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Abstract: The majority of the Wireless Sensor Network (WSN) localization methods utilize a large
number of nodes to achieve high localization accuracy. However, there are many unnecessary
data redundancies that contributes to high computation, communication, and energy cost between
these nodes. Therefore, we propose the Intersection and Complement Set (IACS) method to reduce
these redundant data by selecting the most significant neighbor nodes for the localization process.
Through duplication cleaning and average filtering steps, the proposed IACS selects the normal
nodes with unique intersection and complement sets in the first and second hop neighbors to localize
the unknown node. If the intersection or complement sets of the normal nodes are duplicated,
IACS only selects the node with the shortest distance to the blind node and nodes that have total
elements larger than the average of the intersection or complement sets. The proposed IACS is
tested in various simulation settings and compared with MSL* and LCC. The performance of all
methods is investigated using the default settings and a different number of degree of irregularity,
normal node density, maximum velocity of sensor node and number of samples. From the simulation,
IACS successfully reduced 25% of computation cost, 25% of communication cost and 6% of energy
consumption compared to MSL*, while 15% of computation cost, 13% of communication cost and 3%
of energy consumption compared to LCC.

Keywords: computation cost; communication cost; energy; Localization; Monte Carlo; WSN

1. Introduction

A typical robot localization depends on the information from common sensors [1] such as laser
range scanner and ultrasonicwhich has a high cost of remote deployment. Contrarily, Wireless
Sensor Network (WSN) localization utilizes wireless communication features to estimate position
information. WSN localization is a process to estimate location information of unknown or blind
nodes in a wireless network. Therefore, it can be useful in many areas such as military surveillance,
precision agriculture, health monitoring and environmental monitoring. The communication features
of WSN localization include hop count, propagation time, received signal phase/angle and received
signal strength. These features are then forwarded to estimation modules such as the Kalman Filter
(KF) and Monte Carlo algorithm. The estimation algorithm is used to accurately estimate the position
information based on the data from the features.

Apart from the wireless communication features and the estimation module, another unique
characteristic of WSN localization is its capability to share information among communication devices.
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Consequently, nodes with known location can be used to estimate the location of blind nodes. This
can be beneficial when information from the selected features are insufficient to estimate the position
information. However, the estimation of blind node location from the nodes with known location
normally involves a large number of nodes. Involving a large number of nodes can increase the
estimation accuracy but at the expense of computation and communication costs. Communication and
computation costs are the two main components that affect energy consumption in WSN devices [2].
The communication cost includes the energy consumed during the data transmission and reception,
while the computation cost is the energy consumed to execute algorithms in the device or node.
A high communication and computation cost will rapidly deplete the energy and shorten the node
lifetime. For this reason, a trade-off between accuracy and energy consumption should be taken into
consideration in development of WSN localization algorithm.

In this paper, a Monte Carlo-based localization algorithm will be studied. Monte Carlo-based
localization, also known as Particle Filter (PF) localization is chosen due to its efficiency, lightweight,
and adaptability in a dynamic topology environment like mobile WSN environment [3]. This study
will be focusing on reducing the computation, communication, and energy costs of the localization
process, while maintaining its accuracy. Computation and communication costs are important factors
in determining the node lifetime, but limited studies have highlighted the respective issues. Based on
our review on recent Monte Carlo-based localization, only Low Communication Cost (LCC) scheme [4]
comprehensively addresses the issues. The LCC scheme utilizes adjacency matrix, set theory and
intersection set to remove unnecessary redundant data. Their result shows that their method reduces
the communication cost, which also reduces the energy consumption while maintaining the accuracy
of the localization estimation.

Inspired by the LCC, we propose a scheme called Intersection and Complement Set (IACS).
Both the LCC and the IACS are based on the Monte Carlo localization algorithm that includes both
first hop and second hop data to estimate the blind node location. However, the LCC scheme only
considers the intersection set, which only reduces the redundant data in the first hop nodes. Unlike the
LCC scheme, the IACS scheme utilizes both intersection and complement sets. Since second hop data
is used, the complement set in IACS is expected to find other possible redundant data that can be safely
discarded. IACS also introduces two major stages named as duplicate cleaning and average filtering.
In the duplicate cleaning stage, neighbor nodes that have the same intersection set or complement
set are discarded from the localization estimation. Then, the average filtering stage will only select
neighbor nodes with a higher number of elements in the intersection or complement sets. This will
further reduce the excessive data, which is not needed to estimate the location information.

To ensure the reliability of our proposed method, we evaluate our proposed method with Mobile
and Static sensor network Localization* (MSL*) and LCC scheme. In the evaluation, all methods
are tested in various scenarios that consist of default parameter, different maximum number of
samples, different nodes mobility speed, different degree of irregularity, and different node density.
Their performances are evaluated and compared in terms of localization accuracy, closeness value,
computation cost, communication cost, and energy consumption.

The rest of this paper is organized as follows: Section 2 reviews the literature on WSN Localization.
Section 3 discusses the problem analysis on the benchmarks. Section 4 describes the details of
the proposed IACS method and the experimental setup for the simulation. Section 5 presents the
description of the evaluation metrics follows with the evaluation results. Discussion and conclusion
follows in Sections 6 and 7.

2. Literature Review

Conventionally, the blind node location can be estimated using GPS embedded on the devices [5].
This satellite-based positioning system is accurate, but its reliability is susceptible to the weather,
presence of obstacles, position of satellites and the hardware’s limitation. Furthermore, the usage of
GPS would increase the overall cost due to the requirement of additional hardware. Alternatively,
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WSN localization uses neighboring nodes, nodes that obtained their location from data shared by their
respective neighbors. The usage of neighboring nodes would reduce the dependency on the GPS.

Two important attributes in WSN localization are wireless communication feature and
estimation algorithm. Wireless communication feature is a feature, which contains an informative
and non-redundant data extracted from an initial set of measured data using wireless devices.
The estimation algorithm, on the other hand, is a method to estimate the position information based on
the extracted features. The following section will discuss these two attributes and follow with Monte
Carlo-based localization methods.

2.1. Wireless Communication Feature

In WSN localization, wireless communication features are used to provide input to the estimation
algorithm. Wireless communication features have a distinctive characteristic of a wireless device that
contains measurement that is essential for position estimation. Typically, the distance measurement
is extracted from these communication features. The communication features include hop count,
propagation time, received signal phase/angle and received signal strength. In the hop count,
the distance is measured from the number of node-to-node hop count. Propagation time utilizes
the Time of Arrival (ToA), Time Difference of Arrival (TDoA), and Return Time of Flight (RToF), while
received signal phase/angle uses Angle of Arrival (AoA), RSP and interferometry techniques [6].
In received signal strength [7], RSS and Channel State Information (CSI) techniques are used. These
features are then sent to a localization estimation algorithm to estimate the actual position of
a blind node.

2.2. Localization Estimation Algorithms

Localization estimation algorithm is used to estimate the position information of a blind node
based on partial observations of other measurements. Two of the most widely used estimation
algorithms in localization are KF and PF/Monte Carlo Algorithms. Both KF and PF algorithms are
based on Recursive Bayesian estimation that estimates an unknown probability density function
recursively over time using incoming measurements and a mathematical process model. The KF
achieves this goal by deriving analytics equations based on multivariate normal distributions and linear
projections. For this reason, KF is excellent in estimating information in linear and normal distribution
environments [8–13]. Conversely, PF utilizes a set of discrete points or particles. The particles represent
the distribution of likely states, with each particle representing a possible state. Therefore, PF is more
efficient in non-linear and non-Gaussian environments. Furthermore, compared with the traditional
trilateration localization method, PF is more robust and has less localization error in each iteration [14].
Taking into consideration the non-linear model of a number of mobile WSN, this paper concentrates on
the PF localization method also known as Monte Carlo localization (MCL) [15]. The following section
will discuss the details of Monte Carlo-based localization methods.

2.3. Monte Carlo Based Localization Method

Monte Carlo-based localization algorithm normally starts with a uniform random distribution of
particles over a configuration space. If the node moves, the particles shift to predict its new state. When
new data is sensed, the particles are resample based on Recursive Bayesian estimation. The algorithm’s
goal is to converge the particles toward the actual position of the node. From the convergence, location
information can be extracted.

The preliminary algorithm of the Monte Carlo-based localization is MCL [15]. It estimates the
blind node location based on the data from seed nodes. A seed node is a node that is equipped with
positioning hardware such as Global Positioning System (GPS). However, the MCL is able to achieve
a good estimation of the location information; the high dependency on the positioning hardware
increases the costs of the localization process. Therefore, Mobile and Static sensor network Localization
(MSL) and MSL* are proposed to reduce the dependency on the seed nodes. The MSL and MSL*
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improve the MCL by taking the location information not only from the seed nodes but also from
neighboring normal nodes [16]. Normal nodes are the nodes that contains location information
estimated from the seed nodes. The inclusion of normal nodes in this cooperative method reduces
the seed nodes cost and improves the localization accuracy within the range of its radio signal.
The accuracy is improved due to additional information received from the normal nodes instead of
solely depending on the seed nodes.

Looking at the advantage of MCL, MSL and MSL*, other Monte Carlo-based localization methods
are proposed by prior researchers. Among them are Monte-Carlo Box (MCB), VMSL, VMSL*, WMCL,
and LCC. The focus of these methods is to improve the sampling efficiency while retaining the accuracy
of the prior Monte Carlo methods. The sampling efficiency looks into sampling nodes with significant
information instead of taking all information from the adjacent nodes. The purpose of selective
sampling is to reduce execution time, computation cost, and communication cost of a localization
process. Each of the proposed methods have their own unique properties to improve sampling
efficiency. For example, MCB [17] uses square bounding box to optimize the number of valid samples
from the seed nodes. Samples are selected from the intersection area of the bounding box between the
current and the previous location of the seed nodes. On the other hand, VMSL, VMSL* and WMCL [18]
introduce a technique that reduce the MCB bounding box size. The research of sampling efficiency
continues with the introduction of the LCC [4] scheme. The LCC utilizes an adjacency matrix and set
theory instead of a bounding box method as in prior MCB-based methods. From the result, it can be
seen that LCC outperformed MCB. This is because LCC reduces additional data broadcast cost that is
needed by the MCB-based method to create the bounding box.

Considering the advantage of the LCC scheme over other sampling methods, LCC is selected as
the benchmark in this paper. To make this paper self-contained, an extensive simulation on both MSL*
and LCC is done to investigate the research gap. The investigation is explained in the next section.

3. Problem Analysis

The simulation details of MSL* and LCC are explained in this section. For this research,
Netbeans (netbeans.org) is used for the simulation of MSL*, LCC and IACS. Netbeans is an Integrated
Development Environment (IDE) for Java language. The base source codes for the simulation have
been acquired from the original author.

Sensor nodes N are arbitrarily scattered throughout the 2-dimensional Euclidean space (2E) to
create the WSN environment. The parameters of our experimental setup are shown as in Table 1.
LCC [4] reduces the communication and computation cost of the localization process in MSL by
reducing the number of nodes used during the localization process. Figure 1a,b shows the comparison
of overall computation and communication costs between MSL* and LCC. Based on these results,
reducing the number of neighbor nodes used for the localization process contributes to a significant
reduction of computation and communication costs.

Table 1. Experimental Setup Parameters.

Parameter Value

Time Slot 200
Iteration 50

maxv 0.2r
r 50 unit

Environment Square bordered area of 500 unit × 500 unit
Maximum sample number 50 samples

Mobility model Modified Random Waypoint with 0 pause time
Base Density 32

Sd 1.0
Nd 10.0
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Figure 1. (a) Average computation cost of MSL* and LCC. (b) Average communication cost of MSL*
and LCC.

Further study on LCC is done to detect any research gaps. As a start, a simulation to detect
redundancy on the LCC node selection method is performed. The simulation is based on the
experimental setup in Table 1 including the list of all the intersection sets of each blind node neighbors.

LCC [4] filters the neighbor for each node based on intersection sets. Table 2 shows the examples of
the filtered neighbor nodes (Id), selected based on their respective list of neighbor sets and intersection
sets. Based on the table, there are duplicated intersection between node 8 and node 9. This shows that
node 8 and 9 share the same information for the filtering method in LCC. Therefore, a simulation to
detect these duplicates is done using the experimental setup in Table 1.

In term of information sharing, even though the sampling process requires the data from both first
and second hop neighbors, LCC only considers the total intersected neighbors between the blind node
and its neighbors. Therefore, by also considering the total non-intersected neighbors shared between
the blind nodes and their neighbors, more nodes for the localization process can be filtered. For these
reasons, IACS is proposed to safely discard these redundant data in order to minimize the localization
cost. IACS considers both intersection and non-intersection sets to further reduce the redundancy
(Section 4). The complement set is included in the proposed method to remove the redundant data
from the neighboring node that is outside of the blind node signal range.

Table 3 shows the tabulated version of duplicate intersection sets in Figure 2. Based on the
simulation, the basic statistics of duplicated intersection sets detected for 320 nodes within 200 time
slots are summarized in Table 4. The maximum duplication can reach up to 20, while zero (no duplicate)
is the minimum. Each node has approximately an average of 5 duplicate intersection sets while the
total duplication in each node that frequently occurred is 3.

Table 2. LCC Intersection set example.

Id Neighbor Set Intersection Set

0 {1, 2, 3, 5, 7, 8, 9} {1, 7, 8, 9}
1 {0, 3, 5, 6, 7, 8, 9} {0, 6, 7, 8, 9}
6 {1, 3, 4, 5, 8, 9} {1, 8, 9}
7 {0, 1, 3, 5, 8, 9} {0, 1, 8, 9}
8 {0, 1, 2, 3, 4, 5, 6, 7} {0, 1, 6, 7}
9 {0, 1, 2, 4, 5, 6, 7} {0, 1, 6, 7}
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Figure 2. Duplicate Intersection Sets. The surface chart represents the example of duplicate intersection
detected by each node for each time slot obtained from the simulation. The legend shows the range of
duplicated intersection sets detected, defined by different colors. The results vary depending on the
location and movements of each node during the simulation.

Table 3. Sample of Duplicate Intersection Sets extracted from Figure 2. t and n represent the Time Slot
and the Node Id, respectively. The correspondence values between the Time Slot and the Node ID
represent the number of duplication detected for the node in each time slot.

Time Slot (t)
Node Id (n) t1 t2 t3 t4 t5 t6-t195 t196 t197 t198 t199 t200

n1 1 4 2 5 3 . . . .. 7 10 4 2 5
n2 2 4 6 3 3 . . . .. 5 7 10 5 8

n3–n318
:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

:
:

n319 2 3 2 5 3 . . . .. 2 5 1 8 10
n320 3 3 1 2 2 . . . .. 6 4 4 5 7

Table 4. Basic statistics of duplicate intersection sets for simulation in Figure 2.

Statistical Approach Value

Minimum 0
Maximum 20
Average 4.76 ≈ 5

Mode 3
Standard deviation 2.81

4. Proposed Method

The following sections explain the implementation of the IACS method in the MSL* localization
algorithm. The simulation consists of three stages: initialization, IACS, and location estimation.

4.1. Initialization

During the initialization, sensor nodes are scattered randomly within a defined area without any
information about their location. Then, the relation between the nodes in the network are established
according to their distances from each other. The distances are used to group the nodes as a first hop
neighbor, second hop neighbor or out of range. For the simulation, the distance is measured in meters
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(m). Figure 3 shows a blind node surrounded by a set of neighboring nodes labelled with an identity
number (Id). At this stage, only seed nodes will broadcast their location since the location of the other
nodes is still unknown. The closeness value and the samples for each node are also initialized and
explained in the location estimation section (Section 4.3).
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4.2. IACS

There are two main steps in IACS, namely duplication cleaning and average filtering, as depicted
in Figure 4.
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4.2.1. Duplication Cleaning

In this step, we compare the intersection and complement sets of each neighbor node with each
other to find any duplication set. If the duplication set exists between the neighboring nodes, only
the node with the shortest distance to the blind node is selected to avoid delay when connecting
to far-away nodes. Therefore, less communication between the nodes is needed for the localization
process when the duplicated data are ignored.

For example, Figure 3 shows the neighbor set of the blind node is {0, 1, 6, 7, 8, 9} and the neighbor
set for node Id = 0 is {1, 2, 3, 5, 7, 8, 9}. The intersection set is the elements of the neighbor node’s
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neighbor set that intersects with the blind node’s neighbor set. Therefore, the intersection set of blind
node and node Id = 0 is selected as {1, 7, 8, 9}. The complement set on the other hand is the elements of
the neighbor node’s neighbor set that do not intersect with the blind node’s neighbor set, which result
in the selection of {2, 3, 5}. Based on Figure 3, Table 5 is tabulated. Table 5 shows that the complement
set of nodes 1 and 7 are duplicated. For this case, node 7 is removed as the distance of node 7 to the
blind node is further than the distance of node 1 to the blind node. Later, node 9 is removed due to
duplication of the intersection set with node 8 and it has a further distance to the blind node than
node 8.

Table 5. Duplication Cleaning Table.

Id Intersection
Set

Intersection
Duplicate

Complement
Set

Complement
Duplicate

Distance to
Blind (m) Remove?

0 {1, 7, 8, 9} No {2, 3, 5} No 21 No
1 {0, 6, 7, 8, 9} No {3, 5} Yes (with node 7) 9 No
6 {1, 8, 9} No {3, 4, 5} No 20 No
7 {0, 1, 8, 9} No {3, 5} Yes (with node 1) 10 Yes
8 {0, 1, 6, 7} Yes (with node 9) {2, 3, 4, 5} No 12 No
9 {0, 1, 6, 7} Yes (with node 8) {2, 4, 5} No 15 Yes

4.2.2. Average Filtering

Since the sample’s weight is based on the first and second hop neighbors from the sample’s
points (including neighbors to the blind node neighbor), we consider the complement elements of
the neighbor set between the neighbor node with the blind node to remove nodes that provide data
less than the second hop neighbor. Total elements from both intersection and complement sets are
calculated for their average. If the average contains decimals, the largest (closest to positive infinity)
integer value that is less than or equal to the average is selected. If the total elements in the intersection
set or complement set is lower than the average, they are considered as out of range, thus they are
removed from the localization process. From the scenario given in Figure 3, neighboring node 6 is
removed because the total elements in the intersection set are lower than the average of the intersection
elements of 4. Then, node 1 is removed (Table 6) since the total elements in the complement set are
lower than the average elements of three.

This step can prevent the blind node from communicating with nodes that provide redundant
and less significant information for the localization process. Therefore, the cost of computation and
communication are expected to decrease in IACS because fewer nodes are used without ignoring the
important data for the localization process.

Table 6. Average Filtering Table.

Id Intersection
Set

Intersection
Elements

Complement
Set

Complement
Elements Remove?

0 {1, 7, 8, 9} 4 {2, 3, 5} 3 No
1 {0, 6, 7, 8, 9} 5 {3, 5} 2 Yes: Low complement element than average
6 {1, 8, 9} 3 {3, 4, 5} 3 Yes: Low intersection element than average
8 {0, 1, 6, 7} 4 {2, 3, 4, 5} 4 No

Total (Average) 16 (4) 12 (3)

4.3. Location Estimation

The estimation process of the nodes location is computed according to [16]:

e(x) =
∑N

i=1 si(x) wi(p)

∑N
i=1 wi(p)

(1)

e(y) =
∑N

i=1 si(y) wi(p)

∑N
i=1 wi(p)

(2)
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where, e(x) and e(y) represent the estimated coordinates for node p(x,y). S denotes the sample points of
the current time, N is the current total number of the samples for node p and w represents the weight
for sample s at the current time. When there is no new sample produced, the current estimation point
is the same as the previous estimation point.

The resampling process is performed by the normal nodes to remove samples with lower weight
due to a fixed sample number and duplication of these samples in the new sample set. This process
includes inserting the current samples set into the new sample set containing the probability that
corresponds to its weight. The sample with a smaller weight will have a lower chance to be selected
and vice versa. The location estimation of a blind node is highly affected by the closeness value, sample
number and weight of its neighbor nodes as explained in the coming subsection.

4.3.1. Closeness

The quality of location estimation in MSL* can be measured using closeness [16] equation
as follows:

closenessp =
∑n

i=1 wi

√
(xi − x)2 + (yi − y)2

N
(3)

where N is the number of samples for node p, (xi, yi) represents the coordinate of the i-th sample
(i = 1,2, . . . ,n), wi represents the weight of the i-th samples, and (x,y) is the estimated location for
node p. Closeness is measured when samples for the node in the current time are available, else,
the closeness value is set to ∞. The closeness value of seed nodes is fixed to 0 while for others the
value should be greater than 0. This indicates that the accuracy of the localization is high when the
closeness value is small. The closeness value and location data of each node will be updated during the
localization process once the location data and the closeness value of the seed nodes are broadcasted
to their neighbors.

4.3.2. Sampling

For location estimation, each node generates new samples from the current sample. The node
will choose a random point within the radius vmax + α from the current sample [16] as shown in the
given equation:

p(St|St−1) =

{
1

π(vmax+ α)2 i f d(St, St−1) ≤ vmax

0 i f d(St, St−1) > vmax
(4)

d(St, St−1) represents the distance between the locations of a sample at time t and t – 1 while vmax is
the maximum speed of a node. α is the variability for choosing new samples and α must not be too
low so that it can provide variability in sampling even when the node’s speed is slow. In this paper,
we set α = 0.1r that is determined empirically as in MSL* [16], where r is the radio range radius of the
sensor nodes. The sample also must be within the vmax radius for mobile nodes.

The weight of each sample is determined by the product of partial weights, w′s(q) [16] as described
in the following equation:

ws(p) = ∏ k
q=1w′s(q) (5)

k represents the number of neighbors in the first hop and second hop. q is a neighbor of node p.
Partial weights, w′s(q) that corresponds to neighboring seed nodes are set to 1 if d(s, q) ≤ r for

first hop seed nodes and r ≤ d(s, q) ≤ 2r for second hop seed nodes. For neighboring normal nodes,
q in the first and second hop, the partial weights w′s(q) can be calculated according to (6) and (7)
respectively as follows:

w′s(q) = ∑
qi

w(qi), where d(s, qi) ≤ r + vmax (6)

w′s(q) = ∑
qi

w(qi), where r− vmax ≤ d(s, qi) ≤ 2r + vmax (7)
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Sample S is kept if ws(p) is larger than the threshold value β in which, β depends on the total
number of neighbors in first hop and second hop (t) of node p. The value of β = (0.1)t represents
that the uncertainty will decrease when the number of neighbors increase, which is unique for each
node. After the number of samples obtained is sufficient or at maximum, the weights are normalized
to ensure their total is equal to one. The weight normalization for the i-th sample is given by:

wi(p)

∑N
j=1 wj(p)

(8)

where N denotes the total number of the sample used for node p.

4.4. Simulation Experimental Setup

The performance of MSL*, LCC and IACS are compared and evaluated with identical experimental
settings in Section 3 (Table 1) and true node locations. Since the environment occurs on a flat surface,
the coordinate is in (x, y). RSSI is applied according to Reference [19] to derive the Euclidean distance
d, between the pair of nodes that overlap.

Each node is assumed to have a perfect circle radio range, r, for transmission and their distance
with other nodes are known. All three localization methods are assumed to run simultaneously using
the same true location. The node density (Nd) is the average density of all sensor nodes in the tested
environment, while the seed density (Sd) is the average density of the seed nodes. The simulation is
executed for 50 iterations (200-time slot in each iteration), where the estimated node locations and
their true location are reset after each iteration to compare the average accuracy over time between the
methods. In each time slot, each node speed varies from 0 to maxv and moves in different directions.
The nodes are assumed to move according to the modified random waypoint model [20] where the
pause time is set to 0 [21]. The mobility reduces the dependency on neighbor nodes with known
location. Despite the number of seed numbers deployed in the network, the number of the localized
node increases in each time slot as long there is a seed node in the whole network. Each node changes
places in each time slot to open the opportunity to gain new samples from their new neighbors.
Therefore, nodes in the network localize faster if more seed nodes are initialized.

5. Evaluation

The performance of all methods simulated in the experiment are measured in terms of total
average of localization error, closeness value, communication cost, computation cost, and energy
consumption. Both communication and computation costs depend on the nodes mobility model, where
in our case, modified random waypoint has been used to simulate the environment. The modified
random waypoint model has been extensively used in WSN and has been proven experimentally by
many researchers such as in References [4,15–18].

Other than that, we investigate the maximum number of samples, maximum velocity of each
nodes, degree of irregularity, and node density in the performances of IACS, MSL* and LCC. However,
it should be noted that the performances of all methods are measured only at the normal nodes without
including the seed nodes, which is similar to prior studies conducted in MSL* and LCC.

5.1. Localization Error and Closeness

The accuracy of the estimated location in the localization process can be described with localization
error. The localization error per time is evaluated similar to the error calculation in MSL* wherein a low
localization error represents high accuracy and vice versa. The estimation error can be measured [4]
as follows:

Error =
1
n

n

∑
i=1
||ei − li|| (9)
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where n is the total number of sensor nodes, ei represents the estimation while li is the true location of
the i-th node.

For the closeness evaluation, the total average closeness value is obtained for every case tested
according to Reference (3). A low closeness value represents a high quality location estimation and
vice versa. The metric unit of estimation error used in this study is meter (m).

5.2. Computation Cost

The computation cost is the cost to process valid sample production, as has been elaborated in
Section 4.3.2. The overall computation cost of the localization process increases for every valid sample
taken from each blind node’s neighbors and is used for the weightage calculation of the blind node
samples. Measurement of computation cost is stated in the following equation:

comp unit =
n

∑
i

sqi (10)

n represents the total number of the first and second hop neighbors of the blind node, while s is the
number of samples of each neighbor node q. One computation unit represents one valid sample point
obtained from a neighbor node for the blind node sample’s weightage calculation.

Therefore, the computation cost depends on the number of neighbor nodes and the number of
samples used for the localization process. MSL* requires a high computation cost due to the usage of
all nodes in the network but is outperformed by MCL in terms of convergence speed and sampling [4].
LCC then manages to decrease the computation cost by reducing the number of nodes being used for
localization. Thus, implementing IACS will further decrease the computation cost.

5.3. Communication Cost

Communication cost is the cost it takes to exchange messages between the blind node and
neighbor nodes within the blind node range. The number of message exchanges between the blind
nodes and its neighbors to obtain localization information can be used to evaluate the communication
overhead [15,22]. The number of message or communication cost is calculated according to n × s + m,
wherein n is the number of nodes in the network, m is the number of seeds and s is the number
of samples maintained by each node [16]. The number of message is influenced by the number of
seed nodes and normal node (multiplied with its sample number i.e., 50) in first hop and second
hop neighbors of the blind nodes. For the energy consumption calculation, the number of message
exchanges of each node is represented into bit as explained in Section 5.4. The number of message
exchanges (i.e., the communication cost) affected the overall energy consumption.

5.4. Energy Consumption

Dissipation of energy in the radio transmitter includes energy to run radio electronics, a power
amplifier, and in a receiver. A threshold, dcrossover is set to determine whether Friis free space, ε f s
represents (d2 power loss) or multipath fading εmp model (d4 power loss) for channel model as in
Reference [23]. Therefore, the energy used to transmit the l-bit message at distance d is:

ETx(l, d) = ETx−elec(l) + ETx−amp(l, d) (11)

ETx(l, d) = lEelec + lε f sd2, d < dcrossover (12)

ETx(l, d) = lEelec + lεmpd4, d ≥ dcrossover (13)

d = dcrossover, dcrossover =

√
ε f s

εmp
= 87.7m (14)
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To receive the message, the energy value is:

ERx(l) = ERx−elec(l) = lEelec (15)

Electronics energy, Eelec, is a combination of several factors such as sensing and actuation activity,
signal coding, modulation, filtering, transmission and reception of the signal. Amplifier energy, ε f s or
εmp, depends on distance to the receiver and acceptable bit-error rate. The value for ε f s, εmp and Eelec
are fixed as in References [23,24]. These formulas have been used in References [25–29] to calculate
WSN nodes energy in a cluster formation environment.

For the size of the l-bit message in (12), (13) and (15), the calculation of message size as in
Pongle [22] is implemented. Messages exchange between the blind nodes with other nodes only
occurrs when they are related. To exchange the messages, each node must have its own neighbor’s
information and send the information to the other nodes that are related to them. The total number of
message exchanges can be represented as the overall communication cost (Section 5.3).

One communication unit (message exchange) is represented by one packet data. This packet
data is transferred or received by each node. Therefore, each number of messages exchanged between
nodes in Section 5.3 is represented in bit for the energy consumption calculation. The structure of
the packet data for the neighbor information that was used to calculate the size of the message sent
and received is shown in Figure 5. However, the equation used bit unit for the packet size, therefore,
1 Byte = 8 bits.

In the simulation, the energy consumption of data transfer is calculated only from the blind node.
As previously explained, the total energy consumption of each node is ETx + ERx ((12), (13) and (15))
which depends on the total size of messages transmitted and received by each node per time slot.
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5.5. Simulation Results

MSL*, LCC, and IACS are simulated in the same environment settings to enable a fair comparison
between them in Section 5.5.1. From the simulations, the effects of the maximum number of samples,
maximum velocity of mobile sensor node, degree of irregularity, and node densities are also studied
and analyzed in the following sections. The graphical representations are based on the default
parameters stated in Section 3 (Table 1). The default parameter was marked with ‘×’ on the x-axis in
the figures for each result.

5.5.1. Default Parameter

Using the default parameters, IACS successfully improved the computation, communication,
and energy (Figure 6c–e) costs required for 50 iterations while maintaining the estimation error and
closeness (Figure 6a,b) value for each normal node as in MSL* and LCC. Based on the figures above,
IACS reduced 25% of computation cost, 25% of communication cost and 6% of energy consumption
compared to MSL*, while 15% of computation cost, 13% of communication cost and 3% of energy
consumption compared to LCC. The percentage is the difference between the value of each IACS
evaluation metrics with respect to MSL* and LCC. For example, the difference percentage between
IACS (562.44) and LCC (646.75) communication cost in Figure 6d: ((646.75 – 562.44) ÷ 646.75) × 100 =
13.04 ≈ 13%.



Sensors 2018, 18, 2344 13 of 23

5.5.2. Effect of Maximum Number of Samples

This evaluation is done to study how the proposed method reacts to a different maximum number
of samples. The maximum sample number used in previous researches is 50. In this evaluation,
maximum number of samples varied between 10 to 100 and the effects of these variations on MSL*,
LCC and IACS are presented in Figure 7a–e. Generally, a higher maximum sample number has little
effect on the localization accuracy and overall closeness value. However, it increases the computation,
communication and energy consumption.
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From the simulation, although the communication, computation, and energy costs increase,
IACS consistently shows the least costs compared to MSL* and LCC. However, similar accuracy and
closeness value are observed between the methods without obvious changes when the maximum
number of samples is increased.

5.5.3. Effect of Mobility Speed

This evaluation is performed to observe how well IACS reacted under different maximum velocity
compared with MSL* and LCC. To simulate a highly dynamic topology network, the modified random
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waypoint mobility model [21] and zero pause time are implemented into each of the nodes. The nodes
in the network are assumed to move during each time slot at velocity, v = 1/maxv, where maxv is
the maximum velocity of the sensor nodes. maxv values tested are from 5–200 while the default
speed used in MSL* and LCC is 10 (×marked). According to the results, sensor node velocity is
directly proportional to estimation error and computation cost, while it is inversely proportional to
communication cost and overall energy consumption. As the velocity of the sensor node increases,
the network topology changing rate will be faster. Therefore, each node will lose connection with its
neighbor in a short time. Figure 8a,b shows that the error estimation and closeness value are not much
different for the three methods.
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From the simulation results shown in Figure 8c–e, IACS outperformed MSL* and LCC in terms of
communication, computation, and energy costs while maintaining the similar error estimation and
closeness value of normal nodes.

5.5.4. Effect of the Degree of Irregularity

The degree of Irregularity (DOI) is the measurement of variation for range and direction of radio
transmission. DOI is measured because the perfect circle of radio transmission that is assumed in the
simulation does not represent the real value of radio transmission. The irregularity of radio range
follows a normal distribution with mean r and standard deviation σ to allow greater variation [16].
Each sensor is assumed to have the same ideal radio range, r. σ is used to determine whether the
sender or receiver is within r. The σ values used in the simulation are 0, 0.1, 0.2, 0.3, 0.4 and 0.5. Default
DOI value tested on previous research is 0. A high value of DOI represents a high variation of the
radio range transmission that may be caused by a high density of obstacle or climate changes in the
real environment.

Figure 9a,b shows that the average estimation error and the total closeness value of all methods
are rapidly increased when the DOI value is above 0.2 and 0.3, respectively. However, the proposed
IACS demonstrates the lowest average estimation error and the average closeness for every DOI
compared to MSL* and LCC. This shows that IACS is more robust in the environment with a wider
variation of radio signal transmission.

Figure 9c tells the average computation cost is at the maximum when the value σ = 2, where each
blind node has the most number of neighbors. The computation cost is at the highest when σ ≥ 0.3,
where the localization error starts increasing. When σ ≥ 0.4, the DOI is too high that some nodes may
not relate to any nodes. Thus, the nodes will not have sufficient valid samples for the localization and
results in high estimation error as shown in Figure 9a. The IACS method requires the least computation
cost compared with the other methods.

As the number of neighbors in the range of blind nodes decreased, the communication cost
and the energy consumption are decreased (Figure 9d,e). The proposed method requires the least
communication and energy cost in different DOI.

5.5.5. Effect of Node Density

Node density represents the total density of nodes including both seed and normal nodes in
the 500 × 500-unit area. A high node density represents a high number of sensor nodes in the
environment that include both normal and seed nodes. The default node density parameter used is 10.
This evaluation is performed to evaluate how well IACS with node density less and greater than 10.
A density of 1 is equal to a total of 32 nodes. The seed nodes density tested for this evaluation is 1 in
an environment of total nodes density ranging from 2 to 20. As the total number of nodes increases
in the network, there will more nodes involved in the localization process that contribute to a better
localization accuracy. However, this will increase the costs of the localization process. In that prospect,
IACS provides the least costs of computation, communication and energy consumption compared to
MSL* and LCC as the node density increases. IACS demonstrates a similar performance with MSL*
and LCC in terms of average error estimation and closeness value wherein the average error estimation
and closeness value increases with the increment of normal density (Figure 10a,b). For computation,
communication and energy costs, the proposed IACS outperformed others by utilizing the least cost
for different node density (Figure 10c,d).

The costs increase as the nodes density increases because more nodes are involved in the
localization process as the number of normal nodes increase (Figure 10c–e).

Based on the simulation results, the proposed IACS reduced the amount of communication,
computation and energy costs while maintaining its localization accuracy even at static mobility and
mobile mobility with different DOI, normal density, seed density, maximum sample number and
sensor nodes maximum velocity.
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6. Discussion

In the localization process, IACS utilizes normal and seed nodes similar to LCC and MSL*.
The proposed IACS improves LCC and MSL* by reducing the number of normal nodes used in
the localization process. To reduce the number of normal nodes, IACS selects nodes with the
total intersection set and complement set that is above the average value and one of the nodes
that has a duplicate intersection set and complement set. This decreases the cost of computation,
communication and energy consumption while maintaining the estimation accuracy as in LCC
and MSL*.

Based on the simulation results, the number of valid samples used for localization can affect the
costs of localization and the accuracy slightly. For example, utilizing a low number of samples will
slightly decrease the accuracy and costs of localization while utilizing a high number of samples
will increase the accuracy and cost of localization. However, the overall cost of computation,
communication, and energy consumption is inversely proportional to the total number of samples.
The default maximum number of samples in MCL, MSL* and LCC was set to 50 since it is proven
experimentally as the optimum number of samples needed for localization in MCB [17]. The simulation
results show that no obvious improvement is observed for all methods in terms of localization accuracy
when the maximum number of samples is equal and larger than 50. For the cost of computation,
communication, and energy consumption, IACS shows the least values compared with LCC and
MSL* while maintaining the localization accuracy even with high sample numbers produced for the
localization process.

Localization accuracy can be improved in a mobile WSN environment. Blind nodes can obtain
more location information from more nodes for the localization process. However, accuracy can only
improve when the sensor node velocity is slow. In the fast speed mobile network, location of the blind
nodes neighbor will be out of range as the nodes are moving far away from each other in a shorter
time. As the previous blind nodes neighbor is out of range, the previous sample will be inadequate to
estimate the current blind node location, thus, the new samples are required for the estimation of the
current location. Valid samples are harder to obtain when the mobility speed of the sensor node is
high, resulting in a repetitive sampling process until enough sample is obtained. The communication
cost is low when the mobility speed is high, this causes a less number of nodes being selected for the
localization process. Less communication means less energy consumed. Compared to MSL* and LCC,
IACS requires the least costs requirement.

DOI value is the variability of radio range’s signal strength and direction of the sensor node.
The slightest irregularity of radio range and direction can contribute to the increments of the size of
overlap area of radio transmission and reduce the number of neighbors of each node, thus reducing the
localization accuracy and communication possibility. From the results (Figure 9c), computation cost is
at maximum when DOI value is at 0.3, then it drops at 0.4 and above due to difficulty in obtaining
valid samples. As the DOI increases, each node faces difficulties to detect neighbors, thus causing the
disability to produce enough valid samples in the localization process. In our simulation, IACS has
shown to be more suitable than LCC and MSL* in a high DOI value. IACS also requires the least cost
of computation, communication and energy consumption, when compared toLCC and MSL*.

Scalability is one of the crucial issues in designing a WSN network. We consider the scalability
as the ability to maintain the cost of the localization process while increasing the size of the network.
Therefore, IACS is simulated on different node densities and the results are shown in Section 5.5.5.
The accuracy of localization improves as the nodes density increases. This is possible since the
localization process of each node depends on the information from its neighbors. As the network
expands, all the cost will eventually increase. However, our results show that IACS requires the least
cost of computation, communication and energy consumption while maintaining the localization error
compared with MSL* and LCC even at a high density of nodes.

Based on the results of the simulation, there are small trade-offs between the cost of communication
and computation with the accuracy of the localization methods tested. IACS gain approximately 1.4%
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more estimation error than LCC with 15% less communication and 13% computation tested using the
default parameter stated in the experimental setup section (Section 3) and the results in Section 5.5.1.
The methods are also tested in different scenarios. As LCC and IACS work well only when the nodes
mobility speed are low and different maximum samples of number do not result in a significant
improvement of the accuracy. IACS is proven to work better than MSL* and LCC in a higher DOI value
environment. When DOI = 0.5, IACS accuracy is 3.13% better than LCC. In term of node density, IACS
obtained a low estimation error in a high node density environment like MSL* and LCC with lower
costs. From the discussion, it shows that IACS works very well in high node density, high DOI value,
and low maximum velocity node’s environments.

7. Conclusions

In this paper, we focused on the conservation of sensor nodes overall localization cost and
redundancy management in data sharing and transmission. Our study shows that MSL* uses both
seed and normal node to estimate blind node location that is outside the range of seed nodes but
within the range of normal nodes. Though the MSL* has the advantage of better localization accuracy,
the method will increase the overall communication cost in the network. The MSL* drawback is then
mitigated by LCC which reduces the communication cost. However, the filtering process in LCC is
exposed to redundancy, where the blind node may have neighbors that share the same information
even after the filtering process. Furthermore, LCC neglect the data shared by second hop neighbors,
even though the localization process includes the samples from both first and second hop neighbors.
Therefore, a method to reduce data redundancy that would affect computation, communication and
energy cost of localization process is proposed.

The proposed method, which is named as IACS, is based on the intersection and complement
sets that select the most significant neighboring nodes for the localization process. IACS consists
of two main steps namely, duplication cleaning and average filtering. In the duplication cleaning
step, the neighbor nodes that contain unique intersection and complement sets are selected for the
localization process. If the intersection and complement set of normal nodes are identical, the node
with the shortest distance to the blind node will be selected. Then, the average filtering step will
further filter the nodes selected in the duplication cleaning step based on their total intersection and
complement elements. This process excludes the nodes with the total intersection or complement
elements that are lower than the average of intersection or complement elements in the neighborhood,
respectively. Through these steps, the proposed IACS allows the selection of the most significant nodes
to reduce the costs required for localization of the blind node. From the simulation, IACS reduced
25% of computation cost, 25% of communication cost and 6% of energy consumption compared to
MSL*, while 15% of computation cost, 13% of communication cost and 3% of energy consumption
compared to LCC. Furthermore, IACS also required the least cost of computation, communication
and energy in various scenarios tested compared to MSL* and LCC. Based on the research, there are
also research gaps found on the MCL-based algorithm that can be done for future works. Most of
WSN localization methods are implemented using simulation due to the high cost for the full-scale
hardware environment. Furthermore, the resampling process used in the recent PF algorithm does not
prevent the samples deterioration [30]. On the other hand, the presence of obstacles and walls in the
area can cause the sensor node to be in a Non-line-of-sight (NLOS) state, where the signal transmission
between nodes can derange [31]. Both samples deterioration and deranged signal transmission may
lead to localization inaccuracy and failures. On that note, future works to efficiently avoid PF samples
deterioration, to prevent deranged signal transmission among nodes caused by obstacles or walls,
and full-scale hardware implementation could contribute significantly to the field.
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List of Acronyms

IACS Intersection and Complement Set
WSN Wireless Sensor Network
KF Kalman Filter
PF Particle Filter
LCC Low Communication Cost
MSL* Mobile and Static sensor network Localization*
ToA Time of Arrival
TDoA Time Difference of Arrival
RToF Return Time of Flight
AoA Angle of Arrival
RSS received signal strength
CSI Channel State Information
MCL Monte Carlo Localization
GPS Global Positioning System
MSL Mobile and Static sensor network Localization
MCB Monte-Carlo Box
VMSL V-Mobile and Static sensor network Localization
VMSL* V-Mobile and Static sensor network Localization*
WMCL Weighted Monte Carlo Localization
IDE Integrated Development Environment
2E 2-dimensional Euclidean space
Nd Node density
Sd Seed density
Id Identity number
NLOS Non-line-of-sight
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