the
current location and the current velocity. ai = (xi1, θi1, βi1, . . . , xim,θim, βim)1∗3m is the current location
of the i-th particle and vi = (vx1, vθ1, vβ1 . . . , vxm, vθm, vβm)1∗3m is the current velocity of the i-th
particle (i = 1, 2, . . . , N; m is the number of strain sensors). The fitness function of PSO algorithm is
defined as:

f (ai) = f
(

A(x,θ,β)

)
= max

(
min

∣∣λj − λk
∣∣)(j 6= k, j, k = 1, 2, . . . , m),

((x, θ, β) = (xi1, θi1, βi1, . . . , xim,θim, βim)1∗3m), (25)

and the updated velocity and location are expressed as:

vk+1
i = αvk

i + c1r1 ×
(

pk
i − ak

i

)
+ c2r2 ×

(
pk

g − ak
i

)
ak+1

i = ak
i + vk+1

i , (26)

where, α, c1 and c2 are constants; r1 and r2 are uniformly distributed random numbers between 0
and 1; ak

i and vk
i arethe current location and the current velocity of the i-th particle in the k-th iteration,

respectively; pk
i is the individual best location of the i-th particle at step k; pk

g is the local best location
of the population at step k. pk

i and pk
g are determined as:

pk
i =

 pk−1
i , f

(
ak

i

)
≤ f

(
pk

i

)
ak

i , f
(

ak
i

)
> f

(
pk

i

)
pk

g ∈
{

pk
0, pk

1, . . . , pk
N

}∣∣∣gk
loc = f

(
pk

g

)
= max

{
f
(

pk
0

)
, f
(

pk
1

)
, . . . , f

(
pk

N

)}
gk

glo = max
{

g0
loc, g1

loc, . . . , gk
loc

}
,

(27)

where, gk
loc and gk

glo are defined as the local extremum and the global extremum of the population,
respectively. The key steps of the optimal model Equation (24) solution with PSO algorithm are
described as:

Step 1. PSO algorithm initializing. The size of the particle swarm is set to N = 50 and the maximum
iteration is set to kmax = 1000; the initial location a0 and the initial velocity v0 are set to the
random values included in the constraint of Equation (24). The corresponding fitness value of
each particle, which is calculated from the fitness function Equation (25), is set as the initial
individual extremum f

(
p0

i
)
, (i = 1,2, . . . ,N). Following, the initial local extremum g0

loc and
the global extremum g0

best of the population at the initial phase are selected for Equation (27).
The threshold of the algorithm breaking is set to M = 1000. When the global extremum g0

best is
equal to M, the algorithm breaks and the current particle location is the optimal placement of
the sensors. Else Step 2 will follow.

Step 2. Velocity and location update of each particle with Equation (26). The fitness value of each
particle f

(
a1

i
)
, which is calculated from Equation (25), is compared to the initial individual

extremum f
(

p0
i
)
. If f

(
a1

i
)

> f
(

p0
i
)
, the individual extremum is replaced with f (a1

i ), or else,
the individual extremum is invariant. Subsequently, the local extremum (g1

loc) and the global
extremum g1

best of the population at step 1 are selected with Equation (27). When the global
extremum g1

best is equal to M, the algorithm breaks; or else, the iteration continues and k = k + 1.
Step 3. PSO algorithm termination. The iteration will not break until the iteration number k = kmax or

the current global extremum gk
best is equal to M.

The flow chat of above optimization procedure is shown in Figure 5.
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4. Verifications through Simulations and Experimentation

In order to assess the optimal placement effectiveness of the sensors proposed in this paper,
simulations and model experimentation are performed. In Section 4.1, a finite element model of a
thin-walled beam with a circular cross-section is constructed through high-fidelity direct Finite Element
analyses software (ANSYS 14.5, ANSYS, Southpointe, PA, USA), used to assess the robustness of the
optimal placement schemes of the strain sensors. In Section 4.2, a wing frame model is tested under
different static loads and presented, in order to assess the feasibility of iFEM for sensing wing frame
deformation under the condition that the sensors are optimally placed.

4.1. Simulation Verification of Beam

To model the thin-walled beam structure, we made use of the Beam188 elements module with two
nodes, based on the Timoshenko beam theory. The Young’s modulus is E = 75, 000 MPa, the Poisson
ratio is v = 0.3 and the density is ρ = 2557 kg/m3. The beam length is 660 mm, the external radius is
Rext = 13 mm and the thickness is s = 1.5 mm. The finite element model of the beam is divided into
200 elements and the cross-section of the beam is divided into 120 sectors (see Figure 6).Sensors 2018, 18, x FOR PEER REVIEW  10 of 21 
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Three different static loading tests are performed on the beam model. For the first test, the two 
end-node forces are loaded on the model, −100 N in direction Y and 80 N in direction Z (Loading A, 
Figure 7a); for the second test, two uniform distribution forces are loaded along the beam: −1 N in 
direction Y and 1.5 N in direction Z (Loading B, Figure 7b); for the third test, complex loads (Loading 
C) producing uniform distribution of loads (1 N in direction Y) with four equal node forces are loaded 
on the beam (150 N in direction Z, Figure 7c). 

Figure 6. Finite element model of beam and its cross-section division.
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For comparison, two normal sensors placements (C1 and C2) are quoted from the literature [28],
while two optimal results (C3 and C4) are obtained from the Equation (24) model with PSO. The four
placements of the strain sensors are presented in Table 1, where C1 and C3 are suited to the end-node
loading, C2 and C4 are suited to the uniformly distributed loading and f

(
A(x,θ,β)

)
indicates the

function value in the optimal model of Equation (24).

Table 1. Description of strain sensor configurations. For each configuration, axial locations and
orientations of sensors reported as (xi, θi, βi) and angles expressed in degrees.

End-Node Loading Uniformly Distributed Loading

C1 C3 C2 C4

ε1 (0.5L,−120,0) (0.2L,−120,0) (0.33L,−120,45) (0.2L,−120,0)
ε2 (0.5L,−120,45) (0.2L,0,0) (0.5L,−120,0) (0.2L,0,0)
ε3 (0.5L,0,0) (0.2L,120,0) (0.5L,−120,45) (0.2L,120,0)
ε4 (0.5L,0,45) (0.8L,−120,0) (0.5L,0,0) (0.5L,−120,0)
ε5 (0.5L,120,0) (0.8L,0,45) (0.5L,0,45) (0.5L,0,0)
ε6 (0.5L,120,45) (0.8L,120,0) (0.5L,120,0) (0.8L,−120,0)
ε7 - - (0.5L,120,45) (0.8L,0,45)
ε8 - - (0.66L,120,45) (0.8L,120,0)

f
(

A(x,θ,β)

)
1.07 11.45 1.09 10.53

Three different static loading tests are performed on the beam model. For the first test, the two
end-node forces are loaded on the model, −100 N in direction Y and 80 N in direction Z (Loading A,
Figure 7a); for the second test, two uniform distribution forces are loaded along the beam: −1 N in
direction Y and 1.5 N in direction Z (Loading B, Figure 7b); for the third test, complex loads (Loading C)
producing uniform distribution of loads (1 N in direction Y) with four equal node forces are loaded on
the beam (150 N in direction Z, Figure 7c).Sensors 2018, 18, x FOR PEER REVIEW  11 of 21 
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Figure 7. Loading cases on cantilever beam: (a) end-node forces: FY = −100 N, FZ = 80 N; (b) uniform
distribution loads: QZ = 1.5 N, QY = −1 N; (c) complex loads: uniform loads (QY = 1 N) in direction Y
and four equal node forces in direction Z (FZ1 = FZ2 = FZ3 = FZ4 = 150 N).
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In lieu of the experimentally measured surface strains and the deformation results,
the corresponding data are extracted from ANSYS. The deformations calculated from iFEM,
the deformations extracted from ANSYS, the absolute error (AE) and the percentage errors (PE)
for the free-end displacements along with the rotations of the beam model are presented in Tables 2–4.
The displacements and rotations are expressed in mm and rad, respectively.

PE =

∣∣δiFEM − δANSYS
∣∣

|δANSYS|
%AE =

∣∣∣δiFEM − δANSYS
∣∣∣ (28)

where, δ = (u(x), v(x), w(x), θ(x), θ(y), θ(z)); the superscript ‘iFEM’ refers to the calculated value;
and ‘ANSYS’ refers to the extracted value from ANSYS.

Table 2. Comparisons among deformations computed with inverse Finite Element Method (iFEM) and
deformations extracted from ANSYS for end-node load (Loading A).

Deformation u(x) v(x) w(x) θ (x) θ (y) θ (z)

ANSYS 0 −14.74 11.79 0 −0.03 −0.03

iFEMC1 0 −14.88 11.90 0 −0.03 −0.03

AEC1 0 0.14 0.11 0 0 0
PEC1 0% 0.95% 0.93% 0% 0% 0%

iFEMC3 0 −14.68 11.74 0 −0.03 −0.03

AEC3 0 0.06 0.05 0 0 0
PEC3 0% 0.41% 0.42% 0% 0% 0%

iFEMC2 0 −17.25 14.80 0 −0.03 −0.03

AEC2 0 2.51 3.01 0 0 0
PEC2 0% 17% 25.5% 0% 0% 0%

iFEMC4 0 −14.67 11.74 0 −0.03 −0.03

AEC4 0 0.07 0.05 0 0 0
PEC4 0% 0.47% 0.42% 0% 0% 0%

AE = absolute error, PE = percentage error.

Table 3. Comparisons among deformations computed with iFEM and deformations extracted from
ANSYS for uniform distribution loads (Loading B).

Deformation u(x) v(x) w(x) θ (x) θ (y) θ (z)

ANSYS 0 −11.14 16.71 0 −0.03 −0.02

iFEMC1 0 −9.46 14.19 0 −0.02 −0.02

AEC1 0 1.68 2.52 0 0.01 0
PEC1 0% 15.08% 15.08% 0% 33.33% 0%

iFEMC3 0 −11.2 16.81 0 −0.03 −0.02

AEC3 0 0.06 0.1 0 0 0
PEC3 0% 0.54% 0.6% 0% 0% 0%

iFEMC2 0 −15.56 20.07 0 −0.04 −0.03

AEC2 0 4.42 3.36 0 0.01 0.01
PEC2 0% 39.68% 20.11% 0% 33.33% 50%

iFEMC4 0 −11.05 16.58 0 −0.03 −0.02

AEC4 0 0.09 0.13 0 0 0
PEC4 0% 0.81% 0.78% 0% 0% 0%

AE = absolute error, PE = percentage error.
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Table 4. Comparisons among deformations computed with iFEM and deformations extracted from
ANSYS for complex loads (Loading C).

Deformation u(x) v(x) w(x) θ (x) θ (y) θ (z)

ANSYS 0 11.13 44.35 0 −0.09 0.02

iFEMC1 0 9.46 36.04 0 −0.07 0.02

AEC1 0 1.67 8.31 0 0.02 0
PEC1 0% 15% 18.74% 0% 22.22% 0%

iFEMC3 0 11.21 44.41 0 −0.09 0.02

AEC3 0 0.08 0.06 0 0 0
PEC3 0% 0.72% 0.14% 0% 0% 0%

iFEMC2 0 10.77 45.13 0 −0.1 0.02

AEC2 0 0.36 0.78 0 0.01 0
PEC2 0% 3.23% 1.76% 0% 11.11% 0%

iFEMC4 0 11.05 43.91 0 −0.09 0.02

AEC4 0 0.08 0.44 0 0 0
PEC4 0% 0.72% 0.99% 0% 0% 0%

AE = absolute error, PE = percentage error.

The comparisons of Tables 2–4 demonstrate that the two optimal placements (C3 and C4) present
higher accuracy (maximum percent error is below 1%) for the iFEM beam deformation calculation
compared to the schemes (C1 and C2) in the literature [28]. As discussed in section 3, strain input
errors ∆ε(xi, θi, βi) exist in Equation (22). It is assumed that the theoretical locations, where the strain
sensors are placed, are unaltered. This means that the transformation matrix A = T(xi, θi, βi)H(xi) is
invariable but the actual locations, where the strain sensors are placed, will change. Thus, the strain
inputs in Equation (22) do not correspond to the theoretical locations. The difference between the
theoretical locations and the actual locations of strain sensors is set:

∆xi ∈ [−0.05L, 0.05L], ∆θi ∈
[
−9

◦
, 9
◦
]

and ∆βi ∈
[
−9

◦
, 9
◦
]
(i = 1, 2, . . . , m). (29)

The strain measurement system errors are assumed to obey the Gaussian error distributions,
which have zero mean value and three-standard deviations equal to 5% of ANSYS simulation strain
value, such as ∆εi ∈ [−5%εi, 5%εi]. These disturbances are added 1000 times and the highest errors
are selected as the worst sensing results (presented in Tables 5–7, the displacements and the rotations
are expressed in mm and rad, respectively).

The comparisons from Tables 5–7 show that the two optimal sensor placement schemes of C3 and
C4 are more robust than the two quoted schemes of C1 and C2. For the schemes C1 and C2, the absolute
and relative errors drastically increase; the maximum relative error is 1225.16% in direction Y and
the maximum absolute error is 298.55 mm in direction Z in the case of complex loads. In contrast,
for the two optimal sensor placement schemes, the maximum relative error is 103.95% in direction
Y in the case of complex loads, whereas the maximum relative error is below 50% in the other two
loading cases. The reason why difference increases sharply between the computed results and the
extracted data is that the small changes in strain inputs cause large changes in the p1 and p2 parameter
calculation through Equation (22). From Table 1, it is observed that the large differences among the
matrix eigenvalues for the schemes of C3 and C4 (both exceed 10) are higher compared to the schemes
of C1 and C2 (both equal to approximately 1). Consequently, the distributions of eigenvalues for C3
and C4 are better compared to the C1 and C2; and the changes of the calculated results for the C3 and
C4 schemes are more stable compared to C1 and C2.
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Table 5. Comparisons among deformations computed with iFEM and deformations extracted from
ANSYS in case of end-node loads (Loading A). Strain inputs contained errors.

Deformation u(x) v(x) w(x) θ (x) θ (y) θ (z)

ANSYS 0 −14.74 11.79 0 −0.03 −0.03

iFEMC1 0.04 6.7 50.37 0 −0.03 −0.03

AEC1 0.04 21.44 38.58 0 0 0
PEC1 - 145.45% 327.23% 0% 0% 0%

iFEMC3 0 −17.61 7.91 0 −0.02 −0.04

AEC3 0 2.87 3.88 0 0.01 0.01
PEC3 0% 19.47% 32.91% 0% 33.33% 33.33%

iFEMC2 0.04 −113.7 154.58 0 −0.38 −0.25

AEC2 0.04 98.96 142.79 0 0.35 0.22
PEC2 - 671.37% 1211.11% 0% 1166.67% 733.33%

iFEMC4 0.11 −16.7 12.85 0 −0.02 −0.04

AEC4 0.11 1.96 1.06 0 0.01 0.01
PEC4 - 13.30% 8.99% 0% 33.33% 33.33%

AE = absolute error, PE = percentage error.

Table 6. Comparisons among deformations computed with iFEM and deformations extracted from
ANSYS in case of uniform distribution loads (Loading B). Strain inputs contained errors.

Deformation u(x) v(x) w(x) θ (x) θ (y) θ (z)

ANSYS 0 −11.1 16.6 0 −0.03 −0.02

iFEMC1 0 5.89 40.25 0 −0.03 −0.01

AEC1 0 16.99 23.65 0 0 0.01
PEC1 0% 153.06% 142.47% 0% 0% 50%

iFEMC3 0.05 −15.64 13.56 0 −0.03 −0.03

AEC3 0.05 4.54 3.04 0 0 0.01
PEC3 - 40.9% 18.31% 0% 0% 50%

iFEMC2 0 −93.11 118.45 0 −0.29 −0.20

AEC2 0 82.01 101.85 0 0.26 0.18
PEC2 0% 738.83% 613.55% 0% 866.67% 900%

iFEMC4 0.16 −13.48 17.58 0 −0.03 −0.03

AEC4 0.16 2.38 0.98 0 0 0.01
PEC4 - 21.44% 5.9% 0% 0% 50%

AE = absolute error, PE = percentage error.

Table 7. Comparisons among deformations computed with iFEM and deformations extracted from
ANSYS in case of complex loads (Loading C). Strain inputs contained errors.

Deformation u(x) v(x) w(x) θ (x) θ (y) θ (z)

ANSYS 0.0 11.13 44.35 0 −0.09 0.02

iFEMC1 0.06 54.35 −12.94 0 −0.06 0.01

AEC1 0.06 43.22 57.29 0 0.03 0.01
PEC1 - 388.32% 129.18% 0% 33.33% 50%

iFEMC3 0.26 1.02 36.47 −0.05 −0.08 −0.01
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Table 7. Cont.

Deformation u(x) v(x) w(x) θ (x) θ (y) θ (z)

AEC3 0.26 10.11 7.88 0.05 0.01 0.03
PEC3 - 90.84% 17.77% - 11.11% 150%

iFEMC2 0 −125.23 342.9 0 −0.87 −0.23

AEC2 0 136.36 298.55 0 0.78 0.25
PEC2 0% 1225.16% 673.17% 0% 866.67% 1250%

iFEMC4 0.04 −0.44 40.95 0 −0.09 0

AEC4 0.04 11.57 3.4 0 0 0.02
PEC4 - 103.95% 7.67% 0% 0% 100%

AE = absolute error, PE = percentage error.

4.2. Experimental Verification of Wing Frame

The experimental tests under different static loadings are performed on a wing frame model,
in order to verify the feasibility and effectiveness of iFEM structural deformation sensing for two
optimal placements of sensors. The frame model is made of an aluminum alloy, combining two
thin-walled beams with several thin-walled plates. The length and thickness of each beam are 2 m and
1.5 mm, respectively but the external radiuses differ for the two beams: one radius is 13 mm as the
main spar, whereas the other radius is 11.5 mm. The entire frame is divided into three sections and
the length of each section is L = 666 mm (see Figure 8A). Displacement measurements are conducted
at different locations along the main spar with position sensors (see Figure 8A,C), which sends the
infrared lights to the CCD cameras of the 3D optical measurement instruction (see Figure 8B NDI
Optrotrak Certus, NDI, Canada) to reflect the structure deformation. The accuracy of NDI Optrotrak
Certus is 0.1 mm in its measurement range. The displacements captured from NDI are used to assess
the accuracy of deformation sensing from the strain data with iFEM.

The FBG strain sensor is a novel strain measurement device, based on the light wavelength shift
which is caused by the FBG grating deformation generated by the tension/compressive force or change
of temperature. The deformation for the unit length of the grating is labeled as the strain. Without
considering the effect of the temperature change, the strain is calculated through Equation (30) [44,45].

εi = K×
(

λend(i) − λini(i)

λini

)
with K = 1− Pe (30)

where, λend(i) and λini(i) are the wavelength shift and initial wavelength of i-th FBG sensor; Pe is the
photo-optical coefficient of the fiber; the strain measurement εi is expressed as micro strain.

In the model test, the experimental strain data are obtained from the strain measurement system
composed of FBG strain sensors (Fiber Bragg Grating|os1100, Micron Optics, Shelburne, VT, USA)
and the FBG interrogator (Optical Sensing Instrument|Si 155, Micron Optics, Atlanta, GA, USA).
Twenty-four FBG strain sensors (the range of initial wavelength is [1527 nm, 1564 nm]) are placed at
different locations along the main spar and used to capture the surface strain. Since the locations in
placement scheme C3 are contained in scheme C4 (refer to Table 1), eight FBG sensors are placed on
the surface of every section according to scheme C4. The entire experiment system is presented in
Figure 8D.
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For the static tests, two different loading cases are considered (see Figure 8E,F):
I. the end-node of the main spar is loaded 6 times (for the total weight of F = 5.57 KG);
II. the main spar is loaded 5 times with uniform-distributed loads (for the total weight of

F = 6.02 KG).
The details of the above loads, the maximum deformations calculated with iFEM and the

maximum deformations captured by NDI are presented in Table 8. The optical measurement
instruction only captures the displacement of position sensors stuck to the structure surface. Therefore,
the comparisons among iFEM calculations and NDI measurements focuses on the displacements only.
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To visually describe the structural deformation, the comparisons of the discrete point displacements
among iFEM calculations and NDI measurements are shown in Figure 9 (for the end-node load v and
the uniformly distributed load iv).
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Table 8. Loads for static tests (loads expressed in kg and displacements expressed in mm).

End-Node Loads Uniformly Distributed Loads

Times i ii iii iv v vi i ii iii iv v

loads 1.53 2.22 3.11 4.05 4.98 5.57 1.19 2.66 3.64 4.62 6.02
u(x)NDI −0.1 −0.2 −0.3 −0.3 −0.4 −0.4 −0.1 −0.1 −0.1 −0.2 −0.2

u(x)iFEMC3
0.0 −0.1 −0.1 −0.2 −0.2 −0.3 0 0 −0.1 −0.1 −0.1

u(x)PEC3 100% 50% 66.6% 33.3% 50% 25% 100% 100% 0% 50% 50%
u(x)iFEMC4

0.0 0.0 −0.1 −0.2 −0.3 −0.3 0 0 0 −0.1 −0.1
u(x)PEC4 100% 100% 66.6% 33.3% 25% 25% 100% 100% 100% 50% 50%
v(x)NDI 3.8 6.1 9.5 13.2 16.1 18.1 0.9 2.5 3.9 5.0 6.4

v(x)iFEMC3
3.7 5.7 9.2 13.9 17.4 19.2 1.0 2.7 4.1 5.2 6.7

v(x)PEC3 2.6% 6.6% 3.2% 5.3% 4.3% 5.0% 11.1% 8% 5.1% 4% 4.7%
v(x)iFEMC4

4.0 6.4 9.9 12.6 15.3 17.1 0.8 2.2 3.6 4.7 6.0
v(x)PEC4 5.3% 4.9% 4.2% 4.5% 4.9% 5.5% 11.1% 12% 7.7% 6% 6.3%
w(x)NDI 0.8 1.3 2.1 2.9 3.7 4.1 −0.1 0.1 0.2 0.3 0.4

w(x)iFEMC3
0.9 1.3 2.2 3.1 3.9 4.3 0 0.1 0.2 0.2 0.4

w(x)PEC3 11.3% 0% 4.8% 6.9% 5.4% 4.9% 100% 0% 0% 33.3% 0%
w(x)iFEMC4

0.7 1.2 2.0 2.7 3.4 3.8 0 0.1 0.1 0.3 0.4
w(x)PEC4 11.3% 7.7% 4.8% 6.9% 8.1% 7.3% 100% 0% 50% 0% 0%

The root-mean-square difference (RMSD) is used to assess the sensing accuracy of the entire
structure through iFEM [46].

RMSD =
2

√√√√ j

∑
i=1

(
dispNDI(xi)− dispiFEM(xi)

)2/j (31)

where, disp(xi) is the displacement of one node along the beam centroidal axis in one direction;
the superscript ‘NDI’ refers to the deformation values captured from NDI; ‘iFEM’ refers to the predicted
values computed from in situ strain measurements with iFEM; and j is the number of the nodes used to
describe the beam deformation. In the test, the number of nodes used to describe the beam deformation
is 16. The comparisons are shown in Table 9.
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Table 9. Root-mean-square difference (RMSD) of iFEM calculation for different loads (RMSD expressed
in mm).

End-Node Loads Uniformly Distributed Loads

Times i ii iii iv v vi i ii iii iv v

u(x)NDI −0.1 −0.2 −0.3 −0.3 −0.4 −0.4 −0.1 −0.1 −0.1 −0.2 −0.2
RMSDiFEMC3 for u(x) 0.068 0.097 0.151 0.205 0.277 0.296 0.018 0.037 0.062 0.079 0.102
RMSDiFEMC4 for u(x) 0.069 0.098 0.152 0.207 0.280 0.298 0.018 0.038 0.062 0.080 0.103

v(x)NDI 3.8 6.1 9.5 13.2 16.1 18.1 0.9 2.5 3.9 5.0 6.4
RMSDiFEMC3 for v(x) 0.166 0.176 0.292 0.518 0.381 0.416 0.132 0.169 0.230 0.261 0.308
RMSDiFEMC4 for v(x) 0.196 0.246 0.357 0.541 0.641 0.644 0.134 0.174 0.236 0.269 0.320

w(x)NDI 0.8 1.3 2.1 2.9 3.7 4.1 −0.1 0.1 0.2 0.3 0.4
RMSDiFEMC3 for w(x) 0.049 0.055 0.056 0.169 0.142 0.115 0.061 0.131 0.107 0.119 0.155
RMSDiFEMC4 for w(x) 0.09 0.09 0.164 0.317 0.208 0.234 0.070 0.156 0.146 0.169 0.219

The frame is divided into three sections and every section is regarded as an iFEM element, so the
entire frame is calculated three times through iFEM. The calculations in the second and third sections
of the frame are affected by the computation in the first section. Consequently, accumulative errors
occur during the deformation sensing of the entire frame structure. In Table 8, it is observed that the
maximum differences of displacements among the iFEM calculations and the NDI captures are below
12%; for the main deformation v(x) under all loading cases, the errors remain at approximately 5%,
when the deformations increase. Although the percentage errors are relatively high, the RMSD is
acceptable for the C3 and C4 schemes: (1) under the end-node loads, the maximum RMSD is 0.644 mm
for the main deformation v(x) and 0.234 mm for the minor deformation w(x); (2) under the uniformly
distributed loads, the RMSD is 0.32 mm for the main deformation v(x) and 0.219 mm for the minor
deformation w(x) (refer to Table 9). The corresponding figures also demonstrate that the deformations
calculated with iFEM for the sensor placements of C3 and C4 are quite similar to the deformations
measured with the optical measurement instruction (NDI). Nevertheless, the number of measurement
strains for C4 is higher compared to the C3 number. Therefore, more disturbances exist for the C4 than
for the C3, which results in the sensing accuracy of C4 being slightly worse than the C3. Finally, it is
discovered that the accuracies in the model experiment are worse compared to the simulation, which
also demonstrate that the practical location errors of the strain sensors affect the deformation sensing
of the entire structure.

5. Conclusions

The study successfully validates the feasibility of iFEM used for deformation sensing of a wing
frame. As aforementioned in the introduction, the locations where the strain sensors are placed affect
the accuracy of iFEM for sensing. Therefore, in the paper, an optimal placement model of sensors
is proposed to confirm the suitable placement of sensors for the accuracy and stability of iFEM of
sensing frame deformation to be maintained. Following experimental test, the results demonstrate that
the iFEM is able to precisely sense the deformation of the wing frame for the two optimal placement
schemes of C3 and C4. Nevertheless, it is found that certain limits exist for the iFEM application: (1) the
cross-section of the beam must be constant along the central axis of the beam and the section must
be un-deformed when the loads are applied on the beam; (2) the boundary condition of the sensing
equation must be known. Moreover, the test results also demonstrate that the strain measurement
system errors (combining location errors of sensors with measurement errors of sensors) affect the
accuracy of sensing results. Further works will be focused on the location calibrations of the strain
sensors, as well as the relationship between the structural strain and the wavelength shift of the
FBG sensor.
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