
sensors

Article

A 3D Relative-Motion Context Constraint-Based MAP
Solution for Multiple-Object Tracking Problems

Zhongli Wang 1,2,*, Litong Fan 1,3 and Baigen Cai 1,2

1 School of Electronic Information and Engineering, Beijing Jiaotong University, Beijing 100044, China;
15120240@bjtu.edu.cn (L.F.); bgcai@bjtu.edu.cn (B.C.)

2 Beijing Engineering Research Center of EMC and GNSS Technology for Rail Transportation,
Beijing 100044, China

3 School of Computer Information Management, Inner Mongolia University of Finance and Economics,
Hohot 010010, China

* Correspondence: zlwang@bjtu.edu.cn; Tel.: +86-10-5168-4361

Received: 7 May 2018; Accepted: 15 July 2018; Published: 20 July 2018
����������
�������

Abstract: Multi-object tracking (MOT), especially by using a moving monocular camera, is a very
challenging task in the field of visual object tracking. To tackle this problem, the traditional
tracking-by-detection-based method is heavily dependent on detection results. Occlusion and
mis-detections will often lead to tracklets or drifting. In this paper, the tasks of MOT and
camera motion estimation are formulated as finding a maximum a posteriori (MAP) solution of
joint probability and synchronously solved in a unified framework. To improve performance,
we incorporate the three-dimensional (3D) relative-motion model into a sequential Bayesian
framework to track multiple objects and the camera’s ego-motion estimation. A 3D relative-motion
model that describes spatial relations among objects is exploited for predicting object states robustly
and recovering objects when occlusion and mis-detections occur. Reversible jump Markov chain
Monte Carlo (RJMCMC) particle filtering is applied to solve the posteriori estimation problem.
Both quantitative and qualitative experiments with benchmark datasets and video collected on
campus were conducted, which confirms that the proposed method is outperformed in many
evaluation metrics.

Keywords: tracking by detection; 3D relative-motion model; sequential Bayesian framework;
multi-object tracking

1. Introduction

Multiple object tracking on a moving platform is an active research topic in computer vision, with
applications such as automotive driver assistance systems, robot navigation and traffic safety. To date,
much progress has been made in this field. Tracking-by-detection is one of the more extensively
investigated methods. It formulates the problem as associating detection results with each other across
video sequences to get the trajectories and identities of the targets. Traditional tracking-by-detection
methods are heavily dependent on detection results, because there are many factors, such as inaccurate
detections, similarity between objects, frequent occlusion, etc., which lead to tracklets or tracking drift,
making multi-object tracking (MOT) still a very challenging task.

To solve the problem, many approaches have been presented during past decades. Some trackers
explore different tracking algorithms to connect the detected targets’ positions and form trajectories.
The tracking algorithms generally use associations or build an affinity model to connect the detected
target, even predicting the positions of targets in the next frame. All existing tracking-by-detection
approaches can be loosely categorized into batch mode [1–7] or online mode [8–22], depending on the
frames used by the tracker.
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Batch mode-based methods utilize the detection of entire sequences for global association
to establish a robust target trajectory, so as to compensate against occlusion and false detections.
The global association is realized by a sliding window or hierarchical association, and often formulated
as a graph optimization problem. It models the tracking problem as a network flow and solves it
either with k-shortest paths in dynamic programing with non-maximum suppression (DP NMS) [1],
as a Generalized Maximum Multi-Clique problem which is solved with Binary Integer Programing in
reference [2], in a conditional random field (as in SegTrack) [3], with Long-term time-sensitive costs
for CRF(LTTSC-CRF) [4], or with discrete-continuous energy minimization [5], to name a few. These
algorithms can correct previous data association errors and recover observations from an occluded
state by using a future frame for association. Deep learning has also been applied to tracking for
robust link detections; however, its application to the problem at hand remains rather sparse. One
example is the jump Markov chain (JMC) method in [6], which uses deep matching to improve affinity
measurement, Siamese-convolutional neural network (CNN) uses a CNN in a Siamese configuration to
estimate the likelihood that two pedestrian detections belong to the same tracked entity [7]. However,
these kinds of methods usually need detections for the entire sequence as input, only then generating
globally optimized tracks by iterative associations. It is difficult to apply batch methods to real-time
applications due to the expensive computation and special input required.

On the other hand, online mode-based methods [8–22] take real-time applications into
consideration. Such methods use information up to the current frame, and link the detections frame
by frame to build trajectories. This method solves the association problem by Bayesian filter or local
data association, such as the Markov chain Monte Carlo (MCMC) filter [8,9], Kalman filter [10,11],
or probability hypothesis density (PHD) filter [12,13]. The tracking problem is formulated as a Bayesian
framework given past and current measurements to find the maximum-a-posteriori (MAP) solution.
However, online methods are prone to producing fragmented tracklets and drifting with occlusion and
detection errors, as it is more difficult to cope with inaccurate detections (such as false positives and
false negatives) compared with the batch methods [14]. Many online methods have been proposed to
solve the track fragments and tracking drift problems due to inaccurate detections. Some attention
shifted towards building robust pairwise similarity costs, mostly based on strong appearance cues.
For example, the discriminative deep appearance learning in reference [14], integral channel feature
appearance models in online integral channel features (oICF) [15], and temporal dynamic appearance
models in Temporal dynamic appearance modeling (TDAM) [16] are proposed to improve detection
affinity, while utilizing markov decision process neural network (MDPNN16) [17], which leverages
Recurrent Neural Networks, in order to encode appearance, motion, and interactions. Comparatively,
single object tracking (SOT) is another field of active research [18], where correlation filters (CFs) may be
the mainstream in this field. Many enhanced methods, such as output constraint transfer for kernelized
correlation filter (OCT_KCF) [19] and latent constrained correlation filter (LCCF) [20] are proposed to
further improve the performance on model drifting or other aspects. In reference [21], hierarchical
convolutional features are used for the adaptive correlation filters to address the appearance variation,
another correlation filter is designed for scale estimation and target re-detection in case of tracking
failure, the latter is necessary for long-term tracking tasks. Though CF-based methods show impressive
performance, but most of the designed trackers are limited to single object tracking currently. How
to extend CF to MOT is still an open issue. Further attention has been given to motion models of
the tracked objects, which can be exploited to predict the target position. Relative motion network
(RMN) [22], for instance, constructs a relative motion network that accounts for the relative movement
among objects to predict the objects’ positions when detection fails and to handle unexpected camera
motion for robust tracking.

In the scenarios we address in this paper, the monocular camera is moving and there are moving
targets in the scene. This brings great challenges to the problem. Reconstructing the scene structure
while estimating the camera’s motion simultaneously is the well-studied structure-from-motion (SFM)
problem, wherein the scene is stationary in the computer vision community. But when the camera is
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moving, the motions of tracked objects will couple with the camera’s motion. To tackle this problem,
we need to estimate the camera’s motion along with other stationary features, so we need to separate
the extracted stationary features from the dynamic ones, which allows us to estimate the camera’s
motion robustly and compensate for target motion.

Additionally, we focus on the online method to address the fragmented trajectories and drifting
caused by inaccurate detection. The relative-motion context of targets in 3D space is proposed for target
association, which describes the 3D movement relationships among the tracked targets. Relatively
speaking, the relative motion in two-dimensional (2D) imaging loses its depth information and can’t
describe the relative positions of targets as accurately as in 3D space. Furthermore, in the case of
camera motion, we incorporate a relative-motion model into a sequential Bayesian framework to track
multiple objects and estimate the ego-motion. Because the number of targets changes dynamically,
we use a sample method with reversible jump Markov chain Monte Carlo (RJMCMC), which unifies
all modules under the Bayesian framework.

The main contributions of our work include: (1) A 3D relative-motion model is proposed to
improve the track fragments due to occlusion or unreliable detections, which is more intuitive and
reasonable for motion prediction; (2) Based on the 3D relative-motion model, an unified Bayesian
framework is presented, which combines the MOT problem with camera motion estimation, and
formulates it as finding a MAP solution of joint probability; (3) Validation of the proposed method
with standard dataset and real data collected in the campus. Figure 1 shows some outperforming
results of the proposed method. In this figure, the tracked objects are marked with different colors.
It shows that the proposed method can track targets even in a crowded scene.
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Figure 1. Some tracking results with the proposed method. (a) Tracking results of the 23rd frame and
49th frame of MOT16-11. (b) Tracking results of 78th frame and 94th frame of ETH-Linthescher.

The paper is organized as follows. The related works are reviewed in Section 2. Section 3 describes
the unified Bayesian model and key parts of the proposed method. The proposal distributions for the
models are introduced in Section 4. Experimental results are presented in Section 5 and followed by
conclusions in Section 6.

2. Related Works

Because we focused on online multiple object tracking (MOT) with a moving camera, target
motion models are exploited to enhance the proposed method’s robustness. The literature on multiple
object tracking with a moving camera and the existing motion models are thus briefly summarized.
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2.1. MOT with a Moving Camera

Several representative MOT algorithms that focus on online methods using a moving monocular
camera have recently been proposed, which address the challenges of targets tracking from a
moving platform. Some of them aim at solving unreliable detections by modeling the detection
confidence [23–25]. Breitenstein [23] combines online-trained, instance-specific classifiers as a graded
observation model and particle filtering for robust multi-person tracking suitable for online
applications. Within a probability hypothesis density particle filter framework, early association
multiple target tracking (EAMTT) [24] exploits both high- and low-confidence target detections,
wherein the high confidence detections and low confidence detections are used for different purposes.
Some methods solve the issue of tracking from a mobile platform by aiming at the introduction
of a robust feature. For example, interaction feature strings that encode the physical interactions
between targets are proposed in reference [25], and a TDAM method [16] is presented, which uses the
temporal dynamic appearance model to encode the spatial structure and temporal dynamics of human
appearance. Reference [14] combines two of the confidence-based associations for handling fragments
and discriminative deep appearance learning for handling appearance variations.

There is also a kind of method that exploits relative motion to deal with unexpected camera
motion. A relative-motion network (RMN) is proposed in [22], which encodes the motion context from
multiple moving targets for the scenarios, during which the camera experiences small fluctuations.
In reference [26], based on RMN, an improved method, Structural Constraint Event Aggregation,
is proposed to handle abrupt camera motions and fluctuations. All these methods depend on improving
association accuracy to compensate for the influence of camera motion. In reference [27], a framework
which estimates camera motion while tracking is presented. Because the camera’s ego-motion is
estimated during the tracking process, it is suitable for tracking multiple objects with a moving camera.

An expectation association (EA) algorithm is proposed in [28,29], which formulates multi-object
tracking and classification as a MAP problem and proposes a variational approximation method for
solving it. This work represents the motion patterns of the targets with a simple linear dynamical
system (LDS), and a training process is necessary for the object class assignment; it limits the
applicability of the method.

2.2. Motion Models in Tracking

Previous methods utilize both appearance and motion models for calculating affinity function.
Due to the limitations of the appearance models used for tracking targets with similar appearances
and target-to-target interactions, adding motion clues to predict the potential position of targets
in future frames can reduce the search space, and hence, increase the accuracy of the appearance
model. Generally, motion models used in the literature can be divided into linear and non-linear
motion models.

Based on the assumption that a target’s motion within a short period of time is linear, the linear
motion model uses first-order linear regression and is widely used in multi-target tracking [14,23,30–32].
However, there are many cases the linear motion model cannot handle, such as long-term occlusions,
camera movement or fluctuation, or crowded scenes. It is obvious that non-linear motion models
can produce a more accurate prediction [33,34] at the cost of a higher computing load. Usually, as all
tracked targets move together when the camera moves, relative positions among the targets are less
affected by the camera’s view angles. They may be more stable than linear motion models in position
estimation under moving camera conditions [22,26,35]. The social force model (SFM) has been used
for abnormal crowd behavior detection, collision avoidance, or group attraction [25].

Though the existing works show that by making use of motion context, the accuracy and
robustness of tracking results can be improved, the motion models are still only exploited in a 2D
image plane. Our experiments show that because of the loss in depth information in 2D imagery,
the tracked target ID may be incorrect or missing for a same object in a crowded or occlusion scene.
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In this work, we assume the camera is moving along a horizontal plane. A 3D motion network model
is exploited to reduce tracking drifts during occlusion or drastic appearance changes.

3. The Proposed Method

To address multi-target tracking issues with a moving camera, a Bayes posterior estimation-based
MOT method was proposed under the framework of tracking by detection. The data processing flow
of the proposed method is shown in Figure 2. The Bayes posterior estimation-based method uses
observation cues to generate a proposal, then uses the observation likelihood and relative-motion
models to estimate a proposal to generate the trajectory. The observation cues are provided by different
detectors, and then the observation likelihood between observation cues and the target’s hypothesized
position is computed. The target hypotheses are predicted by a relative-motion model in 3D space.
A 3D relative-motion model describes the relative movement between targets three-dimensionally,
which is more accurate and intuitive than the 2D motion network in a single image plane. We exploited
the camera model to establish the relationship between the targets in 3D space and in the 2D image
plane to compute a target’s motion model observational likelihood. Because the camera is moving,
we estimated the camera’s motion by estimating stationary geometric features, then projecting targets’
hypothesized positions into the image plane at each step.

This method fuses multiple detection clues to adapt to changes in target appearance and
exploration of a complex environment, and utilizes the relative-motion model in 3D space to resolve
track fragments and tracking drift due to mis-detection and occlusion. Our method could also adapt to
the complex motion of a target and reduce the dependence of the tracking algorithm on the detection
results. RJMCMC particle filtering was exploited to solve the posterior estimation problem. It can add
or remove targets randomly via the reversible jump move operation, and adapts to random changes in
the number of targets.
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3.1. The Unified Bayesian Framework

The tracking task and camera motion estimation are unified with a Bayesian framework and
formulated as finding the maximum a posteriori (MAP) solution of the joint probability. There are
three types of parameters that need to be estimated: the camera parameter Θt, a set of targets’ states Ot,
and the geometric features’ states Gt. All these parameters are expressed as random variables and the
relationships among them are expressed by the joint posterior probability. The approximate posterior
distribution can be obtained with the RJMCMC method. The basic process is discussed as follows.

Given an image sequence I0,...t at time (0, 1, 2, ... t), and the configurations of all the parameters
at time t are written by χt = {Θt, Ot, Gt}, the goal is to find the best match configuration. The MAP
problem P(χt|I0,...t) is factored into several parts as follows:

P(χt|I0,...,t) ∝ P(It|χt)
A

∫
P(χt|χt−1)

B
P(χt−1|I0,...,t−1)

C
dχt−1 (1)

The first term indicated by A in Equation (1) defines the observation likelihood, which models the
similarity between configuration χt and the sensory input It at time t. This part measures how well the
observations support the hypothesis for the current configuration. The second term indicated by B in
Equation (1) is related to the motion model, which predicts the current state χt from the previous state
χt−1 under the Markov assumption conditions, and is composed of motion model, shape change, and
interaction between objects. The third term indicated by C is the prior, which is actually the posterior
probability from the previous time step.

3.2. Camera Model and Camera Motion Estimation

(1) Camera Model

We adopted a camera model similar to reference [36], and set up the relationship of targets in
3D space and a 2D image, given the image’s horizon location and the camera’s height beforehand.
The parameters of the camera Θ include: focal length f, horizon line vh, image center uc, yaw angle ϕ,
camera height hΘ, velocity µ, and 3D location (xΘ, zΘ). The projection function fΘt , which expressed
the relationship between camera parameters Θt and object location O was defined as:

X =

 x
y
h

 = f (O) =


f xz
zz

+ u
f H
zz

+ v
f hz
zz

, O0 =

[
R(φ) 0

0 1

]
O +

 xΘ
zΘ
0

 (2)

where O0 is the position of target in the present camera coordinates, and X = (x, y, h) refers to the
location and height of the corresponding bounding box in the image plane, respectively. The projection
function is also suitable for geometric features, such as the projected location for targets’ feet.

(2) Camera Motion Estimation

The camera motion was estimated first in the proposed framework, which is used for obtaining
the current camera state, and removing the influence of camera motion to calculate the target motion
between two frames. This estimation is composed of two parts, the camera motion priori and geometric
feature based motion estimation.

Camera motion priori. A dynamic model with a constant velocity was employed to model camera
motion, which was based on a reasonable assumption that the motion of a camera is smooth over a
short time. In terms of robustness, an error item is included to account for uncertainty in the simplified
camera model. This constant perturbation model was applied to the parameters, such as camera height,
horizon, velocity, and yaw angle, etc.: ϕt+1 = ϕt + ε. The location updating process can be written as:

xt+1 = xt + vt cos(ϕt) + ε, zt+1 = zt + vt sin(ϕt) + ε (3)
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The intrinsic camera parameters, such as focal length, skewness, optical center, etc., are assumed
to be known and provided by default.

Geometric feature-based motion estimation. Feature tracking was the fundamental of motion
estimation in this work. To balance the efficiency and the performance, Speed-Up Robust Features
(SURF) detector [37] was used for feature descriptor, and the Kanade-Lucas-Tomasi Feature Tracker
(KLT) tracker [38] was employed for the feature tracking of adjacent frames. Because the camera is
moving, the extracted geometric features consist of static features from the background and dynamic
ones from the moving targets, but only the static features will be used for the camera motion estimation.
Therefore, removing the dynamic features from all extracted features is very important for the camera
motion estimation. Based on the results of KLT tracker, some constraints were used for selecting the
static features first.

Generally, we assumed that the valid static features are all below the horizon line [39] because the
platform with camera was moving on a flat ground, and not on the target. To avoid the concentration
of the selected features, the distances among the features should be larger than a threshold. Usually,
we can select out many points for the next step, but only about 40 feature points are used for the
efficiency. Among these left points, there may exist a few of mismatched feature points which will
affect the motion estimation. Then the validity of the left features will be further verified by the motion
prior and observation likelihood as follows.

The motion priori of the geometric feature. The motion priori encodes smooth transition between
features of adjacent frames, and describes whether geometric features’ positions are consistent with
their previous locations. Correspondently, it also describes the possibility of static or moving states.
Let Pval be the validity prior to describe the features as static or not static, and Pcons be the consistency
prior. Then, we can get:

P(Gt|Gt−1) = Pval(Gt|Gt−1)Pcons(Gt|Gt−1) (4)

Two binomial probabilities are included, consisting of the probability of staying in the scene pg
s

and the probability of entering the scene pg
e , to model the prior validity respectively. Basically, these

variables can represent the probability that a valid geometric feature will likely remain valid in the
next frame. Then the validity prior can be written as:

Pval(Gt|Gt−1) = ∏
j

Pval(G
j
t

∣∣∣Gj
t−1) (5)

Pval(G
j
t|G

j
t−1) =


pg

s if j is valid at t− 1 and t
1− pg

s if j is valid at t− 1 but not t
pg

e if j is valid at t but not t− 1
1− pg

e if j is not valid at t but not t− 1

(6)

As the features are defined as static 3D world points, an indicator function is exploited to model a
single feature’s priori of consistency Pcons(Gt|Gt−1):

Pcons(Gt|Gt−1) = ∏
j

I(Gj
t = Gj

t−1) (7)

Geometric feature observation likelihood. The likelihood calculation process is completed by two
steps: projecting the feature in 3D space to the image plane, and then detecting the feature using a
detector. The point of interest in the image plane corresponding to a geometric feature Gi

t is represented
as τi

t , the likelihood is modeled as a normal Gauss distribution centered on the projection of feature
fΘ(Gi

t), and we introduce a uniform background model for invalid features, such as occluded or
non-stationary features. Equation (9) defines the function for measuring geometric feature likelihood.

P(It

∣∣∣Gi
t, Θt) = P(It

∣∣∣ fΘt(G
i
t)) (8)
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P(It| fΘt(G
i
t)) =

{
N(τi

t ; fΘt(G
i
t), ∑G) Gi

t is valid
KB Gi

t is invalid
(9)

By the combination of Gauss distribution and uniform background model, which can exclude the
outliers with the maximum possibility, the robustness of the estimated camera motion can be improved.

Through the validity prior and consistency prior, the invalid and inconsistency features were
removed. Only the valid static feature points were considered for the camera motion estimation.

3.3. 3D Relative Motion Model Based MOT

After the camera state and motion have been estimated, the estimated camera motion can be
applied to the motion compensation for the MOT with the moving camera. With the unified Bayesian
framework expressed in Equation (1), the observation likelihood and motion prior for the MOT
problem then needs to be calculated. The proposed 3D relative motion model was applied for the
motion prior estimation, which can make the motion model more robust and flexible. The observation
likelihood model measured target hypotheses generated by motion priori that matched the input data
(detection) best.

(1) The observation likelihood model

The observation likelihood model provides a measurement for evaluating which configuration Xt

matches the input data It best. Configuration Xt is provided by a set of hypotheses generated by prior
motion, representing the true state of targets and geometric features in 3D coordinates. The input data
It is given by the detectors in the way of bounding box. Hence, the evaluation should transform the
two variables into one coordinate.

As shown in Figure 3, given a hypothesis for the target Ôt, we can evaluate the following two steps:
(1) using the camera model to project each hypothesized target into the image, the projecting function is
expressed as fΘt , and then (2) evaluating the observation likelihood given the detection cues. These two
steps can be described in Equations (10) and (11). Here the likelihood between hypothesis targets and
detection cues was calculated by the Hungarian algorithm as in reference [40]. The detection cues were
provided by the deformable part model (DPM) detector [41] and the mean-Shift tracker [42].

P(It

∣∣∣Oi
t, Θt) = P(It

∣∣∣ fΘt(O
i
t)) (10)

P(It|χt) = ∏
i

P(It

∣∣∣Oi
t, Θt)∏

j
P(It

∣∣∣Gj
t, Θt) (11)

After re-projecting the target’s hypothesized position back to the image, we obtained the
observation likelihood measurements both for the validity of the target and the accuracy of the location.
The accuracy of targets is modeled via the observation likelihood P(It

∣∣ fΘt(O
i
t)) . Two detectors are

employed as observation cues for various appearances. For simplicity, instead of using the likelihood
Pj, log likelihood lj is adopted for each detector j with weight wj as:

P(It| fΘt(O
i
t)) ∝ exp(∑

j
wjlj(It

∣∣∣ fΘt(O
i
t)) ) (12)

It is difficult to describe the possibility of a target actually existing or not. Here, the ratio of
the likelihoods P(It

∣∣ fΘ(Oi
t))/P(It

∣∣ fΘ(φ)) is adopted for the validity measurement. It can allow the
target states variable Oi

t to have different dimensions. However, as the likelihood of an empty set is
ambiguous, the ratio is modeled with a soft max g(◦) of the hypothesis likelihood, because it is robust
against sporadic noise:

P(It
∣∣ fΘ(Oi

t))

P(It| fΘ(φ))
∝ exp

(
∑

j
g(wjlj(It

∣∣∣ fΘ(Oi
t)))

)
(13)



Sensors 2018, 18, 2363 9 of 20

(2) 3D Relative Motion Model and Motion Priori

The term for motion priori P(χt|χt−1) in Equation (1) is the evolution of the configuration
between time steps which is consist of three parts: (1) camera’s prior motion; (2) target’s prior motion;
or (3) geometric feature’s prior motion. It can be expressed as follows:

P(χt|χt−1) = P(Ot|Ot−1)P(Gt|Gt−1)P(Θt|Θt−1) (14)

The camera motion prior and geometric feature motion prior are discussed in the section of
camera motion estimation. Here we focused on the proposed 3D relative motion model and the target
motion prior.

To describe the relative-motion model among objects in 3D space, both the spatial and velocity

information are considered. Let Oi
t = [xi

t, yi
t, zi

t,
.
xi

t,
.
yi

t,
.
zi

t]
T

is the state of object i at time t, where (xi
t, yi

t,

zi
t) and (

.
xi

t,
.
yi

t, zi
t) denote the 3D position and velocity respectively. Then the relative-motion model

between two objects i and j is defined based on the position and velocity difference as:

r〈i,j〉t , r(oi
t, oj

t)

=
[
u〈i,j〉t , v〈i,j〉t , w〈i,j〉t ,

.
u〈i,j〉t ,

.
v〈i,j〉t ,

.
w〈i,j〉t

]T

=
[

xi
t − xj

t, yi
t − yj

t, zi
t − zj

t,
.
xi

t −
.
xj

t,
.
yi

t −
.
yj

t,
.
zi

t −
.
zj

t

]T
(15)

Then, the relative-motion model for N objects Rt is then defined as:

Rt = ∪N
i=1Ri

t, and Ri
t = {〈i, i〉} ∪ {〈i, j〉|dj

t = 1, 1 ≤ j ≤ N}. (16)

The 3D relative-motion model actually represents a set of linked edges between objects.
As illustrated in Figure 4, the states of different targets are represented as circles of different colors,
the relative motion model 〈i, j〉 represents two different targets (i, j), and is denoted as black lines.
While the relative motion model 〈i, i〉 encodes the self-motion model of target i, which is always
included in case that there exists only one target. Usually, there are more than one relative motion for a
target i. We chose the closest target j to target i that had detection assigned for predicting target oj

t+1.
The relative motion model 〈i, j〉 can be used to predict the mis-detected target j according to the state
of target j at previous time.
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For both relative-motion models and the previous targets’ states, the motion transition is
expressed by:

oi
t+1 = f (oj

t, 〈i, j〉) + w

= F
[[

xj
t, yj

t, zj
t,

.
xj

t,
.
yj

t,
.
zj

t

]
+ r〈i,j〉t

]T
+ w

(17)

where F =



1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


is the transition matrix based on a constant velocity of motion

model. The computation of object at y coordinate has no practical use and w is the assumed white
Gaussian noise.

According to the relative-motion model, the state of target i can be solved by using the previous
state of target j and the relative-motion model between them, which is more accurate and adaptable
than targeting predicted directly by linear motion model. When target i is missed in the detection
stage, its location can be predicted through target j according to the motion model, which effectively
reduces the false tracking caused by missed detection. The target’s prior motion is written as:

P(Ot|Ot−1) = P(oi
t|o

j
t−1, 〈i, j〉) (18)

Three motion priori were used to account for the smooth transition of camera, targets, and
geometric features through time. The target’s and geometric features’ prior motions also allowed them
to appear, interact, and disappear, which made the model more robust and flexible.

4. Implementation

The unified Bayesian model for multiple object tracking and camera estimation, has
been presented in last section. The solution of this model can be obtained typically by the
maximum-a-posteriori method. Because the number of targets and features are variable in the
tracking process, RJ-MCMC particle filtering was employed to find the MAP solution of the posterior
distribution. The advantages of the RJ-MCMC method made it particularly suitable for adding and
removing targets via random jump proposal moves in different dimensions.

As illustrated in Equation (1), the goal of tracking is defined as finding the states that
maximize the posterior configuration χt = argmax P(χt |I 1,...,t). To obtain the posterior, RJ-MCMC
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samples, the posteriors from 1 to t to obtain a number of samples to approximate the posterior

P(χt |I 1,...,t) ≈ {χ
(r)
t }

n

r=1, where n is the number of samples and χ
(r)
t is the rth sample. If the set of

samples at previous time t − 1 is provided, then the posterior distribution can be expressed as:

P(χt |I 1,...,t) ∝ P(It|χt)∑
r

P(χt

∣∣∣χ(r)
t−1) (19)

4.1. Proposal Distribution

As discussed in the previous section, the configuration variables defined in this paper are
composed of three parts χt = {Zt, Gt, Θt}. We needed to sample from those three components,
but they would converge very slowly to steady-state distribution if we sampled from the whole
configuration, due to their high dimensionality. To solve the problem, we sampled only one variable
at a time. For example, we chose only one type of parameter to perturb to generate a new sample.
Usually, the RJMCMC method follows the Metropolis-Hasting rule to generate samples, and then
accepts or rejects samples to construct the Markov chain

{
χ
(0)
t , χ

(1)
t , . . . , χ

(n)
t

}
.

Let Q(χ′t, χt) be the proposal distribution; we used probability qO to perturb the target proposal
QO, probability qG to perturb the geometric feature proposal QG, and probability qΘ to perturb the
camera proposal QΘ. Then, the proposal distribution can be written as:

Q(χ′t, χt) = qOQO(χ
′
t, χt) + qGQG(χ

′
t, χt) + qΘQΘ(χ

′
t, χt) (20)

For example, with the probability qO, the target proposal was randomly chosen; upon

perturbation, the new configuration will be χ
(r+1)
t =

{
Ot

(r+1), Gt
(r), Θt

(r)
}

. Only a single target’s state

has been changed in Ot
(r+1), and the other terms will remain unchanged.

The three proposal distributions in Equation (20) are presented as follows.

(1) Target proposal distribution

Five jump moves for the target-state transition were defined: Stay, Leave, Add, Delete, and
Update. Stay/Leave was defined as targets staying or leaving from the tracking scene with variable
dimensionality, and Add/Delete was defined as new entering targets or false alarms in the tracking
scene. Those two couple moves were designed to be reversible counterparts to each other; this
guaranteed that the Markov Chain satisfied the detailed balance condition. The update move was
defined for targets’ position updates. Overall, those five jump moves covered all conditions of target
movement. During exploration, one of the five moves was randomly chosen with probabilities of ps,
pl , pa, pd, pu, respectively. In Table 1, the proposal distribution for each jump move and corresponding
targets that suit for this jump move are listed.

Table 1. The proposal of targets’ jump moves.

Jump Moves Corresponding Targets Proposal

Stay: S(r)
t S(r)

t = Ot−1\O
(r)
t QS(O

(r+1)
t , O(r)

t ) =


1∣∣∣S(r)
t

∣∣∣Qi(O
i(r+1)
t < i, j >)1 if i in S(r)

t

0 otherwise

Leave: L(r)
t L(r)

t = O(r)
t ∩Ot−1 QL(O

(r+1)
t , O(r)

t ) =


1∣∣∣L(r)
t

∣∣∣ if i in L(r)
t

0 otherwise

Add: A(r)
t A(r)

t = Xnew
t \O(r)

t QA(O
(r+1)
t , O(r)

t ) =


1∣∣∣A(r)
t

∣∣∣P(Oi
t|Xi

t) if i in A(r)
t

0 otherwise

Delete: D(r)
t D(r)

t = Xnew
t ∩O(r)

t QD(O
(r+1)
t , O(r)

t ) =


1∣∣∣D(r)
t

∣∣∣ if i in D(r)
t

0 otherwise

Update: K(r)
t K(r)

t = L(r)
t ∪ D(r)

t QU(O(r+1)
t , O(r)

t ) =


1∣∣∣U(r)
t

∣∣∣Q(Oi(r+1)
t , Oi(r)

t ) if i in K(r)
t

0 otherwise
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P(Ot
i
∣∣∣Oj

t−1) will be set to 1 when there is no corresponding detection, or it will be set to
1
2

[
P(Ot

i
∣∣∣Oj

t−1) + P(Ot
i
∣∣∣Oi

t)
]
, otherwise.

(2) Proposal Distribution of Geometric Feature

Because the geometric features state Gt is also a high dimensional vector with variable
dimensionality same as the target state, we used the RJ-MCMC method to sample from the geometric
features to generate proposal distribution. However, only three jump moves (Stay, Leave, and Update)
were necessary to update the geometric feature states, and with the same strategy as the target proposal
distribution, one of the moves was randomly chosen with a probability of ps, pl and pu, respectively,
to generate a proposal. Because of the validity of features needs to compare the previous features,
we did not need the Add and Delete moves to add new features. All of the newly detected features
were automatically added to the feature set in the current frame, and the validity of features in the
subsequent frames was checked by comparing the observed and predicted positions with Stay and
Leave moves. Table 2 lists each jump move’s proposal and the corresponding geometric features that
suit this jump move.

Table 2. The proposal of geometric features’ jump moves.

Jump Moves Corresponding Features Proposal

Stay: S(r)
t S(r)

t = Gt−1\G
(r)
t QS(G

(r+1)
t , G(r)

t ) =


1∣∣∣S(r)
t

∣∣∣Pcons(G
j(r+1)
t , Gj(r)

t ) if i in S(r)
t

0 otherwise

Leave: L(r)
t L(r)

t = G(r)
t ∩ Gt−1 QL(G

(r+1)
t , G(r)

t ) =


1∣∣∣L(r)
t

∣∣∣ if i in L(r)
t

0 otherwise

Update: E(r)
t Et = G(r)

t \Gt−1 QU(Z(r+1)
t , Z(r)

t ) =


1∣∣∣E(r)
t

∣∣∣Q(Gi(r+1)
t , Gi(r)

t ) if i in Et

0 otherwise

(3) Camera State Proposal Distribution

Because the state dimensionality of the camera was kept constant, its state proposal distribution
Q(Θi(r+1)

t , Θi(r)
t ) can be expressed by a simple normal distribution as:

N(Θ(r+1)
t ; Θ(r)

t ; ∑
Θ
) (21)

4.2. Acceptance Ratio

In the traditional MH algorithm [43], for the acceptance ratio, only the ratio of the likelihood
of the proposed configuration to the likelihood of the previous configuration was considered. We
extended it to a product of three terms as follows:

a =
P(It|χ(r+1)

t )

P(It|χ(r)
t )

P(χ(r+1)
t |I1,2,...,t)

P(χ(r)
t |I1,2,...,t)

Q(χ
(r)
t ; χ

(r+1)
t )

Q(χ
(r+1)
t ; χ

(r)
t )

(22)

On the right hand side of Formula (22), the first term refers to the ratio of image likelihoods
between the proposed configuration and the previous configuration, the second term describes the
ratio of approximated predictions and the last term stands for the ratio of proposal distributions. By
adding the ratio of prediction and proposal distribution, the results can be improved.

5. Experiments and Discussion

To evaluate the performance of the proposed tracking method, two kinds of dataset were used:
the dataset collected by us in the campus, and some benchmark dataset with a moving camera, such
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as ETH-Bahnhof, ETH-Linthescher, ETH-Sunnyday [44], MOT16-05, and MOT16-11 [45]. For all
experiments, we assumed that an initial camera configuration was provided, which included the focal
length and height of the camera. Because the camera was not calibrated for the dataset collected
by ourself, the camera configuration parameters were initialized with rough values. For the ETH
dataset and MOT16s, the calibrated parameters were provided and used as the default value in the
experiments. For the video sequences collected by ourselves, only the camera height and focal length
needed to be roughly set. Accurate camera calibration was not necessary for the proposed method.
The focal length can be set according to the datasheet of the camera, and the camera height is set to
the value estimated by the eye in the experiments. The proposed methods would be applied in any
flat environment.

Many evaluation metrics for quantitative evaluation of MOT have been proposed in the past. In
this paper, we followed the evaluation metrics suggested in the MOT2D benchmark challenge [44,45].

These metrics could evaluate a method from different aspects, and their definitions are listed
as follows:

The tracking accuracy can be evaluated by multiple object tracking accuracy (MOTA). It is widely
used because of its expressiveness, as it includes three sources of errors, which are defined as:

MOTA = 1− ∑t (FNt + FPt + IDSWt)

∑t GTt

where t is the frame index, FP denotes false positives, which means the output is a false alarm, FN is
false negatives; a target that is missed by any hypothesis is a false negative. GT is the number of
ground truth objects. IDSW is the number of target identification (ID) switches. The MOTA score can
give a good indication of the overall performance.

The tracking precision is evaluated by multiple object tracking precision (MOTP). It is the average
dissimilarity between all true positives and their corresponding ground truth targets. It is computed as:

MOTP =
∑t,i dt,i

∑t ct

where ct denotes the number of matches in frame t and dt,i is the bounding box overlap of target i
related to the ground truth. MOTP measures the localization precision, and describes the average
overlap between all correctly matched hypotheses and their respective objects ranges between 50%
and 100%.

The tracking quality for each ground truth trajectory can be classified into mostly tracked (MT),
partially tracked (PT), or mostly lost (ML). A target is mostly tracked, which defines as it is successfully
tracked for at least 80% of its life span. If a target track is only recovered for less than 20% of its total
length, then it is mostly lost (ML). All other tracks are defined as partially tracked. Usually, they are
expressed as a ratio to the total number of ground truth trajectories.

Recall is defined as the ratio of correctly matched detections to the total detections in ground truth.
Precision is defined as the ratio of the correctly matched detections to total detections in the

tracking result.
FAR is defined as the ratio of the false alarms per frame.
Currently, most of the MOT methods use a static camera; only few of them are

moving-camera-based. Among them, continuous energy minimization (CEM) [30] and RJMCMC [27]
are two typical methods with a moving camera; both the RMN method [22] and structural constraint
event aggregation (SCEA) method [26] make use of the 2D motion context for the MOT. The CEM
method belongs to a kind of batch-optimization method, and all of the historical data are used for the
offline tracking optimization, which makes the data association robust, and the problem of target ID
switch is improved. On the other hand, the RJMCMC method is an online optimization mode; the
proposed method in this paper also employs the RJMCMC framework to find the maximum-a-posterior
(MAP) solution. Thus, we made a thorough comparison among five methods: CEM, RJMCMC, RMN,
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SCEA and the proposed method. Because the proposed method was based on RJ-MCMC, we took it as
the baseline method.

Table 2 shows the comparison results for the benchmark dataset, ETH-Bahnhof, ETH-Sunnyday,
MOT16-05, and MOT16-11. The proposed method outperformed the other four methods in precision,
FAR, MOTA, and FP with the ETH-Bahnhof dataset, especially in MOTA and precision, though the
CEM method was globally optimized. This is because the proposed algorithm can pass the 3D motion
model to track the target in the detection process, which can improve the tracking accuracy. Because
only the previous frame information was considered for online purposes in the proposed method,
there were more target identity switch errors than in the CEM method, but fewer than in the RJMCMC
method. At the same time, it can be seen that the overall performances in the proposed method were
better than in the RJMCMC method. It confirms that by exploiting the 3D relative motion model, the
tracking performance was improved greatly.

For the experiment results with the ETH-Sunnyday, MOT16-05, and MOT16-11 dataset,
the proposed method in MT, FN, and Recall was better than the CEM and RJMCMC algorithms.
Because FN represents the number of missed target tracks, the results showed that the proposed
method can greatly reduce missed detection by making use of the relative-motion model. Compared
with the motion context methods (SCEA_ver1 and RMOT), the indexes of recall and MOTP for both
methods were outperformed compared to the proposed method, because they exploited the motion
context of all targets and we only exploited the nearest target’s motion context for calculation. There
were some indexes of the proposed method that were higher than those two methods, and showed in
bold in Table 3. But we also found that the proposed method might fail to predict target if the target is
miss-detected for several frames. The feature work will aim at robust tracking methods account for
unreliable detection.

Table 3. Performance comparison of tracking in different video sequences.

Dataset Method Recall/% Precision/% FAR MT% PT% ML% FP FN IDs MOTA/% MOTP/%

ETH- CEM 58.9 72 1.24 23.39 32.74 43.86 1241 2223 16 35.7 71.8
Bahnhof RJMCMC 51.7 81 0.66 19.29 29.82 50.88 657 2614 102 37.7 66.7

SCEA_ver1 73.2 64.2 1.11 19.30 13.45 14.62 1110 727 7 32.1 75.7
RMOT 79.7 54.5 3.6 58.48 22.22 19.30 3599 1101 17 12.9 73
Ours 55 82.9 0.61 19.88 33.33 46.78 615 2435 89 42 67.9

ETH- CEM 37.1 86.4 0.31 16.67 20 63.33 108 1169 1 31.2 76
Sunnyday RJMCMC 67 86.8 0.53 16.67 66.67 16.67 189 613 43 54.5 67.8

SCEA_ver1 72.3 87.6 0.54 19 26.67 10 190 514 11 61.5 77.4
RMOT 86.7 81.4 1.04 21 23.33 6.67 367 248 8 66.5 74.2
Ours 69.2 85 0.64 23.33 63.33 13.33 226 573 61 53.7 68

MOT16-05

CEM 32.3 87.8 0.36 3.20 40.80% 56% 305 4616 65 26.9 74.5
RJMCMC 34.4 77.2 0.83 5.60 46.40% 48% 694 4471 127 22.4 69.4
SCEA_ver1 40.7 89.5 0.39 10 58% 57% 327 4045 34 35.4 76.1

RMOT 44.2 57.4 2.68 8 68% 49% 2240 3802 135 9.4 71.1
Ours 36.1 82 0.65 5.60 50.40% 44% 540 4359 143 26 69.5

MOT16-11

CEM 43.2 86.9 0.66 7.24 34.78% 57.97% 595 5212 27 36.4 78.4
RJMCMC 46.9 87 0.72 5.80 46.38% 47.82 644 4867 144 38.4 73.6
SCEA_ver1 28.9 88.2 0.39 8.96% 23.88% 70.15% 354 6520 8 25 79.5

RMOT 44.2 57.4 5.19 16.42% 44.78% 43.28% 4674 3828 112 6.1 73.8
Ours 49.4 85.1 0.88 7.24% 46.38% 46.38% 794 4645 168 38.9 72.3

Because the particle filter was exploited to solve the posterior estimation problem both in the
proposed and RJ-MCMC method, we conducted some qualitative comparison experiments between
the proposed and the RJMCMC method with the ETH-Linthescher sequence, and the same detection
method was used. Figure 5a–c shows the tracking results of the 32th, 34th and 54th frame, respectively,
in the ETH-Linthescher sequence. When occlusion occurred, the target ID switch happened in the
RJMCMC method, but for the proposed method, targets ID did not switch, as shown in (e). Similarly,
the target ID switched in the 54th frame in the RJMCMC method, but our method could keep the



Sensors 2018, 18, 2363 15 of 20

correct target ID. It shows that the proposed method prevented the tracking drift when occlusion
occurred, because it benefitted from the proposed relative motion model.
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Figure 5. A qualitative comparison between the proposed method and the reversible jump Markov
chain Monte Carlo (RJMCMC) algorithm with the ETH-Linthescher video. In this figure, (a–c) show
the results obtained by the RJMCMC method in frames No. 32, 34, and 54; (d–f) respectively show the
correspondent results with the proposed method.

Generally, a weakness of tracking by detection is that the tracking result is heavily dependent on
the reliability of the detection module. If the detection module fails to detect the target, then the target
may not be tracked, and this leads to the generation of track fragments or tracking drift. To alleviate
this issue, the proposed method exploits the relative-motion model in 3D space to describe the motion
constraints among targets, which can improve the performance. Some demonstrative experiments
were conducted with ETH-Sunnyday, ETH-Bahnhof, and the datasets we collected.

As shown in Figure 6, both the RJMCMC method and the proposed method failed to detect the
old woman, this led to the fragments showed in Figure 6a because the RJMCMC method could not
track the woman. However, the proposed method could work successfully, and avoid generating the
tracking fragments when mis-detection occurred.

Beside the experiments on these standard datasets, we also conducted some experiments with the
video data collected in our campus. As shown in Figure 7, it was challenging for the tracking because
of the illumination change, scale variation of the target, and the appearance differences. Because
there was no ground truth data available, only some qualitative results could be provided. In this
figure, given the same detection result, the tracking result of the proposed algorithm outperformed
the RJMCMC method. Figure 7a shows the detection results, which include a wrong detection result
(indicated by the largest bounding box). Both the proposed and RJMCMC method could remove it in
the tracking process. However, as shown in Figure 7b, the RJMCMC method fail to track the woman
with an umbrella. The proposed method worked well in this case.
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Figure 7. Comparison between RJMCMC and the proposed method with the video collected in our
campus. (a) The detection results. A wrong detection result exists indicated by the largest bounding
box. (b) The results of the RJMCMC method; the woman with umbrella is lost. (c) The good results of
the proposed method.
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Figure 8 shows the results of the camera and target trajectories in terms of time with four video
sequences, ETH-Bahnhof, ETH-Sunnyday, MOT16-05, MOT16-11. In these figures, the plane (x, z) was
defined according to the camera coordinate in the very first frame of each sequence. It can be seen
that although no ground truth is available for the camera motion, the camera motion estimated here
qualitatively matched what we saw in the video.
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Figure 8. The camera trajectory (long red lines) and targets’ trajectories (short multi-color lines) of four
video sequences (a) ETH-Bahnhof. (b) ETH-Sunnyday. (c) MOT16-05. (d) MOT16-11.

All the experiments are run on an Intel core i5 personal computer (PC) with 8 GB memory, and
Visual Studio 2012 and Opencv2.4.9 were used, the sample particles were set to 5000. Currently,
the average computation time of detection and tracking was approximately 0.17 s without any code
optimization. Most of the time was spent by the detector, about 91% in total. It is mainly because the
DPM detector is time-consuming.

The experiments also showed that, because the proposed method is based on the principle of
tracking-by-detection, it could not track the target mis-detected when it first appeared. As showed
in Figure 7a,c, the person in the purple T-shirt was not detected at first, then he could not be tracked
consequently. A more powerful detector may improve this case.

6. Conclusions

In this paper, a Bayes posterior estimation-based MOT method is presented under the framework
of tracking by detection. We exploit the 3D motion context information from multiple objects,
which describes the relative movements among the targets, to improve the tracklets and tracking
drifting caused by occlusion and mis-detections. Also, we formulate the target tracking and camera
motion estimation as a sequential Bayesian framework which is solved by RJMCMC particle filtering;
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the camera motion estimation provides the opportunity for 3D relative-movement estimation among
targets. The detailed models for the posterior estimation are introduced. Some quantitative experiments
with five benchmark datasets are conducted. Qualitative experiments with the benchmark dataset and
the campus video we collected are also carried out. All of the experiments confirm that the proposed
method is outperformed in handling the track tracklets due to occlusion and unreliable detections.

The proposed method employs the tracking-by-detection framework, so it heavily depends on
the detector. Additionally, because the DPM feature are used in the proposed detector, this increases
the computing complexity. The next works include efficiency optimization and application of some
CNN-based feature detection in the proposed framework.
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Čehovin, L. A Novel Performance Evaluation Methodology for Single-Target Trackers. IEEE Trans. Pattern
Anal. Mach. Intell. 2016, 38, 2137–2155. [CrossRef] [PubMed]

19. Zhang, B.; Li, Z.; Cao, X.; Ye, Q.; Chen, C.; Shen, L.; Perina, A.; Ji, R. Output constraint transfer for kernelized
correlation filter in tracking. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 693–703. [CrossRef]

20. Zhang, B.; Luan, S.; Chen, C.; Han, J.; Wang, W.; Perina, A.; Shao, L. Latent constrained correlation filter.
IEEE Trans. Image Proc. 2017, 27, 1038–1048. [CrossRef] [PubMed]

21. Ma, C.; Huang, J.B.; Yang, X.; Yang, M.H. Robust visual tracking via hierarchical convolutional features.
IEEE Trans. Pattern Anal. Mach. Intell. 2018, 1707, 03816.

22. Ju, H.Y.; Yang, M.H.; Lim, J. Bayesian Multi-object Tracking Using Motion Context from Multiple Objects.
In Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 5–9
January 2015.

23. Breitenstein, M.D.; Reichlin, F.; Leibe, B. Online Multi-person Tracking-by-Detection from a Single,
Uncalibrated Camera. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1820–1833. [CrossRef] [PubMed]

24. Sanchez-Matilla, R.; Poiesi, F.; Cavallaro, A. Online Multi-target Tracking with Strong and Weak Detections.
In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16
October 2016.

25. Leal-Taixé, L.; Fenzi, M.; Kuznetsova, A.; Rosenhahn, B.; Savarese, S. Learning an image-based motion
context for multiple people tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, 23–28 June 2014.

26. Ju, H.Y.; Lee, C.R.; Yang, M.H. Online Multi-object Tracking via Structural Constraint Event Aggregation.
In Proceedings of the Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

27. Choi, W.; Pantofaru, C.; Savarese, S. A General Framework for Tracking Multiple People from a Moving
Camera. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1577–1591. [CrossRef] [PubMed]

28. Romero-Cano, V.; Agamennoni, G.; Nieto, J. A variational approach to simultaneous tracking and
classification of multiple objects. In Proceedings of the International Conference on Information Fusion
(FUSION), Salamanca, Spain, 7–10 July 2014.

29. Romero-Cano, V.; Agamennoni, G.; Nieto, J. A variational approach to simultaneous multi-object tracking
and classification. Int. J. Robot. Res. 2015, 35, 654–671. [CrossRef]

30. Milan, A.; Roth, S.; Schindler, K. Continuous energy minimization for multi-target tracking. IEEE Trans.
Pattern Anal. Mach. Intell. 2014, 36, 58–72. [CrossRef] [PubMed]

31. Yang, B.; Huang, C.; Nevatia, R. Learning affinities and dependencies for multi-target tracking using a CRF
model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI,
USA, 20–25 June 2011.

32. Mclaughlin, N.; Martinez Del Rincon, J.; Miller, P. Enhancing Linear Programming with Motion Modeling
for Multi-target Tracking. In Proceedings of the Winter Conference on Applications of Computer Vision,
Waikoloa, HI, USA, 5–9 January 2015.

http://dx.doi.org/10.1109/TPAMI.2017.2691769
http://www.ncbi.nlm.nih.gov/pubmed/28410099
http://dx.doi.org/10.1016/j.cviu.2016.05.003
http://dx.doi.org/10.1109/TPAMI.2016.2516982
http://www.ncbi.nlm.nih.gov/pubmed/26766217
http://dx.doi.org/10.1109/TSMC.2016.2629509
http://dx.doi.org/10.1109/TIP.2017.2775060
http://www.ncbi.nlm.nih.gov/pubmed/29990103
http://dx.doi.org/10.1109/TPAMI.2010.232
http://www.ncbi.nlm.nih.gov/pubmed/21173441
http://dx.doi.org/10.1109/TPAMI.2012.248
http://www.ncbi.nlm.nih.gov/pubmed/23681988
http://dx.doi.org/10.1177/0278364915583881
http://dx.doi.org/10.1109/TPAMI.2013.103
http://www.ncbi.nlm.nih.gov/pubmed/24231866


Sensors 2018, 18, 2363 20 of 20

33. Yang, B.; Nevatia, R. Multi-target tracking by online learning of non-linear motion patterns and robust
appearance models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Providence, RI, USA, 16–21 June 2012.

34. Dicle, C.; Sznaier, M.; Camps, O. The way they move: Tracking multiple targets with similar appearance.
In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8
December 2013.

35. Yang, B.; Nevatia, R. Multi-Target Tracking by Online Learning a CRF Model of Appearance and Motion
Patterns. Int. J. Comp. Vis. 2014, 107, 203–217. [CrossRef]

36. Choi, W.; Savarese, S. Multiple target tracking in world coordinate with single, minimally calibrated camera.
In Proceedings of the European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010.

37. Bay, H.; Ess, A.; Tuytelaars, T. Speeded-Up Robust Features. Comp. Vis. Image Underst. 2008, 110, 404–417.
[CrossRef]

38. Tomasi, C. Detection and tracking of point features. Tech. Rep. 1991, 91, 9795–9802. [CrossRef]
39. Hoiem, D.; Efros, A.A.; Hebert, M. Putting Objects in Perspective. In Proceedings of the 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’06), New York, NY, USA, 17–22
June 2006; pp. 2137–2144.

40. Wu, B.; Nevatia, R. Detection and tracking of multiple, partially occluded humans by Bayesian combination
of edgelet based part detectors. Int. J. Comp. Vis. 2007, 75, 247–266. [CrossRef]

41. Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object detection with discriminatively trained
part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [CrossRef] [PubMed]

42. Comaniciu, D.; Meer, P. Mean Shift: A robust approach toward feature space analysis. IEEE Trans. Pattern
Anal. Mach. Intell. 2002, 24, 603–619. [CrossRef]

43. Robert, C.P.; Casella, G. Monte Carlo Statistical Method. Technometrics 2000, 42. [CrossRef]
44. Lealtaixé, L.; Milan, A.; Reid, I. MOT Challenge 2015: Towards a Benchmark for Multi-Target Tracking.

arXiv, 2015, arXiv:1504.01942
45. Milan, A.; Leal-Taixé, L.; Reid, I.; Roth, S.; Schindler, K. MOT16: A Benchmark for Multi-Object Tracking.

arXiv, 2016, arXiv:1603.00831.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11263-013-0666-4
http://dx.doi.org/10.1016/j.cviu.2007.09.014
http://dx.doi.org/10.1016/S0031-3203(03)00234-6
http://dx.doi.org/10.1007/s11263-006-0027-7
http://dx.doi.org/10.1109/TPAMI.2009.167
http://www.ncbi.nlm.nih.gov/pubmed/20634557
http://dx.doi.org/10.1109/34.1000236
http://dx.doi.org/10.2307/1270959
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	MOT with a Moving Camera 
	Motion Models in Tracking 

	The Proposed Method 
	The Unified Bayesian Framework 
	Camera Model and Camera Motion Estimation 
	3D Relative Motion Model Based MOT 

	Implementation 
	Proposal Distribution 
	Acceptance Ratio 

	Experiments and Discussion 
	Conclusions 
	References

