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Abstract: Nanoparticles of manganese antimonate (MnSb2O6) were prepared using the
microwave-assisted colloidal method for its potential application as a gas sensor. For the synthesis of
the oxide, manganese nitrate, antimony chloride, ethylenediamine and ethyl alcohol (as a solvent)
were used. The precursor material was calcined at 800 ◦C in air and analyzed by X-ray diffraction.
The oxide crystallized into a hexagonal structure with spatial group P321 and cell parameters
a = b = 8.8054 Å and c = 4.7229 Å. The microstructure of the material was analyzed by scanning
electron microscopy (SEM), finding the growth of microrods with a size of around ~10.27 µm and some
other particles with an average size of ~1.3 µm. Photoacoustic spectroscopy (PAS) studies showed
that the optical energy band (Eg) of the oxide was of ~1.79 eV. Transmission electron microscopy
(TEM) analyses indicated that the size of the nanoparticles was of ~29.5 nm on average. The surface
area of the powders was estimated at 14.6 m2/g by the Brunauer–Emmett–Teller (BET) method.
Pellets prepared from the nanoparticles were tested in carbon monoxide (CO) and propane (C3H8)
atmospheres at different concentrations (0–500 ppm) and operating temperatures (100, 200 and
300 ◦C). The pellets were very sensitive to changes in gas concentration and temperature: the
response of the material rose as the concentration and temperature increased. The results showed
that the MnSb2O6 nanoparticles can be a good candidate to be used as a novel gas sensor.
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1. Introduction

The oxides of transition metals—known as antimonates—have recently attracted the attention of
several research groups due to their interesting physical and chemical properties [1]. These materials
have been used in different technological areas (like in photocatalytic degradation processes,
thermoelectric conversion materials, as negative electrodes in rechargeable lithium-ion batteries, etc.)
because of the type of microstructure obtained during their synthesis process [2–4]. In recent years,
antimonates like CoSb2O6, NiSb2O6, MgSb2O6 and ZnSb2O6 have been used as potential gas sensors
in CO2, CO, C3H8, LPG, H2S and NO2 atmospheres [5–12]. It has been found that such materials
possess a high response, which is attributed to the morphology, porosity and nanometric particle size
obtained during their preparation [5,6,8,9].

The antimonates, mainly the trirutile-type ones, conform to the stoichiometric formula ASb2O6,
where A can be substituted by divalent ions such as Co, Ni, Mg, Zn, Cu, Mn, Ca, or Sr [1,13,14].
The substitution of these ions during the synthesis yields trirutile-type crystalline structures with
spatial groups P42/mnm (MgSb2O6, NiSb2O6, CoSb2O6) [9,15,16] and P21/n or P21/c (CuSb2O6) [17].
Some authors state that substituting the Mn ion (in order to obtain the manganese antimonate,
MnSb2O6), the compound may show a hexagonal or columbite-type crystal structure with spatial
group P321 [18], displaying also a strong similarity to the trirutile-type structures of the FeSb2O6,
the CoSb2O6 and the NiSb2O6 [19]. Other authors have reported that the manganese antimonate can
show a trigonal chiral structure [20]. Typically, these oxides are synthesized by the solid-state reaction
route [4]. However, the colloidal method has been employed in recent works because it is a way
to have a better control of the physical and chemical parameters in order to obtain particle sizes of
nanometric scale [5,7,9,10].

In this work, nanoparticles of manganese antimonate were synthesized following a simple and
economical process to obtain particles with sizes less than 100 nm. Pellets were made from powders of
the MnSb2O6 and exposed to atmospheres of propane (C3H8) and carbon monoxide (CO) at different
concentrations and temperatures of operation, showing a high sensitivity.

2. Materials and Methods

2.1. Synthesis of MnSb2O6 Nanoparticles

The manganese antimonate nanoparticles were prepared using the microwave-assisted colloidal
method. For this, 1.25 g (5 mmol) of Mn(NO3)2·4H2O (Sigma-Aldrich, St. Louis, MO, USA), 2.28 g
(10 mmol) of SbCl3 (Sigma-Aldrich), 0.5 mL (8 mmol) of ethylenediamine (Sigma-Aldrich) and ethyl
alcohol as a solvent (Golden Bell, Taiwan) were used. The amounts of the Mn and Sb precursors were
calculated according to the nominal composition of the MnSb2O6 (ratio Sb:Mn = 2:1). To each reagent,
5 mL of alcohol was added and then stirred for 30 min in order to obtain homogeneous solutions.
Subsequently, the solutions with ethylenediamine and antimony chloride were mixed together under
stirring. After that, manganese nitrate was added, obtaining a white solution, which was stirred
vigorously at 360 rpm for 24 h in air at room temperature. The solvent was evaporated by making 16
applications of microwave radiation at a low power (145 W, with a duration of 1.2 min per application)
using a domestic microwave oven (LG model MS1147, Guadalajara, Jal., Mexico). Subsequently,
the precursor material (a white paste) was dried at 200 ◦C in air for 8 h and then calcined at 800 ◦C
for 5 h at a rate of 100 ◦C/h by way of a muffle with programmable temperature control (Novatech,
Tlaquepaque, Jal., Mexico). Figure 1 illustrates the process for obtaining the MnSb2O6 nanoparticles.
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analyzed through a transmission electron microscope (TEM, Joel JEM-ARM200F, Mexico City, 
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MnSb2O6 were placed inside a container to which methanol was previously added for the purpose of 
dispersing the powders. The dispersion was carried out for 10 min in an ultrasonic generator and 
then the powders were deposited on a 300-mesh copper grid containing a formvar/carbon membrane 
(Tedpella, Redding, CA, USA). 

The optical properties of the MnSb2O6 were determined by means of photoacoustic spectroscopy 
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amplified using the lock-in amplifier (EG&G, 5210). The PA spectra were normalized with the PA 
spectrum obtained from a carbon black reference. The characterization of the surface area of the 
MnSb2O6 powders was done by nitrogen adsorption measurements using a Belsorp-mini II analyzer 
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Figure 1. Synthesis process of the manganese antimonate nanoparticles.

2.2. Physical Characterization of MnSb2O6

The crystalline phase of the antimonate was analyzed using X-ray diffraction at room temperature
using a Panalytical Empyren device with CuKα radiation (λ = 1.546 Å). The diffraction was done using
a 2θ continuous scan from 10◦ to 90◦ with 0.026◦-steps at a rate of 30 s per step. The microstructure
was examined using a field-emission scanning electron microscope (FE-SEM, Tescan MIRA 3 LMU
system, 10 kV; Mexico City, Mexico). Size and morphology of the nanoparticles were analyzed through
a transmission electron microscope (TEM, Joel JEM-ARM200F, Mexico City, Mexico) in image mode.
In order to observe the individual features of the nanoparticles, powders of MnSb2O6 were placed
inside a container to which methanol was previously added for the purpose of dispersing the powders.
The dispersion was carried out for 10 min in an ultrasonic generator and then the powders were
deposited on a 300-mesh copper grid containing a formvar/carbon membrane (Tedpella, Redding,
CA, USA).

The optical properties of the MnSb2O6 were determined by means of photoacoustic spectroscopy
(PAS). The equipment consisted of an Oriel Xenon lamp as the excitation source and an Oriel
monochromator for recording the optical absorption spectra. Mechanically modulated radiation
of 17 Hz was focused onto the optical fiber, which was connected to the PA cell. The PA signal was
detected by a sensitive microphone through a 1 mm (Ø)-opening made on the cell’s wall and then
amplified using the lock-in amplifier (EG&G, 5210). The PA spectra were normalized with the PA
spectrum obtained from a carbon black reference. The characterization of the surface area of the
MnSb2O6 powders was done by nitrogen adsorption measurements using a Belsorp-mini II analyzer
(BEL Japan, Osaka, Japan). The sample was degassed and maintained under vacuum conditions for
24 h at room temperature.

2.3. Gas Sensitivity Tests

To carry out the gas detection tests, pellets were made from the antimonate powders calcined at
800 ◦C. The pellets, with a diameter of 12 mm and a thickness of 0.5 mm, were prepared by compacting
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0.300 g of powders applying a pressure of 10 tons during 60 s by means of a manual-pressing-equipment
(Simplex Ital Equip–25 tons). To measure changes in the material’s electrical resistance in carbon
monoxide (CO) and propane (C3H8) atmospheres, two ohmic contacts were traced on the pellets using
colloidal silver paint (Alfa Aesar, 99%). The pellets were placed inside a measuring chamber with a
vacuum capacity of 10−3 torr. The partial pressure of the gases inside the chamber was controlled
using a Leybold TM20 detector and the measurement of the electrical resistance was done using a
Keithley 2001 multimeter.

The concentrations of carbon monoxide and propane were of 1, 5, 50, 100, 200 and 300 ppm,
plus two more for propane: 400 and 500 ppm. The operating temperatures were 100, 200 and 300 ◦C for
both gases. The sensitivity (S) of the pellets was estimated according to the equation [5,7,9,12,21,22]:

S =
GG − GO

GO
, (1)

where GG and GO are the conductance of the pellets (1/electric resistance) in the test gases (CO or
C3H8) and air, respectively. A diagram of the device used for the gas detection tests can be found in
reference [6].

3. Results

3.1. X-ray Diffraction Analysis

As expected, the reaction between the manganese nitrate and the antimony chloride,
in combination with the ethylenediamine, produced the characteristic peaks of the antimonate’s
crystalline phase when the precursor material was calcined at 800 ◦C. Temperature played a key role
in promoting the reaction, giving rise to the results shown in Figure 2.
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Figure 2. X-ray diffraction pattern of the MnSb2O6 powders calcined at 800 ◦C.

It can be clearly seen in Figure 2 that the peaks are narrow and high, which means that the material
was crystalline. In addition, the width of the peaks suggests that it was composed of nanometric
crystallite sizes [5,7,9]. The peaks were identified by means of the PDF No. 84-1237, showing that
the oxide had a hexagonal structure [23] with cell parameters a = b = 8.8054 Å and c = 4.7229 Å
and the spatial group P321 [20]. Therefore, the MnSb2O6 belongs to the antimonates family [18,24].
A secondary phase of inorganic material corresponding to SbO2 was also found (identified through
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PDF No. 65-2446), located at the point 2θ = 32.7◦. The crystallite size (t) of the manganese antimonate
was calculated by applying the Scherrer equation [7]:

t =
0.9λ

βcosθ
(2)

where λ is the wavelength of the radiation (λ = 1518 nm), θ is the Bragg angle and β is the full width
at half maximum (FWHM) of the diffraction peak. The calculation was carried out considering all
the peaks of the main phase of the MnSb2O6 shown in Figure 2, finding that the average crystallite
domain was of ~36.6 nm. The results presented in Figure 2 are consistent with other studies on the
same material [25] or similar compounds belonging to the antimonates family (MSb2O6, where M =
Mn, Cu, Co, Ni, among others) [1–4,20,25].

3.2. Scanning Electron Microscopy Analysis

Figure 3 shows scanning electron microscopy (SEM) images of the manganese antimonate
powders calcined at 800 ◦C. For the analysis of the material’s microstructure, the magnifications
1000×, 2500× and 5000× were used.
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Figure 3. SEM photomicrographs showing the surface’s microstructure of the manganese antimonate
calcined at 800 ◦C at magnifications: (a) 1000×, (b) 1000×, (c) 2500× and (d) 5000×.

In Figure 3a, the microstructural composition of the material is broadly observed. It can be clearly
seen the appearance of several types of morphologies formed by irregular particles of different sizes.
The type of microstructure with greater abundance in this area was due to the growth of very fine
particles with an average size of ~1.3 µm. It was also possible to identify a morphology similar to
micro-rods (see inserted image) with sizes in the range of 4–20 µm, with an average size of ~10.27 µm
and a standard deviation of ~4.1 µm. The morphology shown in Figure 3a–c appears to be a fibrous
and porous surface. Figure 3d, obtained at a higher magnification (5000×), shows that the micro-rods
are formed by the agglomeration of particles (see inserted image). The size of the particles that shape
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the micro-rods was estimated in the range of 0.05–0.4 µm, with an average of ~0.159 µm and a standard
deviation of ~0.068 µm (see Figure 4). This type of microstructure is attributed to the agglomeration
of particles that grew due to the temperature and the chelating agent (ethylenediamine) employed
during the synthesis process [5,7]. The porosity on the material’s surface was due to the release of
gases produced during the thermal treatment of the material [26], which caused the decomposition of
organic species but mainly water vapor, NOx and CO2 [27].

The use of ethylenediamine to produce different types of nanostructures (such as nanowires and
nanorods) has already been discussed in previous works [26,28]. In particular, ethylenediamine acts
as a modulating agent of the microstructure, incorporating itself as a mesh in the inorganic particles,
to subsequently escape from them due to the applied thermal treatment, causing the nucleation and
formation of the morphology shown in Figure 3a–d.
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3.3. Transmission Electron Microscopy Analysis and Nitrogen Adsorption Tests

In Figure 5, three TEM photomicrographs of the antimonate particles calcined at 800 ◦C are
shown. These images confirm the production of nanoparticles of different morphologies and sizes.
According to the analyses made in this area of the material, a large agglomeration of nanoparticles can
be observed due to the effect of the calcination temperature and the residence time of the precursor
material in the muffle. The dark areas depicted in Figure 5a are due to the low electron transmission
that occurs because of the nanoparticles agglomeration on the material’s surface. It can be observed in
Figure 5b,c that the nanoparticles are joined to each other by the formation of necks due to coalescence.
The size of the nanoparticles was estimated in the range of 10–60 nm, with an average of ~29.5 nm and
a standard deviation of ~9 nm (see Figure 6).

In Figure 7, high-resolution TEM (HRTEM) images of the surface of a nanoparticle (size ~34.2 nm)
are shown. This demonstrates the crystalline nature of the manganese antimonate, since the crystalline
planes formed on the surface of the particles joined by the necks can be observed (see the inserted
image). The distance d between the crystalline planes was estimated on a selected area of a nanoparticle.
According to this, the distance between the planes is of ~29.667 Å, which corresponds to the plane
(021) of the MnSb2O6’s crystal structure, with a diffraction angle of 2θ = 30.097◦. This result can be
corroborated by the X-ray diffraction analysis shown in Figure 2.
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Based on the results obtained, the microwave-assisted colloidal method is a successful way
to synthesize MnSb2O6 microbars constituted by nanoparticles. It is important to mention that
microwave radiation is a form of heating that offers interesting advantages in the synthesis of
materials. Among them, heat can be transferred throughout the volume of the material (volumetric
heating). Therefore, the heating time (some minutes in this work) is significantly reduced compared
to conventional heating (usually hours). In addition, secondary reactions are reduced, increasing the
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reaction yield. Another important aspect is that it favors the synthesis of materials with nano-sized
particles and improved physical-chemical properties [29]. These features are interesting for applications
in the field of gas sensors, as we have reported here.Sensors 2018, 18, x FOR PEER REVIEW  8 of 16 
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Figure 7. High resolution TEM (HRTEM) images showing the crystal planes of the manganese
antimonate nanoparticles.

Figure 8 shows a nitrogen adsorption-desorption isotherm of the MnSb2O6 powders. The shape of
the isotherm is of type II according to the IUPAC classification. This isotherm, which shows a hysteresis,
is characteristic of non-porous or macroporous adsorbents. The surface area of the MnSb2O6 powders,
according to the BET (Brunauer–Emmett–Teller) method, was estimated at 14.6 m2/g. In general,
mixed oxides usually have relatively low surface areas (<10 m2/g) when prepared by traditional
methods [27]. The synthesis of sensor materials with larger surface areas can therefore favor the
adsorption of gases and, consequently, increase their response.
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3.4. Optical Properties Analysis

In order to determine the optical properties of the MnSb2O6, a photoacoustic spectroscopy (PAS)
study has been performed. A PA spectrum as a function of the wavelength from 400 to 830 nm is
shown in Figure 9a. The optical energy band gap (Eg) was determined from the high absorption region
(hϑ > Eg, where hϑ is the incident energy). In this region, the direct allowed transition is given by the
equation [30]:

αhϑ = A
(
hϑ − Eg

)1/2 (2)

where α is the absorption coefficient and A is a constant. The inset of Figure 9b shows the graph of
(Ahϑ)2 as a function of hϑ. The value of Eg was estimated by the extrapolation of the dotted line with
the abscissa [31,32], as shown in the inset. The value of the corresponding Eg for MnSb2O6 was of
1.79 eV.
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3.5. Gas Sensing Tests

3.5.1. CO Analysis

Detection experiments in carbon monoxide (CO) atmospheres were carried out using
concentrations of 1, 5, 50, 100, 200 and 300 ppm at operating temperatures 100, 200 and 300 ◦C.
The results are shown in Figure 10. As can be seen in Figure 10a, at 100 ◦C the antimonate pellets
showed no response (i.e., no changes in the material’s electrical resistance were recorded) at any
CO concentration. However, by increasing the operating temperature to 200 ◦C, small increases in
sensitivity were obtained by also increasing the CO concentration. The response variations were
0.0, 0.0053, 0.0125, 0.0640, 0.172 and 0.329 at concentrations 1, 5, 50, 100, 200 and 300 ppm of CO,
respectively. Figure 10b shows a zoom to Figure 10a where the response of the material at 200 ◦C
can be checked in detail. The poor response recorded at 100 and 200 ◦C is attributed to the fact
that the thermal energy is not enough to provoke the reaction of the CO molecules with the surface
of the pellets, which leads to the absence of oxygen desorption at these temperatures. In contrast,
when the temperature was raised to 300 ◦C, a very significant increase in response was recorded (~8.98,
see Figure 10c). It can be clearly seen that the sensitivity magnitude of the material depends on the
increase of the concentration and the operating temperature. It has been reported that the effect of
increasing the temperature and concentration of a gas like CO considerably raise the response of a
semiconductor material [33,34], as in our case.
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Figure 10. Response of the manganese antimonate nanoparticles in terms of (a) CO concentration,
(b) concentration at 100 and 200 ◦C and (c) temperature.

The high response recorded in CO atmospheres is caused by the increase in temperature during
the detection test, contributing to an increase in oxygen desorption [35]. The mechanism that explains
the interaction between the CO and the surface of the antimonate pellets is based on the ionization
states of the chemisorbed oxygen on the material’s surface due to the temperature [36]. Chang [37]
reports that due to the effect of temperature during the sensing tests, different oxygen species can
appear. Therefore, at temperatures below 150 ◦C the oxygen species that dominate the most are O−

2 ,
whereas when the temperature rises above 150 ◦C (in our case at 300 ◦C) the oxygen species that
emerge are O− and O2− [36,38], which are more reactive than those appearing below 150 ◦C [36].

The results of the electrical resistivity (or response) of the antimonate nanoparticles in the presence
of CO at the given operating temperature are shown in Figure 11a,b. The calculation was done using
the equation ρ = R A/t [39] where R is the electrical resistance in the test gas and A and t are the
cross-sectional area and the thickness (0.5 mm; Ø = 12 mm) of the pellets, respectively.
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(b) operating temperature.

As can be observed in Figure 11, with the increase of CO concentration, the resistivity of the
MnSb2O6 nanoparticles decreased. In addition, the effect of temperature played a very important
role in the response of the material. As the operating temperature increased (from 100 to 300 ◦C),
the MnSb2O6 pellets exhibited a very significant decrease in electrical resistivity. This behavior is
typical of a semiconductor material used as a gas sensor [34,39]. Thus, at 100 ◦C, the highest resistivity
of the material was recorded. When the temperature increased to 200 ◦C, the pellets showed a slight
decrease in electrical resistivity. In addition, with the increase in temperature, the material showed
inflection points on the resistivity at 200 ◦C. The poor response obtained at these temperatures (100 and
200 ◦C) is largely due to the fact that the thermal energy was not enough to provoke the reaction of
the CO molecules with the oxygen present on the pellets’ surface [34]. On the contrary, when the
temperature was raised to 300 ◦C, the values of the electrical resistivity in CO atmospheres decreased
very significantly. The values found at this temperature were 87.0, 85.88, 78.19, 64.18, 42.26 and
8.71 Ωm. The results shown in Figure 11a,b are consistent with similar oxides tested in the same
gas [34,39,40].

3.5.2. C3H8 Analysis

The tests in propane atmospheres (C3H8) were carried out at different concentrations (1–500 ppm)
and operating temperatures (100, 200 and 300 ◦C). The results under these working conditions are
shown in Figure 12.

As expected, as the temperature and concentration of the test gas increased, the values of the
electrical resistance changed, causing increases in the material’s sensitivity magnitude. The increase in
the response of the MnSb2O6 nanoparticles is mainly associated with the increase in the number
of propane molecules that react with oxygen chemisorbed on the material’s surface due to the
temperature [9,26,27]. Different authors have reported that variations in electrical resistance occur
due to the increase in temperature, causing the sensitivity magnitude to increase [5,6,8,26,35,37].
We observed that at 100 and 200 ◦C, the thermal energy was not enough to generate the oxygen
desorption reaction on the pellets’ surface, which led to low changes in the material’s electrical
resistance, that is, a poor response was obtained. On the other hand, at a higher temperature (300 ◦C),
more oxygen species were produced, causing a high interaction between the propane molecules and
the surface of the pellets, with an increase in the sensitivity magnitude. In particular, the increase
in the response at 100 and 200 ◦C was respectively of ~0.127 and ~0.309 at 500 ppm of propane.
The maximum response was of ~0.439, corresponding to 500 ppm of C3H8 at 300 ◦C.
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The mechanism that accounts for the interaction between the propane molecules with the surface
of the MnSb2O6 pellets has not been fully explained [27]. However, it has been reported that some of
the factors that affect the chemisorption of oxygen are the particle size and the morphology since if
the size is less than twice the thickness of the charged outer layer (LS), the oxygen species that are
adsorbed are O−, which leads to an increased response [40,41]. Other authors have suggested that
the propane molecules react with the chemisorbed species O− by producing CO2, water vapor and
thereby a release of electrons on the material’s surface [27,42]. This phenomenon causes changes in
the electrical resistance of the solid material and with it a very significant increase in the response
(see Figure 12a,b).

As in the case of CO, the electrical resistivity (ρ) in propane atmospheres at temperatures of 100,
200 and 300 ◦C was estimated using the equation ρ = RA/t [39]. The results are presented in Figure 13
as a function of propane concentration and operating temperature. As shown in Figure 13a,b, with the
increase in temperature, the material’s resistivity decreased in a similar manner to the case of CO.
We have confirmed that by injecting the different concentrations of propane (1–500 ppm) into the
measuring chamber, the pellets’ resistivity decreases significantly. This is attributed to the fact that
with the increase of the operating temperature, the mobility of the solid material’s charge carriers is
more active on the pellets’ surface [34,43], which contributes to the increase of the material’s electrical
conductivity proportionally to the reduction of its electrical resistivity in C3H8 atmospheres [44].
In addition, the increase in the concentration of propane favored the low electrical resistivity obtained
at high temperatures (in our case at 200 and 300 ◦C). This means that with the increase of the operating
temperature, the kinetic activity of the propane gas molecules increased, leading to the results shown
in Figure 13a,b. It has been reported that for the response of a material such as the one used in this
work, the changes in electrical resistivity depend on the sensor type employed [34] since the interaction
between the gas molecules and the chemisorbed oxygen varies depending on the geometry of the
sensor (e.g., pellets or films) [34,39,44]. In our case, the variation of the pellets’ electrical resistivity at
300 ◦C was of 123.52, 123.39, 121.36, 17.08, 105.54, 96.05, 90.85 and 85.88 Ωm. This trend generally
occurs in semiconductor oxides when exposed to gases at high temperatures [34,43,45–48], as in our
case (see Figure 13a,b).

By comparing our results with similar metal oxides that have been tested as potential gas sensors,
our manganese antimonate pellets showed a better response. For example, in reference [49], the metal
oxide SnO2 was prepared to study its ability to detect propane atmospheres, finding a response of
~0.1 at 300 ◦C using films with a thickness of 50 nm. Same reference reports a maximum response
of ~0.35 in the same operating conditions using films with a thickness of 100 nm. In reference [50]
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ZnMn2O4 nanoparticles were synthesized for studying their detection properties in CO atmospheres.
Using oxide pellets, they obtained a response of ~1.55 at a temperature of 300 ◦C and a concentration of
300 ppm of CO. Meanwhile, reference [27] reports a maximum response of 7.2 at 300 ◦C and 300 ppm
of CO. In addition, our research group recently reported that pellets of the trirutile-type oxide CoSb2O6

showed a maximum response of ~7 at 350 ◦C and 300 ppm of CO [6] and of ~4.14 at 300 ◦C and
300 ppm of CO [51].
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In summary, the manganese antimonate pellets were clearly sensitive to changes in their electrical
properties in gaseous atmospheres of carbon monoxide and propane. In addition, it was confirmed
that the response of the material is affected by the type of gas and its concentration, as well as by the
operating temperature. At this point, it is important to stress the impact of the nanostructures on the gas
response. It is a known fact that the structure of the sensitive layer can also affect the performance of the
sensing materials due to the nanometer size of the particle [41,52]. In practice, nanostructured materials
present an optimal combination of properties that make them an excellent choice for application as
gas sensors. Among such properties, the structural stability and the electro-physical properties stand
out, as well as an inexpensive design technology and a well-developed surface [53]. In addition,
the surface area increases when the particle size decreases (~14.6 m2/g in the case of the MnSb2O6),
thus increasing the number of potentially active catalytic sites, which favors a high adsorption of CO
and C3H8 on the surface, contributing in this way to obtain changes in the electrical resistance and,
consequently, to the improvement of the response to these gases [6]. That is, its ability to detect several
gas concentrations increases greatly, allowing in turn the detection of low gas concentrations (1 ppm in
this case) [9,54]. The thickness of the charged outer layer is a function of the concentration of charge
carriers in the volume of the material. Therefore, three conduction mechanisms can appear depending
on the crystal size (D) [5,45,55–57]: (1) If D � 2LS, the conductivity will be limited to the Schottky
barrier at the particle boundary; in this case, the response is practically independent of the crystal
size; (2) if D = 2LS, the crystal size is comparable to 2LS and the conductivity will depend on the
formation of necks between the crystals; in this case, the dependence of the gas response on the crystal
size is defined; (3) if D < 2LS, the whole crystal will be involved with the charged outer layer and
the conductivity will depend only on the crystal size. Therefore, if it is possible during the synthesis
process to obtain particle sizes smaller than 100 nm (in our case it was of ~30 nm), the electronic
conduction will be through the surface of the sensor [45,54], which will lead to a high sensitivity,
as occurred in this work.
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4. Conclusions

Nanoparticles of manganese antimonate (MnSb2O6) were successfully synthesized using the
low-power microwave-assisted colloidal method. This process is economical, easy to use and
very efficient for producing particles with sizes below 100 nm. The average size of the MnSb2O6

nanoparticles was estimated at ~29.5 nm, while the surface area of the oxide powders was of 14.6 m2/g.
The optical energy band of the crystalline phase obtained at 800 ◦C was estimated at 1.79 eV. Pellets
made from the material’s nanoparticles showed to be highly sensitive to carbon monoxide (CO) and
propane (C3H8) atmospheres at different operating temperatures. The optimal functioning of the
sensor was at a temperature of 300 ◦C and at concentrations of 300 ppm of CO and 500 ppm of
C3H8. The maximum sensitivity recorded in these atmospheres was of ~8.98 (CO) and ~0.439 (C3H8),
respectively. According to our results, nanoparticles of manganese antimonate can be considered as an
excellent sensor of carbon monoxide and propane atmospheres.
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