
sensors

Article

Fast Visual Tracking Based on Convolutional Networks

Ren-Jie Huang 1 ID , Chun-Yu Tsao 1, Yi-Pin Kuo 2, Yi-Chung Lai 1, Chi Chung Liu 1, Zhe-Wei Tu 1,
Jung-Hua Wang 1,* and Chung-Cheng Chang 1

1 Department of Electrical Engineering, National Taiwan Ocean University, Keelung City 20224, Taiwan;
20553001@mail.ntou.edu.tw (R.-J.H.); 10453016@mail.ntou.edu.tw (C.-Y.T.); k8130488@gmail.com (Y.-C.L.);
free_touch_tim@hotmail.com (C.C.L.); jjay6twtw@gmail.com (Z.-W.T.); ccchang@mail.ntou.edu.tw (C.-C.C.)

2 Ship and Ocean Industries R&D Center (SOIC), New Taipei City 25170, Taiwan; s880062@gmail.com
* Correspondence: jhwang@ntou.edu.tw; Tel.: +886-2-2462-2192 (ext. 6207)

Received: 31 May 2018; Accepted: 19 July 2018; Published: 24 July 2018
����������
�������

Abstract: Recently, an upsurge of deep learning has provided a new direction for the field of computer
vision and visual tracking. However, expensive offline training time and the large number of images
required by deep learning have greatly hindered progress. This paper aims to further improve the
computational performance of CNT which is reported to deliver 5 fps performance in visual tracking,
we propose a method called Fast-CNT which differs from CNT in three aspects: firstly, an adaptive k
value (rather than a constant 100) is determined for an input video; secondly, background filters used
in CNT are omitted in this work to save computation time without affecting performance; thirdly,
SURF feature points are used in conjunction with the particle filter to address the drift problem in
CNT. Extensive experimental results on land and undersea video sequences show that Fast-CNT
outperforms CNT by 2~10 times in terms of computational efficiency.

Keywords: visual tracking; convolutional networks; clustering; IoT; object detection

1. Introduction

The issue of applying deep neural networks to visual tracking has been widely studied both
academically and industrially. In general, visual tracking is conducted through comparison of features
of a target object and the video image in the search region. The feature extractor plays a key role during
the tracking process, and using proper features can dramatically affect the tracking performance.
By its nature, feature extraction can be classified into two major categories: feature engineering
and feature learning. Feature engineering refers to the process of using domain knowledge to find
features inherent to the data useful in the subsequent decision task; normally it is conducted in a
hand-crafted manner. Some literature has argued that hand-crafted features may perform better than
otherwise in exploiting robust representations for some special cases. However, hand-crafted features
suffer a major drawback of being not tailored for all generic objects, and hence require sophisticated
learning techniques to improve their representative capabilities. On the other hand, feature learning
is characterized by extracting useful image representations through learning. Currently, the most
well-known example is the deep learning or deep neural network, a key attribute of which is that
features are extracted, along with other interlayer connection weights update, during the training
process for the entire network architecture. Many researchers advocate applying deep networks to
learn generic representations offline from a huge number of training images, claiming that such generic
features possess a better generalization capability and therefore are more effective in distinguishing
objects of different categories [1,2]. Despite the fact that deep networks have drawn increased attention
with state-of-the-art results in image recognition, classification, detection or even aesthetic evaluation,
much less effort has been directed to applying deep networks in visual tracking. This is mainly

Sensors 2018, 18, 2405; doi:10.3390/s18082405 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-2642-8788
http://www.mdpi.com/1424-8220/18/8/2405?type=check_update&version=1
http://dx.doi.org/10.3390/s18082405
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 2405 2 of 13

attributed to insufficient training data, namely, only the target state (i.e., position and size) in the first
frame is available for training. Furthermore, visual tracking remains a challenging problem in many
practical applications due to factors such as partial occlusion, cluttered background, fast and abrupt
motion, dramatic illumination changes, and large variations in viewpoint and pose.

The architecture of deep networks presents a hot research topic, especially convolutional neural
networks (CNNs). For example, [1,2] pay special focus on offline learning an effective feature extractor
with a large amount of auxiliary data. However, such offline training is time-consuming and the
learned generic representation usually is less discriminative for tracking specific objects. To speed
up the process, another line of research emphasis on the unsupervised feature learning problem
for online visual tracking without training. For instance, the convolutional network-based tracker
(CNT) [3] has shown that the similar local structural and inner geometric layout information among the
targets over consequent frames are sufficient to achieve 5 fps performance in visual tracking. CNT is
characterized by the fact that it requires no offline training with a large amount of auxiliary data,
and simple two-layer feed-forward convolutional networks are powerful enough to learn robust image
representations for visual tracking. CNT extracts a set of normalized patches from the target region in
the first frame and apply the k-means algorithm to obtain a fixed bank of target filters. Simultaneously
CNT extracts several background samples surrounding the target, and also apply k-means to obtain
a bank of background filters. Then the fixed target filters are subtracted by the background filters,
and subsequently used to convolve each normalized sample extracted from subsequent frames to
define a set of feature maps in those subsequent frames. Finally, these feature maps are used to match
the target template for finding an optimal candidate during visual tracking. In this way, CNT uses
much less training time, compared to the offline learning proposed in [1,2].

The classic k-means algorithm in CNT simply sets the k value to a constant (100). Both the role
of k-means clustering in unsupervised feature learning and the effect of varying the value of k are
not elaborated in [3], yet, it is widely known that an inappropriate k value often results in a poor
clustering result. In light of this, the proposed Fast-CNT differs from CNT in three main aspects:
firstly, an adaptive k value (much less than 100) is determined for an input video, doing so can
improve computation efficiency. Secondly, unlike in CNT, background filters are abstained in our
framework to save computation time without affecting performance. Thirdly SURF [4] feature points
are incorporated into the particle filter [5] to address the drift problem in CNT. Results of this work
may not only allow us to better understand the significance of k-means clustering in unsupervised
feature extraction, but also facilitate the assessment of how and to what extent different strategies
can be used to improve the original CNT. Last but not least, Fast-CNT can double the computing
performance of the original CNT, namely increasing from 5 fps to more than 10 fps.

It has been shown in [3] that the original CNT can stably track the target with much better
accuracy than well-known methods like transformation Gaussian progress regression (TGPR) [6],
kernel correlation filter (KCF) [7] and context tracker (CXT) [8]. Moreover, in the case when the target
object is moving away from the camera, TGPR, KCF, Struck [9] and visual tracker sampler (VTS) [10]
cannot perform well as compared to the original CNT. Based on this reason, all the experimental results
in this paper will focus on the comparison of Fast-CNT and original CNT.

2. Convolutional Network Based Tracker

To understand our work, it is necessary to briefly discuss the original CNT [3]. CNT provides
additional useful information for visual tracking without the expensive training time required in
conventional convolution networks. In CNT, in order to keep the computational load as low as
possible, only one layer of the convolution network is used in the simple layer, where feature operators
are obtained from the well-known k-means algorithm, namely, each cluster centroid corresponds to a
feature operator for the input image. The CNT task can be roughly divided into image representation
and the tracking process.

Sensors 2018, 18, 2405 3 of 13

2.1. Image Representation

2.1.1. Preprocessing

First, each input image is rescaled to a canonical size and represented by the corresponding
intensity values. Then a bank of overlapping local image patches is sampled pixel by pixel using a
sliding window. Each patch is subjected to a subtracting-the-mean operation and L2 normalization
that correspond to local brightness and contrast normalization, respectively.

2.1.2. Simple Layer

After preprocessing, the k-means algorithm selects a bank of patches sampled from the object
region in the first frame as fixed object filters FO. The background filters FB are selected by the k-means
algorithm from background samples surrounding the object in the current frame. Then the fixed object
filters are subtracted by the background filters, and the preprocessed object image I is convolved with
them to obtain the simple feature maps (i.e., simple cells in [3]) defined as:

S =
(

FO − FB
)
⊗ I (⊗ = convolution operator) (1)

2.1.3. Complex Layer

In order to increase the strength of the simple feature maps, a complex layer is formed by stacking
the simple feature maps together to construct a (complex) feature map C of a 3D tensor. According
to [3], the complex cell features can preserve the geometric layouts of the useful parts at different scales.

2.1.4. Model Update

In order to track a continually moving target, it is necessary to update the target template, CNT
utilizes soft shrinkage function to enhance the sparse characteristics of C, which makes C more robust
to appearance variation, and the sparse feature map ĉ is defined as:

ĉ = sign(C)max(0, abs(C)− λ)(λ = median(C)) (2)

C in Equation (2) is updated gradually to adapt to the changes of appearance over time, a temporal
low-pass filtering method is adopted to update the target template:

ct = (1− ρ)ct−1 + ρĉt−1 (3)

where ρ, ct, and ĉt−1 represent the learning parameter, the target template at frame t, the sparse feature
map of the tracked target at frame t.

2.2. Tracking Process

The tracking process in CNT is implemented using the particle filtering scheme, and it is based
on an optimal Bayesian estimation and Monte Carlo model. More specifically, particles maintain a
probability distribution over the state (location, scale, etc.) of the object being tracked. Each particle is
a guess representing one possible location of the object being tracked.

For convenience, the object filter set is denoted as FO, the background filter set as FB
t−1, target state

set as ŝt−1, and the target template set as ct when estimating the target state at frame t. The CNT
tracking algorithm mainly consists of five steps:

1. Sampling N candidate particles
{

si
t
}N

i=1.
2. Extracting the preprocessed image patch for each particle si

t, subjecting the patch to the simple and
complex layer and employing Equations (4) and (5) to obtain the corresponding representation ci

t,
followed by computing similarity between the target template and representation ci

t.

Sensors 2018, 18, 2405 4 of 13

ci
t = Ci

tw (= element-wise multiplication) (4)

wi =

{
1, ct(i) 6= 0
0, otherwise

(5)

3. Estimating the optimal state ŝt according to the similarity.
4. Extracting background samples to update the corresponding filters FB

t set forth in Equation (1),
then computing the sparse representation ĉt of the target template using Equations (1) and (2)
and using Equation (3) to update the target template ct+1.

3. Methodology

Figure 1 shows a flowchart of the proposed Fast-CNT. It mainly consists of five steps:

1. Every input frame at arbitrary time t (Frame(t)), except the first frame, is subjected to the SURF
screening. There are NP particles are sampled from Frame(t), each particle corresponds to a blue
bounding box with a randomly selected size. The number of SURF feature points (green prints)
covered by each blue bounding box (namely, the particle) is checked to determine if the particle
in question is qualified as NC candidates (yellow bounding box).

2. The preprocessing stage rescales and normalizes the target box in Frame(1) as well as the plural
candidate boxes in Frame(t) into canonical n × n images, and then in Frame(1) extracts a set of
local patches with size of w × w (i.e., multiple w × w patches or subimages in the rescaled and
normalized target, w 5 n). Just like in CNT [3] and in this work, the canonical n is heuristically set
to 32, however, both the target box and candidate boxes may have different sizes from each other,
thus in the preprocessing stage they are rescaled (corresponding to the “warping” in [3]) to the
same size and subjected to L2 normalization. In fact, doing so ensures to achieve the desired effect
that one of the NC sets of feature maps in the simple layer well preserves the local structure of the
target and delicately overcome the target appearance changes significantly due to illumination
changes and scale variations, as well shown in Figure 2 of [3].

3. In the simple layer, local patches from rescaled and normalized target in Frame(1) are subjected
to the HKC (hierarchical k-means clustering) algorithm [11] to obtain k fixed target filters for
convolution(without zero or mirror paddings at the image boundary) with the target to generate
k feature maps with size of (n − w + 1)2. On the other hand, target filters (k filters) are convolved
with each rescaled and normalized candidate boxes to generate NC sets of feature maps, each set
has k feature maps.

4. In the complex layer, only the k target feature maps (not the candidate feature maps) are de-noised
by soft shrinkage [12]. Subsequently, k simple cell feature maps and NC × k candidate feature
maps are stacked to represent the target template and NC candidate templates.

5. Finally, each NC candidate template is matched with the target template in order to find optimal
candidate state, which is used to update the target template by Equation (3) in the model update
block. Note that the matching can be done by, for example, subtracting the target template from
each of the NC candidate templates and selecting one with the minimum result, or through the
inner product operation and choosing the one with the greatest similarity, etc.

Compared to CNT, Fast-CNT preserves the characteristic that it requires no offline training with
a large amount of auxiliary data, and the major improvements herein are threefold: firstly, unlike
the constant k (=100) value as set forth in [3], a much smaller k value is determined in an automated
manner to achieve better clustering result and faster computation. Secondly, we show that background
filters used in [3] can be omitted to further enhance the computational performance without sacrificing
any tracking accuracy. Thirdly, the incorporation of SURF feature points for screening candidate boxes
in the particle filters to improve the drift problems.

Sensors 2018, 18, 2405 5 of 13Sensors 2018, 18, x FOR PEER REVIEW 5 of 13

Figure 1. Flowchart of the proposed Fast-CNT.

Figure 1. Flowchart of the proposed Fast-CNT.

Sensors 2018, 18, 2405 6 of 13

3.1. Adaptive k Value

The classic k-means algorithm is based on Euclidean distance and characterized by (a) the number
of clusters k needs to be set in advance; (b) input data is assumed to have a globular/convex-like
distribution, which means that k-means is not applicable to data of non-globular/non-convex clusters
with different sizes and shapes. As in [3], k-means is applied to obtain feature extractors in this work,
we will explore the role of k-means in the CNT framework, and how to choose tan appropriate k value.
Yet, before proceeding, we need to elaborate on the concept of sparse dictionary learning.

Sparse dictionary learning is a representation learning method, which aims at finding dictionaries
inferred from input data, and these dictionaries consist of a linear combination of basic elements from
input data. The data is mapped to feature subspace through the dictionary, and results of which
are encoded by sparse coding in order to find the sparse representation of the input data. In this
context, the centroids of clusters obtained from k-means can be regarded as dictionary elements
which can define features for a supervised learning task [13]. Namely, the dictionary (centroids of
clusters) learned by k-means serve as a feature extractor in CNT, and it is convolved with the input
image to generate feature maps which are similar to features of images learned from a single-layered
convolutional neural network, its role is just like a simple cell which is more sensitive to the boundary
information with its receptive field in biological vision system. Not only the dictionary is capable of
effectively depicting edge information of the input image, but also these feature representations are
robust in the sense that they are both scale-invariant and shift-invariant, while maintaining the image
local structure.

The number of clusters k is heuristically set to be 100 in the original CNT. However, the choice of
k value should be carefully treated, and an inappropriate k value may result in meaningless clustering
result. In order to address this problem, numerous studies were surveyed: Agglomerative hierarchical
clustering (AHC) [14], DBSCAN [15], HKC [11], and so on. DBSCAN is a density-based clustering
algorithm, wherein for each sample point in the data set, the number of sample points MinPts within
the range of the specified radius ε is calculated to estimate the density. DBSCAN is more resistant
to noise than k-means and can handle clusters of any shape and size. However, it has two hyper
parameters (ε and MinPts) which rely on experiences to control in order to produce good cluster
results, making it rather difficult to find a good parameter combination, particularly in the case of
high dimensional input data or where the density difference is relatively large. AHC takes each
sample as a separate cluster, and then merge the closest pair of clusters until there is only one cluster.
The hierarchical clustering has the significant advantage of using any effective distance measurement
to achieve clustering, and it can draw its operation into a dendrogram.

HKC is a two-stage algorithm. In the segmenting phase, the data set is divided into multiple
clusters through k-means. In the merging phase, the single linkage clustering algorithm is used to
merge the closest pair of clusters. After k-means partitions the input data into several groups, HKC
can quickly and effectively produce tree-like clustering results. Therefore, we adopt HKC to find a k
value that is most suitable for the input images by taking into account the fact that there are various
variations in the pixel intensity distribution in the input image, i.e., spatial distribution of the input
data itself may have different sizes and densities. Because the classic k-means cannot explore clusters
of different shapes and sizes, it is not suitable for our purpose here. In contrast, HKC combines the
advantages of k-means and hierarchical clustering algorithm and overcomes each other’s shortcoming.
In the segmenting phase of HKC, the data set is divided into multiple clusters through k-means, where
the number of clusters is purposely set larger to reduce the effect of noise and outliers on k-means.
In the merging phase, the single linkage clustering algorithm is used to make up for the shortcoming of
k-means that cannot explore the clustering of arbitrary shapes, and also provide a readable dendrogram
to allow us to study its clustering results.

We note that in order to justify the clustering validity of HKC, the famous Elbow method is used,
and Figure 2 shows both the Elbow and HKC determine that the number of clusters is three for the

Sensors 2018, 18, 2405 7 of 13

target image in Figure 2a. Therefore, thorough out this work the k value is advantageously determined
in an automated manner.Sensors 2018, 18, x FOR PEER REVIEW 7 of 13

(a) (b) (c)

Figure 2. (a) Target image; (b) Using the Elbow method to check the validity of clusters; (c) Three

clusters are also determined by HKC, consistent with the result in (b).

3.2. SURF Screening

SURF is a scale-invariant method. It is well known that SURF is three times faster than SIFT with

comparable performance, and is good at handling images with blurring and rotation, but not good

at handling viewpoint changes and illumination changes. In this paper, SURF feature points are used

solely for the purpose of screening those bounding boxes qualified for the subsequent tracking task,

that is, bounding boxes with sufficient number of SURF feature points will be selected (NC yellow

bounding boxes in Figure 1) and subjected to the subsequent operations of pre-processing,

convolution in the simple layer, and matching after the complex layer, etc.

As CNT tracks the target bounding box without any prior knowledge, a great robustness is

needed in order to avoid losing the target (i.e., the drift problem). In this work, SURF feature points

[4] are first extracted for each frame, then 200 random points generated in the particle filter, each of

which corresponds to a bounding box. The number of SURF feature points included in each bounding

box is checked if it is greater than a preset threshold. Because unqualified bounding boxes are

excluded from being candidate templates, SURF screening can provide a benefit of increasing the

accuracy of target tracking.

Figure 3 shows how the screening process works, wherein Tt = 20 is a heuristic threshold for

checking if a bounding box generated by the particle filter is qualified, i.e., bounding boxes containing

less than 20 feature points are discarded. Clearly, using a fixed threshold does not apply to all kinds

of input images, as observed in [16] a target object may undergo changeable scale, rotation,

perspective, blurs and illumination from frames to frames, causing the number of SURF feature

points contained in a specific bounding box varies drastically. Figure 4 shows a situation in which

the tracking is prone to miss the target, as the white car on the left (target) is driving away from the

viewer, the size of blue bounding boxes in Figure 4a–c shrinks in the video sequences. Note that blue

boxes in Figure 4a,b indicate the tracking result is still correct, yet Figure 4c shows that the target car

has been erroneously tracked as the red box location, instead of the blue box location. A feasible

approach to this problem is to update the threshold dynamically. For example, a bounding box

containing less than five feature points, or having the number of pixels constituting the box itself is

less than 100 pixels is too small and will be excluded from the subsequent operations. Hence, the

threshold Tt is prescribed as:

𝑇𝑡 = {

 𝑃2 2⁄ , 𝑖𝑓 𝑡 = 2, 3

(
𝑃𝑡−1

2
+

𝑃𝑡−2

2
) 2⁄ , 𝑖𝑓 𝑡 > 3 𝑎𝑛𝑑 𝑃𝑡−1 > 5 𝑎𝑛𝑑 �̂�𝑡−1 < 100 𝑝𝑖𝑥𝑒𝑙𝑠

 0, 𝑖𝑓 𝑡 > 3 𝑎𝑛𝑑 𝑃𝑡−1 < 5 𝑎𝑛𝑑 �̂�𝑡−1 < 100 𝑝𝑖𝑥𝑒𝑙𝑠

 (6)

where 𝑇𝑡 and 𝑁𝑡 represent the threshold at tth frame and the number of SURF feature points

contained in a target bounding box, respectively.

Figure 2. (a) Target image; (b) Using the Elbow method to check the validity of clusters; (c) Three
clusters are also determined by HKC, consistent with the result in (b).

3.2. SURF Screening

SURF is a scale-invariant method. It is well known that SURF is three times faster than SIFT with
comparable performance, and is good at handling images with blurring and rotation, but not good at
handling viewpoint changes and illumination changes. In this paper, SURF feature points are used
solely for the purpose of screening those bounding boxes qualified for the subsequent tracking task,
that is, bounding boxes with sufficient number of SURF feature points will be selected (NC yellow
bounding boxes in Figure 1) and subjected to the subsequent operations of pre-processing, convolution
in the simple layer, and matching after the complex layer, etc.

As CNT tracks the target bounding box without any prior knowledge, a great robustness is needed
in order to avoid losing the target (i.e., the drift problem). In this work, SURF feature points [4] are
first extracted for each frame, then 200 random points generated in the particle filter, each of which
corresponds to a bounding box. The number of SURF feature points included in each bounding box
is checked if it is greater than a preset threshold. Because unqualified bounding boxes are excluded
from being candidate templates, SURF screening can provide a benefit of increasing the accuracy of
target tracking.

Figure 3 shows how the screening process works, wherein Tt = 20 is a heuristic threshold for
checking if a bounding box generated by the particle filter is qualified, i.e., bounding boxes containing
less than 20 feature points are discarded. Clearly, using a fixed threshold does not apply to all kinds of
input images, as observed in [16] a target object may undergo changeable scale, rotation, perspective,
blurs and illumination from frames to frames, causing the number of SURF feature points contained in
a specific bounding box varies drastically. Figure 4 shows a situation in which the tracking is prone to
miss the target, as the white car on the left (target) is driving away from the viewer, the size of blue
bounding boxes in Figure 4a–c shrinks in the video sequences. Note that blue boxes in Figure 4a,b
indicate the tracking result is still correct, yet Figure 4c shows that the target car has been erroneously
tracked as the red box location, instead of the blue box location. A feasible approach to this problem is
to update the threshold dynamically. For example, a bounding box containing less than five feature
points, or having the number of pixels constituting the box itself is less than 100 pixels is too small and
will be excluded from the subsequent operations. Hence, the threshold Tt is prescribed as:

Tt =

P2/2, i f t = 2, 3(

Pt−1
2 + Pt−2

2

)
/2, i f t > 3 and Pt−1 > 5 and ŝt−1 < 100 pixels

0, i f t > 3 and Pt−1 < 5 and ŝt−1 < 100 pixels

(6)

where Tt and Nt represent the threshold at tth frame and the number of SURF feature points contained
in a target bounding box, respectively.

Sensors 2018, 18, 2405 8 of 13

Sensors 2018, 18, x FOR PEER REVIEW 8 of 13

Figure 3. Overview of the SURF-based screening process.

(a) (b) (c)

Figure 4. As the size of a target object (white car on the left) shrinks, the target could be erroneously

tracked; (a) target object; (b) the target object is shrinking; (c) the red bounding box indicates the

erroneous tracking location.

3.3. Abstaining Use of Background Filters

In CNT, background filters are calculated and used for updating the target filters at different

frames. However, we conjecture that different filters in the filter bank themselves are capable of

extracting various features. When the target filters are subtracted by the background filters in CNT,

the extracted features will be inevitably affected, which could incur negative effects on the

subsequent template comparison. As shown in Figure 5, in the absence of background filters, the

similarity between the candidate template and the target template is actually higher than otherwise.

Our experiments show that the tracking accuracy is almost the same, regardless of using background

filters or not. This finding equivalently states that using the k-means learning the dictionaries (target

filter) as a feature extractor is capable of capturing sufficient information for visual tracking. Thus,

unlike in [3], this work chooses to abstain from the use of background filters, a direct benefit of doing

so is the reduction in the computation time.

Figure 5. Red line (marked as o) represents the similarity between candidate template and target

template when background filters are not used, blue line represents (marked as x) the similarity

between candidate template and target template when the background filters are used.

Figure 3. Overview of the SURF-based screening process.

Sensors 2018, 18, x FOR PEER REVIEW 8 of 13

Figure 3. Overview of the SURF-based screening process.

(a) (b) (c)

Figure 4. As the size of a target object (white car on the left) shrinks, the target could be erroneously

tracked; (a) target object; (b) the target object is shrinking; (c) the red bounding box indicates the

erroneous tracking location.

3.3. Abstaining Use of Background Filters

In CNT, background filters are calculated and used for updating the target filters at different

frames. However, we conjecture that different filters in the filter bank themselves are capable of

extracting various features. When the target filters are subtracted by the background filters in CNT,

the extracted features will be inevitably affected, which could incur negative effects on the

subsequent template comparison. As shown in Figure 5, in the absence of background filters, the

similarity between the candidate template and the target template is actually higher than otherwise.

Our experiments show that the tracking accuracy is almost the same, regardless of using background

filters or not. This finding equivalently states that using the k-means learning the dictionaries (target

filter) as a feature extractor is capable of capturing sufficient information for visual tracking. Thus,

unlike in [3], this work chooses to abstain from the use of background filters, a direct benefit of doing

so is the reduction in the computation time.

Figure 5. Red line (marked as o) represents the similarity between candidate template and target

template when background filters are not used, blue line represents (marked as x) the similarity

between candidate template and target template when the background filters are used.

Figure 4. As the size of a target object (white car on the left) shrinks, the target could be erroneously
tracked; (a) target object; (b) the target object is shrinking; (c) the red bounding box indicates the
erroneous tracking location.

3.3. Abstaining Use of Background Filters

In CNT, background filters are calculated and used for updating the target filters at different
frames. However, we conjecture that different filters in the filter bank themselves are capable of
extracting various features. When the target filters are subtracted by the background filters in CNT,
the extracted features will be inevitably affected, which could incur negative effects on the subsequent
template comparison. As shown in Figure 5, in the absence of background filters, the similarity between
the candidate template and the target template is actually higher than otherwise. Our experiments
show that the tracking accuracy is almost the same, regardless of using background filters or not.
This finding equivalently states that using the k-means learning the dictionaries (target filter) as a
feature extractor is capable of capturing sufficient information for visual tracking. Thus, unlike in [3],
this work chooses to abstain from the use of background filters, a direct benefit of doing so is the
reduction in the computation time.

Sensors 2018, 18, x FOR PEER REVIEW 8 of 13

Figure 3. Overview of the SURF-based screening process.

(a) (b) (c)

Figure 4. As the size of a target object (white car on the left) shrinks, the target could be erroneously

tracked; (a) target object; (b) the target object is shrinking; (c) the red bounding box indicates the

erroneous tracking location.

3.3. Abstaining Use of Background Filters

In CNT, background filters are calculated and used for updating the target filters at different

frames. However, we conjecture that different filters in the filter bank themselves are capable of

extracting various features. When the target filters are subtracted by the background filters in CNT,

the extracted features will be inevitably affected, which could incur negative effects on the

subsequent template comparison. As shown in Figure 5, in the absence of background filters, the

similarity between the candidate template and the target template is actually higher than otherwise.

Our experiments show that the tracking accuracy is almost the same, regardless of using background

filters or not. This finding equivalently states that using the k-means learning the dictionaries (target

filter) as a feature extractor is capable of capturing sufficient information for visual tracking. Thus,

unlike in [3], this work chooses to abstain from the use of background filters, a direct benefit of doing

so is the reduction in the computation time.

Figure 5. Red line (marked as o) represents the similarity between candidate template and target

template when background filters are not used, blue line represents (marked as x) the similarity

between candidate template and target template when the background filters are used.

Figure 5. Red line (marked as o) represents the similarity between candidate template and target
template when background filters are not used, blue line represents (marked as x) the similarity
between candidate template and target template when the background filters are used.

Sensors 2018, 18, 2405 9 of 13

4. Experimental Results

4.1. Experiment Setup

Fast-CNT is implemented in Tensorflow and coded in Python, running on an Intel i7 CPU
(2.8 GHz). Computing performance is improved up to 11 fps over the 5 fps in the original CNT. For a
fair comparison, the benchmark dataset [17] which includes 50 fully-annotated videos is used, and the
experiment setup is mostly the same as the CNT, namely the images of each video are converted to
grayscale, and the state of the target in the first frame given by the ground truth, the image rescaled
to 32 × 32 (by INTER_AREA-resampling in OpenCV), and the receptive field size set to 6 × 6 (i.e.,
the filter of w × w in the Simple layer of Figure 1). For simplicity and without loss of generality, the
target state parameters (σx, σy, σs) are assumed independent and modeled by three scalar Gaussian
distributions, and hence the particle states updated can be formulated as Brownian motion [18], and the
standard deviations of the candidate particle state: σx = 4, σy = 4, and σs = 0.01. However, unlike CNT,
the number of filters is decided by HKC, and N = 200 particles are used.

4.2. Evaluation Metrics

For quantitative evaluations, the results of one-pass evaluation (OPE) are presented [17], wherein
the precision plot shows the percentage of all frames whose estimated location is within the threshold
distance of the ground truth, the threshold is set 0~50. Meanwhile, the success plot is based on
the bounding box overlap score, given the tracked bounding box bt and the ground truth bounding

box bg, the overlap score is defined as S =
|bt∩bg|
|bt∪bg| . The success plot shows the ratio of successful

frames when the threshold is varied from 0 to 1. In order to show the effectiveness of Fast-CNT,
we present various experiments using different values of k in combination with other constraints.
Specifically, seven parametric combinations were tested using the Skater video of the benchmark
dataset, each parametric combination representing a combination of a k value with or without SURF
screening and background filters. The results shown in Figure 6 are obtained by averaging over 10
different runs of each parametric combination.

Sensors 2018, 18, x FOR PEER REVIEW 9 of 13

4. Experimental Results

4.1. Experiment Setup

Fast-CNT is implemented in Tensorflow and coded in Python, running on an Intel i7 CPU (2.8

GHz). Computing performance is improved up to 11 fps over the 5 fps in the original CNT. For a fair

comparison, the benchmark dataset [17] which includes 50 fully-annotated videos is used, and the

experiment setup is mostly the same as the CNT, namely the images of each video are converted to

grayscale, and the state of the target in the first frame given by the ground truth, the image rescaled

to 32 × 32 (by INTER_AREA-resampling in OpenCV), and the receptive field size set to 6 × 6 (i.e., the

filter of w × w in the Simple layer of Figure 1). For simplicity and without loss of generality, the target

state parameters (σx, σy, σs) are assumed independent and modeled by three scalar Gaussian

distributions, and hence the particle states updated can be formulated as Brownian motion [18], and

the standard deviations of the candidate particle state: σx = 4, σy = 4, and σs = 0.01. However, unlike

CNT, the number of filters is decided by HKC, and N = 200 particles are used.

4.2. Evaluation Metrics

For quantitative evaluations, the results of one-pass evaluation (OPE) are presented [17],

wherein the precision plot shows the percentage of all frames whose estimated location is within the

threshold distance of the ground truth, the threshold is set 0~50. Meanwhile, the success plot is based

on the bounding box overlap score, given the tracked bounding box bt and the ground truth bounding

box 𝑏𝑔 , the overlap score is defined as 𝑆 =
|𝑏𝑡∩𝑏𝑔|

|𝑏𝑡∪𝑏𝑔|
. The success plot shows the ratio of successful

frames when the threshold is varied from 0 to 1. In order to show the effectiveness of Fast-CNT, we

present various experiments using different values of k in combination with other constraints.

Specifically, seven parametric combinations were tested using the Skater video of the benchmark

dataset, each parametric combination representing a combination of a k value with or without SURF

screening and background filters. The results shown in Figure 6 are obtained by averaging over 10

different runs of each parametric combination.

Figure 6. The success and precision plots of OPE for the top 6 experimental trackers.

Three different values (1, 20, and 100) of k were tested while setting other parameters at fixed

values. The results are shown in Figure 6, and some observations are given below. First, when k = 1,

as the complex layer contains only a single feature map, resulting in a failure tracking. Second, when

k = 20 and 100, the performances are much better, indicating the resulting feature representation are

sufficient enough. In short, the value of k cannot be too small to ensure that the features are

sufficiently complex for tracking tasks. On the other hand, the value of k needs not to be excessively

large, as it will incur higher computational load. In Fast-CNT, HKC is employed to automatically

generate a proper k value based on input target, the cluster centroids are determined from image

patches, and the proper value of k is found to be in the range of 3 to 8 for the benchmark dataset used.

Figure 6 clearly shows that the SURF screening can greatly increase the success rate and

precision rate of the tracking algorithm, although it will inevitably cost some computational load,

and incurs tracking errors in some special circumstances (e.g., shadows). Unlike in CNT, background

Figure 6. The success and precision plots of OPE for the top 6 experimental trackers.

Three different values (1, 20, and 100) of k were tested while setting other parameters at fixed
values. The results are shown in Figure 6, and some observations are given below. First, when k = 1,
as the complex layer contains only a single feature map, resulting in a failure tracking. Second, when k
= 20 and 100, the performances are much better, indicating the resulting feature representation are
sufficient enough. In short, the value of k cannot be too small to ensure that the features are sufficiently
complex for tracking tasks. On the other hand, the value of k needs not to be excessively large, as it will
incur higher computational load. In Fast-CNT, HKC is employed to automatically generate a proper k
value based on input target, the cluster centroids are determined from image patches, and the proper
value of k is found to be in the range of 3 to 8 for the benchmark dataset used.

Sensors 2018, 18, 2405 10 of 13

Figure 6 clearly shows that the SURF screening can greatly increase the success rate and precision
rate of the tracking algorithm, although it will inevitably cost some computational load, and incurs
tracking errors in some special circumstances (e.g., shadows). Unlike in CNT, background filters are
not used in this work in updating the target filters at different frames. In Figure 6, the success rate and
the precision rate of background filters are nearly the same for the first three parametric combinations.
However, the computation performance can reach 7.11 fps without using the background filters (3rd
combination). In contrast, the original CNT can only deliver 1.92 fps.

4.3. Underwater Tracking

Underwater robotics, marine science, and underwater exploration have become more active in
recent years. Naturally, there is a strong need to apply computer vision-based algorithms to these
works, however, most of the tracking algorithms and data set are used in onshore or land-based
applications, and relatively few of them tackles the task of underwater video tracking. Difficulties lie in
that many underwater operations require clear and easily-recognizable underwater images, yet given
the illumination attenuation, uneven illumination results in lower and unbalanced image brightness.
Moreover, there is serious back-scattering noise due to scattering and absorption, and underwater
images often suffer from poor quality, such as low contrast, blur, and so on. Thus, it would be
interesting to see the performance of Fast-CNT in dealing with undersea video images.

As the global population grows, the per capita consumption of aquatic products has been rapidly
increasing [19]. In order to meet the market demand for water products, the demand for fishery
production in many countries has been largely replaced by fish farming (i.e., aquaculture). To ensure
a good harvest, it is important to constantly monitor the health state of farmed fish in the cage.
Traditional methods rely on regular manual observations to confirm whether the fish are in the healthy
or contagious state, they require a great deal of subjective experience and thus are inefficient and costly.
We believe if the fish in the cage can be monitored through IoT technology, e.g., by using various sensors
such as underwater camera [20], velocimeter [21], temperature sensor, etc. [22], substantial economic
benefits can be obtained by collecting huge amount of long-term breeding and environment data and
subjecting them to Big data analysis. Recently, our research team has set forth an AI initiative, which is
funded by MOST under the title: Applying artificial intelligence (AI) techniques to implement a Practical
Smart Cage Aquaculture Management System, the system architecture of which is shown in Figure 7.
Bearing this in mind, the tracking algorithm of this work has been applied to the tracking of the fish
farmed in the cage for identifying their health status by analyzing their behavior or swimming gestures.

Sensors 2018, 18, x FOR PEER REVIEW 10 of 13

filters are not used in this work in updating the target filters at different frames. In Figure 6, the

success rate and the precision rate of background filters are nearly the same for the first three

parametric combinations. However, the computation performance can reach 7.11 fps without using

the background filters (3rd combination). In contrast, the original CNT can only deliver 1.92 fps.

4.3. Underwater Tracking

Underwater robotics, marine science, and underwater exploration have become more active in

recent years. Naturally, there is a strong need to apply computer vision-based algorithms to these

works, however, most of the tracking algorithms and data set are used in onshore or land-based

applications, and relatively few of them tackles the task of underwater video tracking. Difficulties lie

in that many underwater operations require clear and easily-recognizable underwater images, yet

given the illumination attenuation, uneven illumination results in lower and unbalanced image

brightness. Moreover, there is serious back-scattering noise due to scattering and absorption, and

underwater images often suffer from poor quality, such as low contrast, blur, and so on. Thus, it

would be interesting to see the performance of Fast-CNT in dealing with undersea video images.
As the global population grows, the per capita consumption of aquatic products has been rapidly

increasing [19]. In order to meet the market demand for water products, the demand for fishery

production in many countries has been largely replaced by fish farming (i.e., aquaculture). To ensure

a good harvest, it is important to constantly monitor the health state of farmed fish in the cage.

Traditional methods rely on regular manual observations to confirm whether the fish are in the

healthy or contagious state, they require a great deal of subjective experience and thus are inefficient

and costly. We believe if the fish in the cage can be monitored through IoT technology, e.g., by using

various sensors such as underwater camera [20], velocimeter [21], temperature sensor, etc. [22],

substantial economic benefits can be obtained by collecting huge amount of long-term breeding and

environment data and subjecting them to Big data analysis. Recently, our research team has set forth

an AI initiative, which is funded by MOST under the title: Applying artificial intelligence (AI) techniques

to implement a Practical Smart Cage Aquaculture Management System, the system architecture of which

is shown in Figure 7. Bearing this in mind, the tracking algorithm of this work has been applied to

the tracking of the fish farmed in the cage for identifying their health status by analyzing their

behavior or swimming gestures.

Figure 7. A practical Smart Cage Aquaculture Management System (SCAMS).
Figure 7. A practical Smart Cage Aquaculture Management System (SCAMS).

Sensors 2018, 18, 2405 11 of 13

We have tested many underwater videos shot from culture cages, Figure 8 shows an illustrative
exemplar tracking result, wherein the target fish is automatically determined using the detection
results of the Faster R-CNN [23], which is a deep learning approach effective for object detection.
Specifically, a fish detected with the highest confidence is picked as the target fish for tracking, in
the case of Figure 8, the fish with 100% confidence and swimming from right to left (i.e., ID1 fish) is
picked as the target. We see that although both Fast-CNT and the original CNT can track the target,
their averaged computation performances differ quite a lot: 17.9 fps for Fast-CNT and 1.8 fps for
the original CNT. Herein, the much better performance of Fast-CNT over the original CNT can be
explained as follows: in [3], rather conservative parameters of N = 600 particles and k value = 100 are
used in conjunction with Background Filters, these settings altogether greatly add the computational
burdens. In contrast, Fast-CNT uses N = 200 particles, k value = 8 and abstaining from the use of
Background Filters. Note that SURF screening in both trackers are disabled as it is found that very few
salient feature points can be extracted for sleek objects such as fish. Experimental parameters settings
for the two trackers are shown in Table 1.

Sensors 2018, 18, x FOR PEER REVIEW 11 of 13

We have tested many underwater videos shot from culture cages, Figure 8 shows an illustrative

exemplar tracking result, wherein the target fish is automatically determined using the detection

results of the Faster R-CNN [23], which is a deep learning approach effective for object detection.

Specifically, a fish detected with the highest confidence is picked as the target fish for tracking, in the

case of Figure 8, the fish with 100% confidence and swimming from right to left (i.e., ID1 fish) is

picked as the target. We see that although both Fast-CNT and the original CNT can track the target,

their averaged computation performances differ quite a lot: 17.9 fps for Fast-CNT and 1.8 fps for the

original CNT. Herein, the much better performance of Fast-CNT over the original CNT can be

explained as follows: in [3], rather conservative parameters of N = 600 particles and k value = 100 are

used in conjunction with Background Filters, these settings altogether greatly add the computational

burdens. In contrast, Fast-CNT uses N = 200 particles, k value = 8 and abstaining from the use of

Background Filters. Note that SURF screening in both trackers are disabled as it is found that very

few salient feature points can be extracted for sleek objects such as fish. Experimental parameters

settings for the two trackers are shown in Table 1.

Figure 8. Undersea fish tracking results of Fast-CNT and CNT.

Table 1. Experimental parameters of Fast-CNT and CNT used in Figure 8.

 Fast-CNT CNT

CPU Intel i7 7700K 4.20 GHz

Video resolution 1280 × 960 Downsized to 320 × 240

Number of Particles 200 600

k value 8 100

SURF Screening Disabled Disabled

Background Filters Disabled Enabled

5. Conclusions

We have successfully improved CNT [3] by modifying both its architecture and implementation,

and we found that the k-means algorithm in effect serves as an effective dictionary learning scheme

for extracting image features in CNT. Furthermore, we have shown that, in terms of architecture,

background filters are in effect not necessary in CNT, thus this architectural portion is literally

eliminated in Fast-CNT to save computation time without affecting performance. Last but not the

least, in order to solve the drift problem, the number of SURF feature points covered by each

bounding boxes is checked to determine which bounding boxes are qualified as candidates.

Experimental results using benchmark database video and undersea videos show that Fast-CNT

outperforms CNT by 2~10 times in terms of computational efficiency. For future works, because both

Fast-CNT and CNT are based on the incremental learning approach of [18], in which the target state

parameters are three independent scalar Gaussian distributions and formulated as Brownian motion,

and yet no elaborated analysis on how it affects the tracking accuracy as compared to the image

representation, we believe this constitutes a worthy research direction.

Figure 8. Undersea fish tracking results of Fast-CNT and CNT.

Table 1. Experimental parameters of Fast-CNT and CNT used in Figure 8.

Fast-CNT CNT

CPU Intel i7 7700K 4.20 GHz
Video resolution 1280 × 960 Downsized to 320 × 240

Number of Particles 200 600
k value 8 100

SURF Screening Disabled Disabled
Background Filters Disabled Enabled

5. Conclusions

We have successfully improved CNT [3] by modifying both its architecture and implementation,
and we found that the k-means algorithm in effect serves as an effective dictionary learning scheme
for extracting image features in CNT. Furthermore, we have shown that, in terms of architecture,
background filters are in effect not necessary in CNT, thus this architectural portion is literally
eliminated in Fast-CNT to save computation time without affecting performance. Last but not the
least, in order to solve the drift problem, the number of SURF feature points covered by each bounding
boxes is checked to determine which bounding boxes are qualified as candidates.

Experimental results using benchmark database video and undersea videos show that Fast-CNT
outperforms CNT by 2~10 times in terms of computational efficiency. For future works, because both
Fast-CNT and CNT are based on the incremental learning approach of [18], in which the target state
parameters are three independent scalar Gaussian distributions and formulated as Brownian motion,
and yet no elaborated analysis on how it affects the tracking accuracy as compared to the image
representation, we believe this constitutes a worthy research direction.

Sensors 2018, 18, 2405 12 of 13

Author Contributions: Conceptualization, C.-Y.T., Y.-P.K. and R.-J.H.; Methodology, C.-Y.T., Y.-P.K. and R.-J.H.;
Software, C.-Y.T., Y.-P.K., R.-J.H., C.C.L. and Z.-W.T.; Validation, R.-J.H., C.-Y.T., Y.-P.K. and J.-H.W.; Formal
Analysis, R.-J.H., C.-Y.T., Y.-P.K. and J.-H.W.; Investigation, C.-Y.T., Y.-P.K., R.-J.H. and Y.-C.L.; Resources, C.-Y.T.,
Y.-P.K., C.C.L., Z.-W.T., J.-H.W. and Y.-C.L.; Data Curation, R.-J.H., C.-Y.T. and Y.-P.K.; Writing-Original Draft
Preparation, C.-Y.T., and Y.-P.K.; Writing-Review & Editing, R.-J.H., Y.-C.L. and J.-H.W.; Visualization, R.-J.H.,
C.-Y.T., Y.-P.K. and Y.-C.L.; Supervision, J.-H.W. and C.-C.C.; Project Administration, J.-H.W. and C.-C.C.; Funding
Acquisition, J.-H.W. and C.-C.C.

Funding: This research was funded by [Ministry of Science and Technology, Taiwan] grant number [MOST
107-2634-F-019-001].

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Nam, H.; Han, B. Learning multi-domain convolutional neural networks for visual tracking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
26 June–1 July 2016; pp. 4293–4302.

2. Wang, L.; Ouyang, W.; Wang, X.; Lu, H. Stct: Sequentially training convolutional networks for visual tracking.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
26 June–1 July 2016; pp. 1373–1381.

3. Zhang, K.; Liu, Q.; Wu, Y.; Yang, M.H. Robust visual tracking via convolutional networks without training.
IEEE Trans. Image Process. 2016, 25, 1779–1792. [CrossRef] [PubMed]

4. Bay, H.; Ess, A.; Tuytelaars, T.; Gool, L.V. Speeded-up robust features (SURF). Comput. Vis. Image Understand.
2008, 110, 346–359. [CrossRef]

5. Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [CrossRef]

6. Gao, J.; Ling, H.; Hu, W.; Xing, J. Transfer learning based visual tracking with Gaussian processes
regression. In Proceedings of the 13th European Conference Computer Vision, Zurich, Switzerland,
6–12 September 2014; pp. 188–203.

7. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters.
IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 583–596. [CrossRef] [PubMed]

8. Dinh, T.B.; Vo, N.; Medioni, G. Context tracker: Exploring supporters and distracters in unconstrained
environments. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Colorado, CO, USA, 20–25 June 2011; pp. 1177–1184.

9. Hare, S.; Saffari, A.; Torr, P.H.S. Struck: Structured output tracking with kernels. In Proceedings of the IEEE
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 263–270.

10. Kwon, J.; Lee, K.M. Tracking by sampling trackers. In Proceedings of the IEEE International Conference on
Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1195–1202.

11. Harry, G. Hierarchical K-Means for Unsupervised Learning. Available online: http://www.andrew.cmu.
edu/user/hgifford/projects/k_means.pdf (accessed on 20 July 2018).

12. Elad, M.; Figueiredo, M.A.T.; Ma, Y. On the role of sparse and redundant representations in image processing.
Proc. IEEE 2010, 98, 972–982. [CrossRef]

13. Raina, R.; Battle, A.; Lee, H.; Packer, B.; Ng, A.Y. Self-taught learning: Transfer learning from unlabeled
data. In Proceedings of the 24th International Conference on Machine Learning, Corvallis, OR, USA,
20–24 June 2007; pp. 759–766.

14. Kang, Z.; Landry, S.J. An eye movement analysis algorithm for a multielement target tracking task: Maximum
transition-based agglomerative hierarchical clustering. IEEE Trans. Hum.-Mach. Syst. 2015, 45, 13–24.
[CrossRef]

15. Shen, J.; Hao, X.; Liang, Z.; Liu, Y.; Wang, W.; Shao, L. Real-Time Superpixel Segmentation by DBSCAN
Clustering Algorithm. IEEE Trans. Image Proc. 2016, 25, 5933–5942. [CrossRef] [PubMed]

16. Salazar, A.M.; de Diego, I.M.; Conde, C.; Pardos, E.C. Evaluation of Keypoint Descriptors Applied in the
Pedestrian Detection in Low Quality Images. IEEE Lat. Am. Trans. 2016, 14, 1401–1407. [CrossRef]

17. Wu, Y.; Lim, J.; Yang, M.H. Online object tracking: A benchmark. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Portland, OR, USA, 25–27 June 2013; pp. 2411–2418.

http://dx.doi.org/10.1109/TIP.2016.2531283
http://www.ncbi.nlm.nih.gov/pubmed/26890870
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1109/78.978374
http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://www.ncbi.nlm.nih.gov/pubmed/26353263
http://www.andrew.cmu.edu/user/hgifford/projects/k_means.pdf
http://www.andrew.cmu.edu/user/hgifford/projects/k_means.pdf
http://dx.doi.org/10.1109/JPROC.2009.2037655
http://dx.doi.org/10.1109/THMS.2014.2363121
http://dx.doi.org/10.1109/TIP.2016.2616302
http://www.ncbi.nlm.nih.gov/pubmed/27740485
http://dx.doi.org/10.1109/TLA.2016.7459627

Sensors 2018, 18, 2405 13 of 13

18. Ross, D.A.; Lim, J.; Lin, R.-S.; Yang, M.-H. Incremental learning for robust visual tracking. Int. J. Comput. Vis.
2008, 77, 125–141. [CrossRef]

19. Yiming, X.; Shigeru, T.; Fengjun, D. Fundamental study on ecosystem in East China Sea by an integrated
model of low and high trophic levels. In Proceedings of the OCEANS 2016—Shanghai, Shanghai, China,
10–13 April 2016; pp. 1–5.

20. Shortis, M. Calibration Techniques for Accurate Measurements by Underwater Camera Systems. Sensors
2015, 15, 30810–30826. [CrossRef] [PubMed]

21. Morita, N.; Nogami, H.; Higurashi, E.; Sawada, R. Grasping Force Control for a Robotic Hand by Slip
Detection Using Developed Micro Laser Doppler Velocimeter. Sensors 2018, 18, 326. [CrossRef] [PubMed]

22. Duraibabu, D.B.; Leen, G.; Toal, D.; Newe, T.; Lewis, E.; Dooly, G. Underwater Depth and Temperature
Sensing Based on Fiber Optic Technology for Marine and Fresh Water Applications. Sensors 2017, 17, 1228.
[CrossRef] [PubMed]

23. Shaoqing, R.; Kaiming, H.; Ross, G.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 6, 1137–1149.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11263-007-0075-7
http://dx.doi.org/10.3390/s151229831
http://www.ncbi.nlm.nih.gov/pubmed/26690172
http://dx.doi.org/10.3390/s18020326
http://www.ncbi.nlm.nih.gov/pubmed/29360799
http://dx.doi.org/10.3390/s17061228
http://www.ncbi.nlm.nih.gov/pubmed/28555006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Convolutional Network Based Tracker
	Image Representation
	Preprocessing
	Simple Layer
	Complex Layer
	Model Update

	Tracking Process

	Methodology
	Adaptive k Value
	SURF Screening
	Abstaining Use of Background Filters

	Experimental Results
	Experiment Setup
	Evaluation Metrics
	Underwater Tracking

	Conclusions
	References

