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Abstract: This paper proposes a noninvasive dual optical photoplethysmography (PPG) sensor to
classify the degree of arteriovenous fistula (AVF) stenosis in hemodialysis (HD) patients. Dual PPG
measurement node (DPMN) becomes the primary tool in this work for detecting abnormal narrowing
vessel simultaneously in multi-beds monitoring patients. The mean and variance of Rising Slope
(RS) and Falling Slope (FS) values between before and after HD treatment was used as the major
features to classify AVF stenosis. Multilayer perceptron neural networks (MLPN) training algorithms
are implemented for this analysis, which are the Levenberg-Marquardt, Scaled Conjugate Gradient,
and Resilient Back-propagation, to identify the degree of HD patient stenosis. Eleven patients
were recruited with mean age of 77 & 10.8 years for analysis. The experimental results indicated
that the variance of RS in the HD hand between before and after treatment was significant
difference statistically to stenosis (p < 0.05). Levenberg-Marquardt algorithm (LMA) was significantly
outperforms the other training algorithm. The classification accuracy and precision reached 94.82%
and 92.22% respectively, thus this technique has a potential contribution to the early identification of
stenosis for a medical diagnostic support system.

Keywords: arteriovenous fistula (AVF); hemodialysis (HD); dual PPG measurement node (DPMN);
Levenberg-Marquardt algorithm (LMA)

1. Introduction

U.S. Renal Data System Annual Data Report (USRDS) recently claims, about 450 per million
populations in Taiwan suffered by End-Stage Renal Disease (ESRD) and its incidence prevalence
became most common among the highest in the world [1]. Taiwan Renal Registry Data System
(TWRDS) confirmed the fact that, recently more than 80,000 Taiwanese patients are dialysis urgency
and the count is growing [1,2].

Hemodialysis (HD) is a process of blood filtration of a patient with renal failure by using a device
called Dialyzer. Before having HD treatment, the patient must go through a surgical access known
as anastomosis, which returns the purified blood through a thin fiber after filtering out the waste
fluid. The anastomosis is done a few weeks or months before HD treatment and it is done on patient’s
elbow or wrist using the non-dominant arm [3-5]. There are three types of vascular access which are
well known in HD treatment, namely Arteriovenous Fistula (AVF), Arteriovenous Graft and Venous
Catheter respectively. AVF is the most recommended HD treatment. However, AVF should not be
used for a longer time because it may cause stenosis which results in the dysfunctional fistula.

Stenosis is an abnormal narrowing of the vessels caused by calcification processes or vascular
wall thickening processes by new materials which may lead to abnormal blood pressure [6]. In the
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HD process, the recommended blood flow for arteriovenous fistula is more than 600 mL/min and
more than 400 mL/min for arteriovenous graft [7,8]. When there is insufficient blood flow due to the
narrowing of vessels then the remedial process on the fistula is performed. Therefore, it is important to
monitor the treatment on the regular basis, to protect it from AVF stenosis, thus having total occlusion
and extended fistula life.

In the case of HD treatments, access stenosis and vessel wall elasticity impair are frequently
occurs [9].Vascular compliance was significantly associated with intra flow, resistance and changes in
blood volume. Deformation of each PPG pulse shape was important parameter to classify the degree
of stenosis (DOS) in HD patients. In the previous study, the bilateral difference in PPG pulse shape
between two hands was also associated with the stenosis [7-14].

In clinical physical examination, angiography and Doppler ultrasound are commonly used for
AVF monitoring [6]. Angiography is a golden standard for clinical vascular evaluation but it requires
surgery and it is invasive [15]. Doppler ultrasound is an alternative way to evaluate the diameters of
an AVE Both of this clinical equipment are expensive and require experienced operators with the high
knowledge to operate those [16]. On the other hand, as a low-cost measurement, PPG was developed
for experimental purposes in vascular disease and its signal obtained from a noninvasive optical
technique [17-20]. Although both golden standard aforementioned could provide high accuracy
assessment, utilizing PPG signal might be a proper alternative solution to help patients for monitoring
their arterial initial status [21].

Artificial neural network (ANN) based on multilayer perceptron is one of the techniques within
the scope of pattern classification that is attracting the interest of researchers in recent years [22-24].
Currently, achieving precise goals in diagnosis and treatment is a very challenging issue to solve in
clinical decision making. The appropriate techniques are required and the proper use of data is needed
to solve this issue which corresponds to the pattern recognition problems. ANN has been used in the
medical fields as a diagnosis of disease tool that uses principles in pattern classification [25]. Based on
this fact, ANN has enough potential to make predictions in medical outcome such as arteriovenous
fistula stenosis.

The proposed study uses multilayer perceptron neural network (MLPN) as classification technique.
To set network model training algorithm were used such as Levenberg-Marquardt, scaled conjugate
gradient and resilient back-propagation with respect to their weights and parameters. The performance
of MLPN was influence by the neural network model structure and data selection [26]. Furthermore,
to develop a reliable and robust network requires proper selection of appropriate data (feature) input.
Therefore, the T-test is used as a feature selection technique to identify the presence of stenosis in HD
patients. The PPG signal measured before and after HD treatment on the both left and right hand to
calculate the values of RS and FS as features in time domains.

The proposed study was accomplished with an ANN model based on MLPN and tried to find a
better training algorithm for dual PPG optical sensor system to have enough of potential for medical
diagnosis decision making. The ANN stenosis classification model for HD patients used RS and FS
value in the both hands before-after HD treatment as the input features. The sections in this paper
are structured as follows: Section 2 describes the experimental detail with dual PPG measurement
node and the techniques used to classify the degree of stenosis in a HD patient. Section 3 explains the
experimental result. Finally, Section 4 provides the conclusions of the research.

2. Materials and Methods
2.1. Material

2.1.1. Experimental Protocol

There are 11 subjects used in this study with a mean + SD age of 77 & 10.8. They were patients
recruited from the Institutional Review Board (IRB): VGHKS17-CT3-11 of Kaohsiung Veterans General
Hospital (KVGH). For this study, the patients relaxed for 10 min in supine position in a room with



Sensors 2018, 18, 2322 30f18

temperature of 25 + 1 °C. The procedure was carried out in the same room specifically for HD
treatment [8].

2.1.2. Signal Measurement

The changes in blood volume on the right and left hands were monitored in the supination
position of forearms. The dual channel probes ware mounted within the index finger with a clip to
acquire PPG signals from red infrared wavelengths reflection (680-940 nm) which synchronously
collected at a sampling rate of 1 kHz. The collected PPG signal was then converted from analog to
digital in an embedded system (MSP430, Texas Instruments, Dallas, TX, USA) to be transferred to
a laptop using a blue-tooth module. This process runs on a set of devices called as the dual PPG
measurement node (DPMN) which was given a power of 5-volt lithium battery. Next, the data
was analyzed with MATLAB in a laptop. The PPG signal measurement technique explained above
illustrated in Figure 1.
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Figure 1. Dual optical PPG measurement technique: (a) PC Base practical PPG measurement with
DPMN; (b) PPG probe placement and the fistula.

2.2. Methods

The main techniques of this study which are depicted in Figure 2 are outlined in four stages:
(a) preprocessing of dual PPG signal, (b) feature generation (peak and valley detection, rising and
falling slope calculation, normalization, mean and variance calculation), (c) feature selection (Statistical
hypothesis T-test has been used for selecting the neural network input), (d) classification by utilizing
MLP neural network to classify the input based on degrees of stenosis.

2.2.1. Preprocessing of Dual PPG Signal

At this stage, the raw dual PPG signal was recorded from 11 patients and each segment of signal
at least 1 min for analysis. In order to remove the noises caused by environmental signals, a moving
average low pass filter (LPF) was employed with a robust local regression utilizing weighted linear
least squares and a model of second degree polynomial (with a span of 1%).
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Figure 2. The technique used in the system development.

2.2.2. Feature Generation

Prior research by Allen and Murray [10-12] had experimented on the symmetric anatomical site
of the human body by comparing two PPG signals called Bilateral PPG. The main goal was to extract
the physiological features from the difference of bilateral PPG signals that was observed by signal
shapes and temporal characteristics. Arts et al. [13] conducted a systematic quantitative investigation
using the feature of [10] which was taken from the representative of leg stenosis patients and healthy
subjects. In this study, feature generation was derived from the dual PPG signal extraction process
observed from the signal shapes as investigated by [10,12]. The stages of feature generation begin
from: peak and valley detection which was calculated from the values and locations of local maxima
in selected PPG signal. The PPG signal has been de-trended to remove the outliers, offset and drifts
before the calculation. The result then evaluated by the value of peak point (V) minus the value from
the valley’s starting point (Vi) and then divided by the subtraction of the peak point location (Tpn)
with the location of the valley's starting point (Ty) on each single signal PPG wave. This calculation
was made to find the value of Rising Slope (RS) as described in Equation (1). Equation (2) used to
calculate Falling Slope (FS) which is dealing with the next valley point (V1) on each single signal
PPG wave and Ty,,; as the next location of the valley’s point.

Vp — Vp

Rising Slope (RS) = —— 1
g Slope (RS) = ¢ —7. )
\Y% -V
Falling Slope (FS) = -1 7 ©)
Tn+1 - Tpn

The calculations were performed on the both right and left hand of the patients, before and after
HD treatment. The detailed description of the term used in this study can be seen in the Figure 3.
Normalization xg g should be done to get the same range on each data (RS and FS) or known as
rescaling [14,27]; in this study the data was rescaled from 0 to 1 utilizing Equation (3):
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Figure 3. PPG pulse wave for RS and FS calculation before and after HD treatment in two patients.

2.2.3. Features Selection

The appropriate feature must be selected to improve prediction performance [28]. This stage
begins with calculation of mean and variance using Equations (4) and (5), respectively, to provide the
input on the statistical hypothesis used T-test in this study [27]:

_ X;
Xoa = Yot @
—\2
> _ L —X)
Sb,a - n— 1 (5)

The last step in this stage was T-test calculation to get appropriate candidate feature which is
shown from its statistical significance to the occurrence of stenosis in HD patients. T-test calculation is
done by the following formula:

X1 — X2
the = ————— (6)

S
<nl+nz

where, X7 is the mean of examined feature (RS or FS) before HD process and X; is the mean of examined
feature (RS or FS) before HD process. While, S; is the variance of examined feature before HD and Sp
is the variance of examined feature after HD.

2.2.4. Classification

(A) Degree of Stenosis (DOS)

Aforementioned specifically in this study, to classify AVF stenosis in HD patients the DOS is the
main reference. The neural network as a classifier obtains input data from T-Test results performed on
RS and FS features which is the parameter to identify stenosis occurrence in HD treatment. The detail
DOS data correspond to the features used in this study is shown in Table 1.The selection of particular
location for vascular access site in a hand was important with respect to the arterial anatomy and the
adequacy of the venous [5]. Further, HD hand was a term to describe the selected location for HD
treatment based on the recommendation from physicians or nephrologist, it usually in non-dominant
side of the hands.
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These subjects in this study were distributed according to its severe class. In clinical research
definition, the DOS was a degree index of narrowing normal vessel of arteriovenous fistula and it
measured by B-mode ultrasound or angiography images. In the previous research [8,14,29] to grade
the vascular disease, severe DOS was the main reference and the equation shows as below:

d2
DOS % = (1 - 2) x 100% @)
D

In the blood flow direction, the stenosis lesion diameter represented by the value of “d” and
the normal vessel diameter represent by “D”. The depiction of this term corresponds to the venous
anastomosis and arterial anastomosis site are shown in Figure 4.

Venous
-~ anastomosis site

Arterial
.~ anastomosis site

Vessel

d = the diamete

stenosis lession

D = the diameter of (b)
normal vessel

Figure 4. (a) B-mode ultrasound image of DOS measurement area; (b) the cross-section of the vascular
access: the stenosis lesion diameter d and normal vessel diameter D [14].

Table 1. The data of HD patients.

. . A Gender HD Hand

No. Class (Targets) b d DOS (%) 8¢ Male Female Right Left
1 [100] 1.04 0.94 18.31 81 4 N4
2 [100] 1.18 1.09 14.67 78 Vv 4
3 [100] 1.36 1.17 25.99 87 v Vv
4 [100] 0.80 0.70 23.30 86 Vv Vv
5 [100] 1.71 1.45 28.10 65 v N4
6 [010] 0.73 0.59 34.68 81 4 Vv
7 [010] 1.16 0.83 48.80 54 Vv V4
8 [010] 1.08 0.81 44.30 67 v N4
9 [010] 0.78 0.58 44.38 87 Vv Vv
10 [001] 0.88 0.44 74.72 75 Vv Vv
11 [001] 0.98 0.23 94.50 86 Vv Vv

The total occlusion occurs if the DOS is 100% while surgical treatment usually needed when
over 50% and between 30% to 50% means during HD influences the efficiency. The distribution of
three classes is designed based on the considerable amount of examination and the comment of a
professional physician for the classification shown in Table 2.

Table 2. Class partition based on DOS [14].

DOS Class
DOS < 30% 1
30% < DOS < 50% 2

DOS > 50% 3
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(B) Multilayer Perceptron Neural Network

Multilayer Perceptron (MLP) is the most common type used as feed forward Artificial Neural
Network (ANN). Generally, MLP consists of one input layer, one hidden layer and one layer of
computation output. Furthermore, to explain the definition of MLP used in this study can be illustrated
as in Figure 5.

Input layer Hidden Output
(feature set) Layer layer

a +>y1 (DOS < 30%)

"e 32 (30%<DOS < 50%)
i

+y3 (DOS >50%)

Figure 5. Multilayer Perceptron Network Structure.

The input, hidden and output layer expressed in the index of neurons i, j and k respectively.
The calculation of neurons in MLP is formulated in Equation (8), where r is the number of input data
features, while x (x1, xp, ... , Xn) represents the feature value and w is the weight of the vector. In this
study, the number of input data features r = 4, is taken from the variance and the mean value which is
the selected feature by the T-test. The weights for connection from the input layer to the hidden layer
are expressed in wj; while the weights from the hidden layer to the k neuron in the output layer are
expressed in wiy (8) [27].

r
VvV = Z Xi.Wj (8)
i=1

To generate the output signal, the value of v must be activated with the activation function.
The Logistic Sigmoid or known as binary sigmoid was employed in this study to be the activation
function. The error signal is propagated from the output layer to the hidden layer for the p iteration.
The output value targeted to the k neuron and the real output obtained by the k neuron at the output
layer [27]. In this study, the targeted output value is DOS < 30% as class 1,30% < DOS < 50% as
class 2 and the last is DOS > 50% as class 3. To update the weights on the connection between the

hidden layers to the output layer is done by the following formula:

wik(p + 1) = wik(p) + Awjk(p) ©)

where Awj (p) is the weight correction which is calculated using Equation (10):

Awi(p) = n x y;(p) x 8 (p) (10)

where 1) is learning rate, while 8, (p) is the gradient error in neuron k. The error gradient is determined
from the derived activation function multiplied by the error in the output layer neuron. To calculate the
error gradient corresponding to the activation function: Logistic Sigmoid (binary sigmoid) obtained
from Equation (10):

5k(p) = yi(p) X (1 —y(p)) % ex(p) (11)

where:
1

-y (12)

yk(p) =



Sensors 2018, 18, 2322 8 of 18

(C) MLPN Architecture

The architecture construction and the type of network were the main issue in ANN.
Muzhou and Lee stated that adequate neural network architecture can improve the generalization
of performance [30]. In this study, the optimal network architecture of the MLP model to be used
initially has been determined as (4, 35, 3) after ten times of experiments. It means the dimensions
of the layers are four input variables, 35 nodes are in the hidden layer and three output nodes,
respectively. As previously described, the sigmoid logistics transfer function is used in the output
layer and hidden layer.

(D) MLPN Training Algorithms

Three training algorithms were tested in this study to evaluate the ANN performance by 5-fold.
However, not all algorithms are able to evaluate target output as desired. In this study, attempts were
made to implement three training algorithms such as Levenberg-Marquardt, Scaled Conjugate
Gradient, and Resilient Back-propagation. The detailed explanation related to the three training
algorithms, is described as follows:

(D-1) Levenberg-Marquardt Algorithm (LMA)

To solve nonlinear least squares problems, LMA is usually used as a standard algorithm.
A combination of gradient descent and Gauss-Newton methods appears in this algorithm. In many
cases, the LMA can guarantee problem-solving through its adaptive behavior [31]. If back-propagation
(BP) is expressed as gradient descent, the algorithm becomes slow and doesn’t give an optimal
solution [32]. On the other hand, if BP is expressed as Gauss-Newton, the algorithm has highest
probability to give an optimal solution [33]. In this algorithm, the Hessian calculation approximation
is shown in Equation (13) and the calculation of its gradient is expressed in Equation (14):

H=]T (13)

g=1Je (14)

where Jacobian matrix represent by J and e indicate a vector of network error. And then the LMA
behaves as Newton is expressed by the following equation:

st = X — [JTT+ ] 'TTe (15)

where X1 is a new weight that calculated as gradient function and current weight xi using
Newton algorithm.

(D-2) Scaled Conjugate Gradient Algorithm (SCGA)

The most popular iteration algorithm to solve the problem of large systems of linear equations is
Conjugate Gradient. The iteration of the conjugate gradient is shown in Equation (16):

Xk = Xg-1+ okdr—1 (16)

where k is the iteration index, o is the step length at k iteration, and dy is the search direction.
SCGA is the second order of Conjugate Gradient Algorithm which can minimize the purpose function
on several variables. Moller [34] has the basis of algorithms which uses second-order techniques in
second derivatives to find better local minimum solutions. SCGA uses step size scaling techniques
to avoid consumption of learning iteration time. According to Moller, SCGA exhibits the superliner
convergence on almost all problems as an advantage.
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(D-3) Resilient Back-propagation Algorithm (RPA)

RPA is a learning algorithm that can improve the speed of convergence. RPA also minimizes the
number of learning steps and different adaptive parameters using the Gradient Descent Algorithms
(GDAs) principle to easily calculate learning schemes [35,36]:

Axy = —sign(i—fi)Ak 17)

The current weight vectors indicated by Axy, AEy is an error function at k and Ak is used to
increase bias as formulated in (17).

(D-4) Training and testing time

In this study, training time is the time used by MATLAB to fetch the data input, do the training
process and provides the classification result of MLP model developed. Testing time is detailed as the
time used by the CPU to predict the class label of data input.

3. Results and Discussion

3.1. Technical Implementation

As explained in Section 2.1, this work was done based on our IRB to the HD patient that
hospitalized in the hospital. Furthermore, the system has been implemented directly about the
study with the technique as described in Section 2. Figure 6 shows the utilization of dual optical PPG
sensors to classify the degrees of stenosis in HD treatment patients.

@ Laptop based @ Hemodialysis Left hand
practical system Machine probe

Dual PPG measurement t
node (DPMN)

1§
@ Blood

flow line ° Right hand
probe

Figure 6. The dual optical PPG system implemented on the patients.

The use of DPMN in this study improves the quality of monitoring in multi-beds patients in the
context of manpower availability. The laptop was used to collect patient data using several DPMN as
depicted in Figure 6.

3.2. Result of Algorithm Implementation (Stage 1 to 3)

In this work, MLPNs used Levenberg-Marquardt, Scaled Conjugate Gradient and Resilient
Back-propagation as training algorithms were experimented to classify dual PPG signals obtained
from HD treatment patients with degrees of stenosis. The comparison of these training algorithms was
performed to obtain a good and efficient MLPN classifier. Feature selection is also very important to
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improve the classification performance quality [28] so that the results from the T-test are fed to the
MLPN input layer. The experiments conducted in this study are divided into four stages as illustrated
in Figure 2 and the result detailed as follows:

The first stage (preprocessing) previously explained have a result which is depicted in Figure 7a
exhibits a raw PPG signal which has noise, offset and drift. To solve this problem, we performed the
following steps: selecting 12 peaks of the raw input signal, filtering, de-trending and normalization
respectively which is shown in four signal changes in Figure 7a sequentially.

Next, in Figure 7b shows filtered signal with peak and valley point detection and has undergone
a de-trended process which calculated RS and FS. The peak and valley detection were applied to the
selected twelve peaks of PPG signals, for each HD patient. The calculations of RS and FS were performed
on the left and right processed PPG signals from the subjects recruited in this study, before and after
HD treatment. This process is the final process in the feature generation stage. Then the results would
be fed to the T-test as the selection stage to identify the stenotic feature in the HD patient.

In this study, the difference in deformation of PPG pulse shapes was compared to prove the
occurrence of stenosis as described previously [7,8,13,14]. This physiological information was the
expected feature to provide a proper input to produce optimal classification performance.

Leftand Right raw PPG signal
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(b)

Figure 7. (a) The process data preprocessing; (b) Final result of peak and valley detection on selected
twelve peak PPG signals.

As seen in Table 3, the third stage process generates results the T-test on RS features of the left
hand which had statistical significance with the p-value < 0.05. It shows the feature RS of HD hand,
before and after HD treatment, is appropriate input feature for classification.
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Table 3. RS and FS features of HD hand.

11 0f 18

Class 1 Class 2 Class 3 .
Feature  Conditions T-Test Hypothesis
No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No.10 No.11
RS before HD 0.0792  0.0724 0.0867 0.0789 0.0854 0.1058 0.0751 0.1194 0.1194 0.1020 0.0874 0.0211 Reiected
after HD 0.1139 0.0917 0.0865 0.0778 0.1023 0.1058 0.0958 0.1307 0.1243 0.1035 0.0867 ’ )
FS Before HD 0.1233  0.0920 0.0847 0.1037 0.1572 0.0950 0.0871 0.0686 0.0686 0.0770 0.1146 0.5893 Not
after HD 0.1348 0.1254 0.0714 0.0930 0.0937 0.0950 0.0757 0.1255 0.1254 0.1254  0.0790 ) Rejected
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The statistical test proves the occurrence of stenosis after HD treatment process which was shown
significantly in the left-hand as the HD hand. As described in Section 2.2.4, HD hand was the selected
hand which is the location of the HD treatment done.Furthermore, this term will be used in the rest of
the paper as it associated with the HD hand in which the PPG signal data is taken (as seen in Table 1).

3.3. Result of Stage 4

3.3.1. Experimental Design and Training Algorithm selection

The basic parameters to acquire the robust and reliable MPLs, were obtained by try and error
experiment which are shown in Table 4. Furthermore, a better training algorithm can be determined
by setting all parameters of the same value and feed with different training algorithms afterward.
There are three different developed MLP models, assessed by comparing its outputs with experimental
results of training and testing data.

Table 4. Parameter setup.

Parameters Setup Value (Configuration)
Learning rate (Ir) 0.1
Error goal 0.001 (1 x 1073)
Epoch 1000
momentum 0.95
Hidden layer activation function Logistic Sigmoid (logsig)
Output layer activation function Logistic Sigmoid (logsig)
Structure Dimensions 4,35,3
Levenberg-Marquardt (LMA)
Training Algorithm Scaled Conjugate Gradient (SCGA)
Resilient Backpropagation (RBA)
Class 1 — (DOS < 30%) [100]
Class 2 — (30% <DOS < 50%) [010]
Class 3 — (DOS > 50%) [001]

The training phase is a process in the network to find the input and output mapping by analyzing
the training set repeatedly. In the training phase, the process of updating the weight based on the error
information is being performed. As consequence, it runs slow or relatively takes more time. Table 5
displays one of the outcomes of the training phase with minimal errors (Mean Square Error—MSE)
indicated by the accuracy of the MLP model predicting all desired target classes.

Table 5. MLPN output.

Target Class MLPN Output MSE (1073)
[100] 0.9681 0.0208 0.0046 0.0375
[100] 0.9899 0.0102 0.0099 0.0834
[100] 0.9865 0.0015 0.0126 0.0087
[100] 0.9680 0.0137 0.0101 0.0901
[100] 0.9782 0.0119 0.0079 0.0151
[010] 0.0160 0.9824 0.0052 0.0107
[010] 0.0564 0.9662 0.0021 0.1879
[010] 0.0250 0.9946 0.0011 0.0351
[010] 0.0106 0.9957 0.0094 0.0023
[001] 0.0509 0.0094 0.9809 0.0461
[001] 0.0435 0.0097 0.9798 0.0572

Note: The bold number shows the maxima of the MLPN output.

In the above table, it can also be concluded that the MLP model with the parameters used can
classify the input data in accordance with the desired target classes that is, 5 target outputs of class 1,
4 of class 2 and 2 of class 3, respectively. Figure 8 illustrates the response of the network related to the
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class target to prove how well the MLP model is. Training curve is a curve that displays MSE versus
iteration (Epoch).

Targets
T T T T T T T ]
1 ‘- : : : mm Class 1
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sample Mo.

Figure 8. Network response to the targets class.

From the results of the experiments, the best performance was achieved at the 6th iteration with a
value of 5.126 x 10~ and is below the target value of pre-set target 1 x 1073.

The testing phase is an advanced process of training phase where the MLP model is tested with
a data that has never been known before to determine its performance. From the result shown in
Table 6, the MLP model is very well recognized with newly learned data. It is proven that the new
data was predicted correctly by MLP model that consists of four data from class 1, 1 of class 2 and 2 of
class 3, respectively.

Table 6. Unknown data test output.

Target Class MLPN Output
[100] 0.9932 0.9611 4.08 x 1077
[010] 0.0031 0.8854 0.0701
[100] 1.0000 0.0305 1.45 x 105
[100] 0.9995 0.2617 1.48 x 1075
[100] 1.0000 0.0291 1.37 x 1077
[001] 0.5613 0.0003 0.8281
[001] 0.9826 0.0004 0.9931

Note: The bold number shows the maxima of the MLPN output.

The experiments carried out in this study first assessed the MLPN that was built using the LMA
as its training algorithm, and the next was SCGA, and the last was RPA. Tables 5 and 6 and Figures 8
and 9 in this paper were taken from experimental results using LMA as training algorithm. Generally,
the result of MLPN model using LMA shows excellent performance. With fixed setup parameters and
unchanged architecture experiments performed also on SCGA and RPA, experiments are repeated for
10 times and the results can be seen in the next section.
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3.3.2. Performance Evaluation and Comparative Study of Training Algorithm

The performance of developed MLPN is analyzed using confusion matrix which is consisting
of True Positive (TP), False Positive (FP), False Negative (FN) and True Negative (TN). The correctly
predicted samples were represent by TP and TN, conversely the samples that were incorrectly predicted
represent by FP and FN. Table 7 shows Confusion matrix for multi-class [14,37], and in this study there
are 3 classes (DOS < 30% =class 1,30% < DOS < 50% = class 2, DOS > 50% = class 3).

Table 7. Confusion Matrix of three classes.

Predicted
Classes DOS < 30%  30% < DOS < 50% DOS > 50%
A 1 DOS < 30% Ci1 Cio Ci3
ctual 350 < DOS < 50% Cy Co Co3
DOS > 50% Cs1 Csp Cs3

The values of TP, FP, FN and TN for the three classes are respectively calculated using
Equations (18)—(21):

TP = Cq1 + Cpp + Cs3 (18)
FP = (Cy1 +Cz1) + (Ci2 + C32) + (C13 + Ca3) (19)
FN = (Clz + C13) + (Czl + C23) + (Cgl + C32) (20)

TN = ((Cop +Co3 4+ Ca2 +Cs3) + (Ci1 + Ci3+ C31 +C33) + (Ci1 + C12 + Co1 +C22)) (21)

The calculations on the confusion matrix in this study uses the definitions Cy;, Cp;, C33 as MLPN
models whose actual data and predictions have the same value. In other words, the model can predict
the same as the target class. While in the first row, C;, should be class 1 (actual) but by the model
predicted as class 2 and Cy3 should be class 1 (actual) but by the model predicted as class 3. For the next
row, Cp1 should be class 2 (actual) but by the model was predicted as class 1 and Cp3 should be class 2
(actual) but by the model was predicted as class 3. For the last row, C3; should be class 3 (actual) but by
the model was predicted as class 1 and Cs; should be class 3 (actual) but by the model was predicted
as class 2. By using confusion matrix, several performance indicators of a classifier can be calculated.
To avoid or minimize the effects of the imbalance class in learning and evaluation process, this study
combines different performance measures such as Accuracy (ACC), Sensitivity (REC), Specificity (SPE),
Precision (PPV) and Geometric Mean (GM) [14,38]. To complete the information so that it can be
conclude as the best MLPN performance then we added training time, test time, epoch of train and
MSE in evaluation stage. As seen in Table 8 all training algorithm yield result above 80 percent.
However, it is so clear that Levenberg-Marquardt Algorithm was superior to others. ACC = 94.82%,
REC =92.22%, SPE = 96.11%, PPV = 92.22%, GM = 94.13% were obtain using LM Algorithm as shown
in Figure 9. The detailed classification performance result shown in Table 8.

Table 8. Classification Performance Results.

* Performance

REC SPE PPV GM  Training Time (s) Test Time (s)

Training Algorithm ACC

%) %) %) %) %) (TnT) (TT) Epochs MSE

Levenberg-Marquardt 94.816 92221 9611 92221  94.126 1.167 0.228 550 0.082

Algorithm (LMA)  (£5.00) (£7.50) (£3.75) (£7.50) (5.00) (£1.40) (£0.18) (£0.85) (£0.22)

Gi;ﬁifg{”gii;‘in 8852 8278 9139 8278  86.96 0.409 0.062 60.2 0.003
(SCGE) (£4.08) (£6.11) (£3.06) (£6.11) (+4.67) (£0.06) (£0.01) (£17.65) (£33 x 10°3)

Backlf;:(l)l;‘;?aﬁon 9074 8611 9306 8611  89.51 0.307 0.055 31.000 0.003

Algonthon oepay | (£319) (FA7) (£236) (+472)  (£472) (£0.04) (£27.54)  (+1241) (£0.01)

* Mean (+ Standard Deviation).
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As mentioned in C1, LM Algorithm could guarantee problem-solving through its adaptive
behavior but it also slow algorithm which proved its TnT and TT were 1.167 and 0.228 s, respectively.
Another indicator that strengthens the conclusions of LM Algorithm superiority was its high G-Mean
value. The fastest algorithm was determined as RPA algorithm with the mean of TnT = 0.307 s and
TT = 0.0055 s, respectively, so it is proved that RPA was a learning algorithm that could improve the
speed of convergence.

The evaluation performance of the classifiers had been built determined by the calculation of
accuracy, sensitivity, specificity, precision and G-Mean respectively and Figure 9 shows the result
comparison between the indicators.

98
94 Av%,@—
90 = /%

86 B\ _—£1

82 \E/ \s/

78
74
70
ACC REC SPE PPV GM
—6—LMA —8B8—SCGA RPA

Figure 9. Five classification parameters of comparison in three algorithms.

The performance of neural network model in this experiment by using LMA provided good
results toward unknown test data. This confirms that the over-fitting problem can be minimized by
choosing network architecture sizes and features appropriately, as previous research by Guyon and
Muzhou [28,30].

The results demonstrated that Multilayer Perceptron Neural Network with Levenberg-Marquardt
was significantly outperforms other algorithm and succeeded to classify arteriovenous fistula stenosis
in HD patients. Table 9 shows comparative table of similar research to identify AVF stenosis with
proposed method predominance.

Table 9. Comparative Table of Similar Research.

The Approaches Hsien-Yi Jian-Xing Wei-Ling Du, Y.C, & Proposed
PP Wang et al. [3] Wu et al. [7] Chen etal. [15] Stephanus, A.[14] Method
The clinical stenosis Doppler
detector Stethoscope Ultrasound Stethoscope PPG PPG
- RBF Neural I-G Decision MLP Neural
Classifier Network Making ANFIS ESVM-OVR Network
The number of 5 2 3 3 3
classes
Accuracy - - - 90 94.82
System Performance
rate—PPV 87.84 >80 - 91.67 92.22
GM - - - - 94.13
CPU time rate ) ) ) 0.22 0.228

(training)
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4. Conclusions and Future Work

In this study, we used Multilayer Perceptron Neural Network with Levenberg-Marquardt
Algorithm to classify the degree of arteriovenous stenosis in a HD patient. As mentioned in the novelty
of this study, from the three training algorithms could finally be recommended that MLPN with LM
Algorithm could be used as a classification model to classify the degrees of arteriovenous fistula
stenosis. The parameters and features used in this study strongly support the occurrence of good and
efficient performance. It is proven from this work that the LM algorithm is a better back-propagation
modification variant [39] although not too fast to converge over two other algorithms. In the previous
study, that stenosis statistically significant has occurred on the HD hand [7,8]. Our design could
not only evaluate the stenosis in HD hand, but also could analyze the bilateral difference between
two hands referring previous studies methods [7-14]. Since the device of this system is low cost,
efficiency and simple, we believe that the proposed study could provide potential assistive tools
for DOS clinical evaluation, medical diagnostic support or commonly refer to as the Internet of
Medical Things (IoMT). This study also has some limitations including the morphology of PPG
signal is also influenced by cardiovascular regulation, blood pressure, patient age, arterial stiffness
and other hemodynamic properties [7]. Furthermore, it could be varied by vasoactive drugs or
endothelial function [40]. The clinical trial with a much larger sample set including a wide range of
age, blood pressure, and other factors would be needed in the future research to verify the correlation
between PPG shape with another arterial physiological information.
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Abbreviations

The following abbreviations are used in this manuscript:

PPG Photoplethysmography

RS Rising Slope

FS Falling Slope

AVF Arteriovenous Fistula

DOS Degree of Stenosis

MLPN Multilayer Perceptron Neural Network
USRDS U.S. Renal Data System Annual Data Report
ESRD End-Stage Renal Disease

TWRDS Taiwan Renal Registry Data System
HD Hemodialysis

LPF Low pass filter

DPMN Dual PPG measurement node

LMA Levenberg-Marquardt Algortithm
SCGA Scaled Conjugate Gradient Algorithm
RPA Resilient Backpropagation Algorithm
ACC Accuracy

REC Recall

SPE Specificity

PPV Positive Predictive Value (Precision)
GM Geometric Mean

TnT Training Time

1T Test Time

MSE Mean Square Error
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