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Abstract: This paper presents a system that combines computer vision and surface electromyography
techniques to perform grasping tasks with a robotic hand. In order to achieve a reliable grasping
action, the vision-driven system is used to compute pre-grasping poses of the robotic system based on
the analysis of tridimensional object features. Then, the human operator can correct the pre-grasping
pose of the robot using surface electromyographic signals from the forearm during wrist flexion and
extension. Weak wrist flexions and extensions allow a fine adjustment of the robotic system to grasp
the object and finally, when the operator considers that the grasping position is optimal, a strong
flexion is performed to initiate the grasping of the object. The system has been tested with several
subjects to check its performance showing a grasping accuracy of around 95% of the attempted
grasps which increases in more than a 13% the grasping accuracy of previous experiments in which
electromyographic control was not implemented.
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1. Introduction

Nowadays, robots can perform a variety of tasks to help human operators in their work [1]. The use
of robots to collaborate with people with disabilities in industrial environments is a growing sector.
For instance, several studies analyse the execution of manufacturing tasks by disabled people [2,3].
In this line, robotic assistive technologies have been successfully introduced following two different
approaches. They are used to assist humans who have motor disabilities to perform daily activities.
Typical examples are prosthetics devices and exoskeletons for motor substitution, or smart homes where
household tasks are performed and controlled by automatic systems. These technologies also provide
novel rehabilitation therapies to recover motor function and reduce further complications. Essentially,
assistive technologies seek to improve the well-being of humans with disabilities [4].

The inclusion of assistive robotics in industrial applications contributes to the improvement of
occupational health of human operators. Tele-operation systems increase the degree of assistance
in dangerous manipulation tasks. Their goal is to make a system capable of mimicking and scaling
the movements of a human operator in the control of a manipulator avoiding the risks of handling
dangerous products or carrying out dangerous actions. Before including assistive technologies in
industrial tasks, several teleoperation aspects must be considered. One of them is the feedback to the
user, therefore the use of haptic interfaces [5] is critical to obtain a more natural feeling of the robot
operation. Another important aspect is the additional assistance given to the user in the performance of
the assigned task; focused, for instance, on the possibility of providing an amputee with the capability
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of performing bimanual tasks [6]. The need of interacting with the environment requires of vision
systems to recognise the working place and provide a proper manipulation of the products [7].

A good option to achieve a proper tele-operated robotic manipulation is to implement
solutions based on techniques that provide reliable control signals from the human operator. Surface
electromyography (sEMG) allows a system to record the electrical activity of muscle contractions in
a non-invasive way [8]. The use of this information to control external devices is called myocontrol.
Myocontrol techniques have been usually developed to obtain a reliable actuation of assistive devices
in the field of prosthetics. This actuation ranges from simple binary control commands to complex
multidimensional control [9,10].

Complex techniques have been applied to multi-finger prosthetic devices and robotic hands.
However, myocontrol is generally limited to a few hand grips and still unreliable in realistic
environments [11]. To avoid these limitations, several approaches have been recently proposed.
One option is to provide a proper sensory feedback to the subject to close the control loop [12,13].
However, this option is still limited to the low accuracy in the classification of complex biomechanical
tasks. Another alternative is the introduction of multimodal control of the robotic actuation which
may provide a good solution to the unreliability of multidimensional control. In this case, another
control method, such as gaze-tracking or electrooculography, is combined with myocontrol to increase
reliability and speed [14,15]. Its main disadvantage is the increased workload on the user as both
interaction methods must be controlled simultaneously.

To solve the problems arisen from the previously described solutions, we propose the use of
a shared control of the end effector of the robot arm. To achieve this, complex positioning and grasping
tasks are performed by an alternative system and sEMG processing provides high-level commands.
In this case, myocontrol will be combined with a vision-based grasping system.

Grasping is one of the most significant tasks which is performed by humans in everyday manipulation
processes. In recent works, robots have been provided with the ability to grasp objects [16,17]. It is
often possible to see robots autonomously grasping objects in many industrial applications in which the
environment is not dynamic and where both geometry and pose of objects are known. Therefore, the
proper pose of the robotic hand or gripper to grasp the object is computed only once. This process is
repeated whenever it is needed. More recently, robots are beginning to be self-sufficient and they are
reaching a great level of autonomy to work without human intervention in unstructured scenarios or with
dynamics in which the kind of objects or their poses are unknown, for example in industrial applications
as in [18] and in storage and logistic applications [19].

Many grasp methods have been made possible by the advances in visual perception techniques
of the environment, both 2D [20] and 3D [21]. In general, both techniques combine computer vision
algorithms and traditional machine learning, the first for the extraction of object features of the scene
and the second for the recognition of the objects by comparison and classification of extracted features
with features from a dataset of known objects. Thereby, visual perception has allowed robots to have
the ability of grasping in a similar way to humans, though under certain conditions, making use of
object recognition algorithms [22–24] and pose estimation algorithms [25,26]. Recently, a significant
number of new approaches have been proposed to localize robotic grasp configurations directly from
sensor data without estimating object pose using training databases of real objects [27] or synthetic
objects (CAD models) as in [28].

However, currently it is still not possible to compare the ability of robots and humans to grasp
objects in a generic way, for each and every situation. The main drawback of applying visual perception
techniques to accomplish a completely autonomous grasping is the great variability of the kind of
objects (geometric shape, pose and visual appearance such as color or texture) that can be present in
an environment. This demands a large datasets of training data to implement a robust algorithm to
avoid ambiguity in both recognition and location processes of the objects in the scene. The proposed
system may solve both the more relevant issues of grasping and the complexity of multidimensional
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myoelectric control, by combining the visual-driven system with simple electromyographic analysis,
based on ON/OFF sEMG commands.

2. System Architecture

2.1. Vision-Guided Robotic Grasping System

The system architecture is composed of a PA-10 industrial robot arm (Mitsubishi, Tokyo, Japan).
This robot has seven degrees of freedom (DoF). The robot arm is controlled as a slave in a client-server
software architecture managed from a Robot Operating System (ROS) framework. The PA-10 is
connected to a server module installed on a computer acting as the PA-10 controller, and both elements
are communicated via the Attached Resource Computer NETwork (ARCNET) protocol. The robot
is always waiting for commands generated from the orders given by the computer vision algorithm
running in the slave module. This module is also responsible for the planning and simulation of
trajectories computed from the information obtained from the vision algorithm and from the data
supplied by the sEMG system. In addition, the robot arm has an Allegro hand (Wonik Robotics,
Seoul, Korea) attached to its end effector with a payload of 5 kg. It is a low cost and highly adaptive
multi-finger robotic hand composed of 4 fingers and 16 independent torque-controlled joints, 4 for
each finger. The Allegro hand is connected to the slave module via the Controller Area Network (CAN)
protocol. The implementation of the system, with its different components, can be seen in Figure 1.

Additionally, the architecture of the system includes a RealSense Camera SR300 (Intel, Santa
Clara, CA, USA). It is a depth-sensing camera that uses coded-light methodology for close-range depth
perception. With this sensor, the system can acquire 30 colour frames per second with 1080 p resolution.
SR300 is able to capture depth in a scenario from a distance between 0.2 m and 1.5 m. It is ideal to
obtain shapes of real-world objects using point clouds.
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Figure 1. Pre-grasping pose of the robotic system computed by the vision algorithm. (a) Real robotic
system in which the grasps are executed. (b) Simulation system where the movement is planned and
the robotic hand pose is evaluated.

2.2. Electromyography -Based Movement Control System for Robotic Grasping

After positioning the robot hand in front of the object, subjects perform a fine control of the
grasping action by reorienting the end effector left or right and then provide the control output for
the final approach to the object and subsequent robot hand closing. To obtain these control outputs
surface electromyography has been recorded from the forearm during the performance of wrist flexion
and extension.

To record surface electromyography (sEMG) signals a Mini DTS 4-channel EMG wireless system
(Noraxon, Scottsdale, Arizona, USA) has been used (Figure 2). Two sEMG bipolar channels have been
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located over the flexor digitorum superficialis (FDS) and the extensor carpi radialis longus (ECR) of the
forearm. Signals have been acquired with a sample frequency of 1500 Hz, then low-pass filtered below
500 Hz, full-wave rectified and, finally, smoothed with a mean filter of 50 ms (Figure 3).

Three different states have been classified from the filtered sEMG signal corresponding to a weak
wrist flexion, a weak wrist extension and a strong wrist flexion. To classify these states, two thresholds have
been defined to identify weak contractions (flexion on the FDS and extension on the ECR). Additionally,
a higher threshold has been defined for strong contractions of the FDS (Figure 3). A ROS message is sent
with the decoded output commands to the robotic system. This classification is performed every 0.5 s.

Weak flexion and extension is used to adjust the end effector in the z-axis (direction of the hand)
with an initial step of 5 cm. These corrections can be performed through several control commands.
When the robot end effector changes direction, the initial step is reduced to a 50%, which allows a fine
adjustment of the position of the robot end effector avoiding a loop between end locations. Finally,
when the operator thinks that the robot hand is properly positioned a strong flexion is used to perform
the final approach to the object and the subsequent grip action.
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3. Proposed Method for Grasping

The proposed method consists of two phases. First, the vision algorithm detects the presence of
unknown objects on the scene, segments the scenes to obtain clusters of each object (each cluster is
a point cloud) and then, it computes grasping points on the surface of each of the objects (Figure 4).
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The method is flexible to obtain grasping points of objects even changing the scenario providing that
objects are located on a table or flat surface. Once the vision algorithm provides the robot with the
optimal grasping points of the object, the robot plans the trajectory in order to position the robot hand
to grasp the object. Occasionally, the grasping of the object is not optimal. For this reason, the method
adds a second phase which is used to plan fine hand robot-object interactions. In this step, EMG-based
teleoperation of the robot hand-arm is performed to accomplish a successful and stable grasp without
slipping and avoiding damage to the object.

3.1. Grasping Points and Pose Estimation

The algorithm calculates pairs of contact points for unknown objects given a single point cloud
captured from a RGBD sensor with eye-to-hand configuration. Firstly, the point cloud is segmented in
order to detect the objects present in the scene. Then, for each detected object, the algorithm evaluates
pairs of contact points that fulfil a set of geometric conditions. Basically, it approximates the main
axis of the object using the major vector obtained by running a Principal Component Analysis (PCA)
extraction. Then, it calculates the centroid in the point cloud. With this information, it is possible to
find a cutting plane perpendicular to the main axis of the object through its centroid. The candidate
contact areas are at the opposite edges of the surface of the object that are close to the cutting plane.
A standard grasping configuration consists of one point from each of these two areas. Figure 4 shows
all these steps graphically.

These candidate areas, in which the robot hand can be positioned, contain multiple potential
points so the vision algorithm evaluates a great variety of grasping configurations for the robot hand,
using a custom metric that ranks their feasibility. Thereby, the best-ranked pair of contact points
is selected, since it is likely to be the most stable grasp, given the view conditions and the used
robotic hand. The algorithm takes into account four aspects: the distance of the contact points to
the cutting plane, the geometric curvature at the contact points, the antipodal configurations and the
perpendicularity to the contact points.
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The first one, distance of the contact points to the cutting plane, is important because it is assumed
that the grasping of the object is more stable as the robotic hand grasps closer to the centroid of the object,
which is an approximation of its centre of mass. This way, the inertial movements caused throughout the
manipulation process of the object are more controllable. The second aspect, the curvature, is considered
to avoid the grasps of unstable parts on the object surface. The goal is to place the fingertips on
planar surfaces instead of highly curved areas that are prone to be more unstable. Grasping objects
on non-planar areas can cause a slip and fall of a grasped object when it is being manipulated, for
example, if the robot arm executes a lifting movement. Regarding to the third aspect, contact points
should be located on places where the robotic fingers can apply opposite and collinear forces (antipodal
configuration). Finally, it is desirable to have contact points that are connected by a line perpendicular to
the main axis of the object. That is, the contact points are equally distanced from the cutting plane.

The aforementioned aspects are used to define a quality metric to evaluate the candidate contact
point and to propose the best grasp points to carry out a successful grasp of the object on the scene.
Accordingly, this quality metric ranks with greater values the grasping configurations that place the
robotic hand with its palm point towards the object, its fingertips perpendicular to the axis of the
object, parallel to the cutting plane and close to the centroid of the object. Notice that this operation is
performed for every detected object. Consequently, the final pose of the robot hand is calculated using
the best ranked grasping configuration and the approximated main axis of the object.

Our vision algorithm only computes pairs of contact points. This is assumed to avoid the method
being dependent on the type of robotic hand mounted at the end of the robotic arm. Two points are
the minimum required for a simple robotic gripper but also, any multi-finger robotic hand can adapt
its grasping configuration to two points on the object surface. In the experiments, we use an Allegro
hand with four fingers, one of which acts as the thumb. In practice, it is assumed that the grasps will
be done with three fingers. This number has been limited to three because the Allegro hand size is
often bigger than the object size which will be grasped.

In order to perform three-finger grasps, the algorithm takes into account the following criterion:
one of the contact points corresponds to the place the thumb must reach during a grasp, while the other
contact point remains between the first two fingers (index and middle). This means that the first and
second finger wrap around the second contact point. In this way, the grasp adapts its configuration
to only two contact points even though the hand uses three fingers. In addition, the robotic hand is
oriented perpendicular to the axis of the object, meaning that it adapts to the pose of the object.

When the human operator has selected the desired object that will be grasped, the robotic system
guided by the vision algorithm performs the following steps to reach it:

1. First, the robotic hand is moved to a point 10 cm away from the object. This is a pre-grasping
position which is used to facilitate the planning of the following steps. The pre-grasping position
is computed, from location (position and orientation) of contact points on the object surface,
by the vision algorithm previously described.

2. Second, the robotic hand is moved forward facing the object with its palm and the fingers opened.
In this step the hand reaches the point in which, after closing, it would place the fingertips on the
calculated contact points.

The correctness of this position depends on the calibration of the camera position with regards to
the world’s origin as well as lighting conditions and reflectance properties of the objects in the scene.
Owing to this, the proposed method performs the correction of the robot hand using the sEMG signals.
But also, sEMG can be used to accomplish a proper grasp of objects in a complex manipulation.

3.2. Collaborative System with Both Visual and Electromyography Data

The proposed solution has been implemented using the ROS in order to develop nodes in charge
of different responsibilities but keeping a communication framework among them. One node has been
created, called pointcloud_listener, where point clouds are read and processed to perform the calculus
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of the grasp contacts. This node publishes a custom ROS message called GraspConfiguration where the
point clouds of the objects and the calculated grasp contacts are stored.

Another node, called allegro_control_grasp, subscribes to this topic and reads the published contact
points to generate a grasp pose for the robotic gripper. Then, it proceeds to plan a trajectory following
the steps listed in the previous section. MoveIt! [29] has been used to perform this trajectory planning.
Once it reaches the grasping position, the EMG control starts. To do so, it subscribes to a topic
called/emgsensor/move where the correcting movements are published.

These corrections are published by a third node called emg_reader, which processes the sEMG
signals in order to provide messages of type geometry_msgs/Quaternion. This type of ROS message
allows us to describe the direction of movement for the arm that the operator wants to perform in
order to correct the position of the robotic gripper. Thus, using one of the axis of the Quaternion,
we can specify in which axis we want to move the gripper. The w term is set to 1 when we detect the
grasping pattern in the EMG signal so the allegro_control_grasp node closes the gripper and continues
to lift and carry the object.

It is important to note that this message is constantly published by the emg_reader node but
the allegro_control_grasp only reads them after performing a correction. This means that messages
published during the physical movement of the robot are ignored and, as soon as it stops, the control
returns to wait for a new message in the topic. Figure 5 shows a scheme of the nodes and their
interactions through ROS.
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4. Experiments and Discussion

4.1. Test Design

Six subjects (age 24.5 ± 6.2 years old, four male and two female) without previous experience
on myoelectric control participated in the experimental tests. First, subjects were asked to perform
several wrist flexion and extensions at different force levels and thresholds were visually chosen from
the processed sEMG signals of the FDS and ECR. After selecting the proper thresholds, subjects were
asked to freely perform wrist contractions and the classification output was shown to them until they
felt comfortable with the myoelectric setup.

The experimental tests were divided into three sets of grasping activities, each one for a different
positioning of the object. The object, a cylindrical plastic can (23 cm height, 8 cm diameter), was
placed vertically (position 1), horizontally (position 2) and in a diagonal orientation (position 3). Each
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grasping activity was performed five times for each position and subject. Subject 5 did not perform the
last set (position 3) of grasping tasks due to fatigue and technical problems.

During the grasping activity, the visual-driven robot arm positioned the robotic hand facing the
side of the object and then, subjects were asked to readjust the z-axis (weak wrist extension or flexion)
and then grasp the object voluntarily with a strong wrist flexion. The accuracy of classifying sEMG
signals was measured by counting correct sEMG commands (classification success), no detections
(if muscle contraction was present but the control command was not generated) and errors in
the classification output. No detections were manually counted from the visualization of correct
contractions that did not reach the selected thresholds. Errors were counted as wrong generated
commands. Grasping accuracy was measured by counting correct graspings of the object, i.e., if the
object did not flip or fall from the robotic hand.

4.2. Results and Evaluation

Tables 1–3 show the results obtained on sEMG performance (classification success, no detection,
classification error) and grasping performance in terms of accuracy (ACC), i.e., percentage of correct
grasps. sEMG accuracy was obtained by dividing successful classifications by performed contractions.

Table 1. sEMG performance and grasping accuracy for object position 1.

Subject Success Error No Detection sEMG ACC Grasping ACC

A01 10 0 0 100% 100%
A02 10 0 1 91% 100%
A03 10 1 2 77% 100%
A04 8 1 0 89% 100%
A05 10 0 0 100% 80%
A06 6 2 1 67% 80%

Average 9.00 0.67 0.67 87.23% 93.33%
Standard deviation 1.67 0.82 0.82 13.20% 10.33%

Table 2. sEMG performance and grasping accuracy for object position 2.

Subject Success Error No Detection sEMG ACC Grasping ACC

A01 8 1 0 89% 100%
A02 10 1 1 83% 100%
A03 10 0 1 91% 100%
A04 8 1 0 89% 100%
A05 10 1 3 71% 100%
A06 10 0 2 83% 100%

Average 9.33 0.67 1.17 84.46% 100.00%
Standard deviation 1.03 0.52 1.17 7.12% 0.00%

Table 3. sEMG performance and grasping accuracy for object position 3.

Subject Success Error No Detection sEMG ACC Grasping ACC

A01 10 0 1 91% 80%
A02 10 0 0 100% 100%
A03 10 1 0 91% 100%
A04 10 0 1 91% 100%
A06 8 1 0 89% 80%

Average 9.60 0.40 0.40 92.32% 92.00%
Standard deviation 0.89 0.55 0.55 4.38% 10.95%
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From the results, it can be concluded that both sEMG and grasping accuracy is high. sEMG errors
or no detections do not always affect grasping accuracy as the robot hand is quite well positioned
with the visual-driven system alone. It is interesting to notice that for object position 2 the grasping
is always successful. This is possibly due to the fact that the object is placed horizontally to the
ground and, as it is cylindrical, it sometimes rolls until touching the thumb of the hand when the
hand is repositioned. Nevertheless, grasping for the remaining object positions is also very accurate
(93.33% ± 10.33% for position 1 and 92.00% ± 10.95% for position 3). Regarding sEMG classifications,
errors are fewer than no detections. A possible solution to reduce these errors is a longer training of
the subjects (in these tests, subjects were naïve to myoelectric control systems). Another option could
be the use of a more conservative threshold selection. This will prevent the appearance of errors but
would probably increase the no detections increasing the time taken to perform the grasping.

The results of a previous experiment, in which only the visual-driven system was used, are compared,
in Table 4, to the results of the proposed sEMG-based system. Visual-driven tests are automatic, so there
is no direct implication of a human operator in the positioning of the robot and the following grasping.
The error for experiments without EMG represents two kind of errors. One of them is due to the slipping
of the object during the grasping tasks. Other errors occurred because the hand position is not properly fit
with vision techniques. Both cases are mostly solved when sEMG control is added to the grasping system.
This way, sEMG can be used to correct the hand pose and its grasps, showing an increase in grasping
accuracy close to a 9% using the same cylindrical object. Besides, the accuracy increases up to a 15% if it
is compared with other grasping experiments using other cylindrical objects Consequently, the average
increase in accuracy is around 13.8% considering the 81 trials without sEMG.

Table 4. Comparison of the grasping accuracy for the proposed (visual data + sEMG) compared to the
previous method (only visual data).

Subject Trials Success Error Grasping ACC

with sEMG 85 81 4 95.29%
without sEMG (same object) 15 13 2 86.66%

without sEMG (other cylindrical objects) 66 53 13 80.30%

5. Conclusions

In this paper, we propose a method based on combining both computer vision and sEMG
techniques to allow a human operator to carry out grasping tasks of objects. The proposed method has
been demonstrated and validated by several human operators with different ages and sex. To do this,
our method uses a vision algorithm to estimate grasping points on the surface of the detected object
and moves the robotic hand-arm system from any pose to a pre-grasping pose according to the object.
Then, sEMG signals from arm muscles of human operators are measured, processed and transformed
into movements of the robotic hand-arm system. Thereby, the human operator can readjust the robotic
hand to properly grasp the object. The results show an increase of around a 9% in grasping accuracy
compared to the use of the visual-driven system alone with the same object and around a 15% with
similar cylindrical objects.

The proposed method evaluates a simple ON/OFF myocontrol classification algorithm based on
a threshold selection with a very high reliability and that could be easily translated into an industrial
environment with the introduction of low-cost sEMG devices such as the MYO Thalmic bracelet or
Arduino-based acquisition systems. Additionally, specific expertise is not needed to instrument the
sEMG system, as the location of electrodes on flexor and extensor muscles is straight-forward. This
is a first approach towards bridging the gap between human operators with and without disabilities
in industrial works in which grasping and manipulation tasks are required. In the future, we hope
to integrate more signals to control additional degrees of freedom during the movement to generate
better grasps and more complex manipulation tasks.
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